{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "13c9f12f", "metadata": {}, "source": [ "# 7. 進階運算與統計方法" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `flox`: 進階`xarray.groupby` \n", "\n", "`xarray.groupby` 有一些限制:\n", "1. 只能針對單一變數分群。\n", "2. 若在平行運算的陣列 (dask array) 下,為了尋找各個值適合的組別,必須耗費較多計算資源。 \n", "\n", "`flox`套件則可以解決這個問題。以下是針對兩個變數分群的範例。`flox.xarray_reduce`的用法請參考[官方說明](https://flox.readthedocs.io/en/latest/generated/flox.xarray.xarray_reduce.html#flox.xarray.xarray_reduce)。\n", "\n", "**Example 1:** 將每日OLR資料轉化成(year, pentad, lat, lon)格式 (同第五章的範例)。" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/waynetsai/.local/lib/python3.10/site-packages/ecmwflibs/__init__.py:83: UserWarning: dlopen(/Users/waynetsai/.local/lib/python3.10/site-packages/ecmwflibs/_ecmwflibs.cpython-310-darwin.so, 0x0002): tried: '/Users/waynetsai/.local/lib/python3.10/site-packages/ecmwflibs/_ecmwflibs.cpython-310-darwin.so' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64')), '/System/Volumes/Preboot/Cryptexes/OS/Users/waynetsai/.local/lib/python3.10/site-packages/ecmwflibs/_ecmwflibs.cpython-310-darwin.so' (no such file), '/Users/waynetsai/.local/lib/python3.10/site-packages/ecmwflibs/_ecmwflibs.cpython-310-darwin.so' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64'))\n", " warnings.warn(str(e))\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (year: 24, dayofyear_bins: 73, lat: 50, lon: 82)>\n",
       "array([[[[284.27383, 285.73615, 288.25266, ..., 231.88802, 241.6569 ,\n",
       "          249.84024],\n",
       "         [286.65228, 288.05078, 288.27435, ..., 215.95383, 230.82944,\n",
       "          246.1481 ],\n",
       "         [290.7838 , 290.25864, 287.82904, ..., 198.27682, 214.98921,\n",
       "          225.9622 ],\n",
       "         ...,\n",
       "         [247.29614, 246.06245, 247.94983, ..., 279.0298 , 277.99088,\n",
       "          276.57684],\n",
       "         [244.55948, 242.81021, 239.5767 , ..., 273.2099 , 271.63373,\n",
       "          270.99365],\n",
       "         [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n",
       "          266.7093 ]],\n",
       "\n",
       "        [[257.097  , 249.06888, 260.7727 , ..., 251.24788, 258.4394 ,\n",
       "          267.57504],\n",
       "         [265.49664, 263.90622, 270.4431 , ..., 237.29634, 248.2174 ,\n",
       "          250.10226],\n",
       "         [261.7508 , 266.22888, 276.74783, ..., 222.44157, 235.64157,\n",
       "          227.53247],\n",
       "...\n",
       "         [246.52588, 246.06047, 249.06099, ..., 256.54034, 259.21564,\n",
       "          260.4043 ],\n",
       "         [244.2377 , 247.02632, 246.57187, ..., 258.28467, 255.90445,\n",
       "          257.71054],\n",
       "         [237.547  , 235.2325 , 224.96394, ..., 255.28891, 253.66435,\n",
       "          255.53586]],\n",
       "\n",
       "        [[286.86404, 287.83688, 290.30945, ..., 194.66504, 212.79057,\n",
       "          210.36751],\n",
       "         [288.31   , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n",
       "          223.37724],\n",
       "         [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n",
       "          232.43852],\n",
       "         ...,\n",
       "         [236.44717, 236.95541, 234.64787, ..., 268.50082, 268.91937,\n",
       "          267.2533 ],\n",
       "         [235.04623, 231.87955, 229.08992, ..., 267.69647, 267.49542,\n",
       "          266.0851 ],\n",
       "         [233.4418 , 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n",
       "          264.8466 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lon             (lon) float32 79.5 80.5 81.5 82.5 ... 158.5 159.5 160.5\n",
       "  * lat             (lat) float32 -19.5 -18.5 -17.5 -16.5 ... 27.5 28.5 29.5\n",
       "  * year            (year) int64 1998 1999 2000 2001 ... 2018 2019 2020 2021\n",
       "  * dayofyear_bins  (dayofyear_bins) object [1, 6) [6, 11) ... [361, 366)\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ "\n", "array([[[[284.27383, 285.73615, 288.25266, ..., 231.88802, 241.6569 ,\n", " 249.84024],\n", " [286.65228, 288.05078, 288.27435, ..., 215.95383, 230.82944,\n", " 246.1481 ],\n", " [290.7838 , 290.25864, 287.82904, ..., 198.27682, 214.98921,\n", " 225.9622 ],\n", " ...,\n", " [247.29614, 246.06245, 247.94983, ..., 279.0298 , 277.99088,\n", " 276.57684],\n", " [244.55948, 242.81021, 239.5767 , ..., 273.2099 , 271.63373,\n", " 270.99365],\n", " [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n", " 266.7093 ]],\n", "\n", " [[257.097 , 249.06888, 260.7727 , ..., 251.24788, 258.4394 ,\n", " 267.57504],\n", " [265.49664, 263.90622, 270.4431 , ..., 237.29634, 248.2174 ,\n", " 250.10226],\n", " [261.7508 , 266.22888, 276.74783, ..., 222.44157, 235.64157,\n", " 227.53247],\n", "...\n", " [246.52588, 246.06047, 249.06099, ..., 256.54034, 259.21564,\n", " 260.4043 ],\n", " [244.2377 , 247.02632, 246.57187, ..., 258.28467, 255.90445,\n", " 257.71054],\n", " [237.547 , 235.2325 , 224.96394, ..., 255.28891, 253.66435,\n", " 255.53586]],\n", "\n", " [[286.86404, 287.83688, 290.30945, ..., 194.66504, 212.79057,\n", " 210.36751],\n", " [288.31 , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n", " 223.37724],\n", " [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n", " 232.43852],\n", " ...,\n", " [236.44717, 236.95541, 234.64787, ..., 268.50082, 268.91937,\n", " 267.2533 ],\n", " [235.04623, 231.87955, 229.08992, ..., 267.69647, 267.49542,\n", " 266.0851 ],\n", " [233.4418 , 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n", " 264.8466 ]]]], dtype=float32)\n", "Coordinates:\n", " * lon (lon) float32 79.5 80.5 81.5 82.5 ... 158.5 159.5 160.5\n", " * lat (lat) float32 -19.5 -18.5 -17.5 -16.5 ... 27.5 28.5 29.5\n", " * year (year) int64 1998 1999 2000 2001 ... 2018 2019 2020 2021\n", " * dayofyear_bins (dayofyear_bins) object [1, 6) [6, 11) ... [361, 366)\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import xarray as xr\n", "import pandas as pd\n", "from flox.xarray import xarray_reduce\n", "\n", "lats = -20\n", "latn = 30\n", "lon1 = 79 \n", "lon2 = 161\n", "\n", "olr_ds = xr.open_dataset('data/olr.nc')\n", "olr = olr_ds.sel(lat=slice(lats,latn), lon=slice(lon1,lon2)).olr\n", "\n", "olr_yr_ptd = xarray_reduce(olr, # 針對哪個變數進行 groupby\n", " olr.time.dt.year,olr.time.dt.dayofyear, # 對年份、dayofyear進行分組\n", " expected_groups=(range(1998,2022),\n", " pd.IntervalIndex.from_breaks(range(1,371,5),closed='left')), \n", " # 設定分組的組別,其中dayofyear分組為pentad的過程中,每一組的最小值 (1, 6, 11,...) 列入同一組\n", " # 但最大值 (6,11,16,...) 不算在同一個pentad的區間。\n", " isbin=[False,True], # If True, corresponding entry in expected_groups are bin edges. \n", " # If False, the entry in expected_groups is treated as a simple label.\n", " # 年份是單一的,所以設定為False;pentad的組別則有5天為一組的區間,所以設定為True\n", " func='mean') # 進行平均\n", "olr_yr_ptd = olr_yr_ptd.transpose('year','dayofyear_bins','lat','lon') # 調換坐標軸順序。\n", "olr_yr_ptd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "另外,`flox`也支援不同平行運算的演算法,詳細說明請見官方網站。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 網格內插 (Interpolation)\n", "\n", "不同的資料通常有不同的時間和網格解析度,根據需求有時需要將資料`A`資料內插到資料`B`的網格上。`xarray.DataArray` 和`xarray.Dataset` 有內建網格內插的方法`xr.interp`,請見以下範例。\n", "\n", "**Example 2:** GPCP降雨資料網格解析度為2.5度,OLR網格資料解析度為1度,欲將OLR資料內插到GPCP資料網格上。" ] }, { "cell_type": "code", "execution_count": 2, "id": "31443fb5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 8760, lat: 20, lon: 32)>\n",
       "array([[[210.37125, 199.29874, 197.44077, ..., 268.05853, 268.25916,\n",
       "         266.9823 ],\n",
       "        [204.61313, 213.93433, 230.92719, ..., 284.24072, 282.60632,\n",
       "         278.35385],\n",
       "        [236.69272, 247.62692, 259.35587, ..., 294.86554, 292.45862,\n",
       "         292.01804],\n",
       "        ...,\n",
       "        [297.27472, 302.5027 , 305.18634, ..., 193.11395, 206.42505,\n",
       "         197.59212],\n",
       "        [291.31464, 291.11176, 298.43726, ..., 155.4393 , 146.58469,\n",
       "         162.1478 ],\n",
       "        [286.89136, 290.6887 , 291.20618, ..., 171.58977, 183.45123,\n",
       "         195.39035]],\n",
       "\n",
       "       [[259.8478 , 225.8486 , 211.98647, ..., 269.50348, 269.39746,\n",
       "         272.64   ],\n",
       "        [276.39136, 272.1738 , 268.95856, ..., 291.94778, 289.79297,\n",
       "         284.37097],\n",
       "        [260.77368, 265.89886, 275.41898, ..., 301.7583 , 299.66028,\n",
       "         292.9348 ],\n",
       "...\n",
       "        [289.9028 , 281.8377 , 285.37466, ..., 169.81645, 173.29109,\n",
       "         213.98285],\n",
       "        [286.0285 , 282.36426, 284.31454, ..., 111.96492, 154.03249,\n",
       "         224.03793],\n",
       "        [290.05353, 295.02466, 291.87067, ..., 125.69296, 153.77583,\n",
       "         191.87067]],\n",
       "\n",
       "       [[240.00652, 211.87251, 198.56546, ..., 264.23984, 258.3333 ,\n",
       "         255.25803],\n",
       "        [224.23218, 243.02698, 246.38681, ..., 279.6334 , 274.43097,\n",
       "         277.21472],\n",
       "        [234.04726, 253.98969, 263.0449 , ..., 289.64203, 291.71185,\n",
       "         293.91864],\n",
       "        ...,\n",
       "        [286.8454 , 287.29822, 284.08643, ..., 165.07278, 165.68568,\n",
       "         180.77968],\n",
       "        [291.43097, 289.64923, 295.36426, ..., 178.16243, 158.17258,\n",
       "         182.52911],\n",
       "        [294.91678, 297.96875, 296.73392, ..., 174.35318, 157.13422,\n",
       "         152.69089]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 1998-01-01 1998-01-02 ... 2021-12-31\n",
       "  * lon      (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ "\n", "array([[[210.37125, 199.29874, 197.44077, ..., 268.05853, 268.25916,\n", " 266.9823 ],\n", " [204.61313, 213.93433, 230.92719, ..., 284.24072, 282.60632,\n", " 278.35385],\n", " [236.69272, 247.62692, 259.35587, ..., 294.86554, 292.45862,\n", " 292.01804],\n", " ...,\n", " [297.27472, 302.5027 , 305.18634, ..., 193.11395, 206.42505,\n", " 197.59212],\n", " [291.31464, 291.11176, 298.43726, ..., 155.4393 , 146.58469,\n", " 162.1478 ],\n", " [286.89136, 290.6887 , 291.20618, ..., 171.58977, 183.45123,\n", " 195.39035]],\n", "\n", " [[259.8478 , 225.8486 , 211.98647, ..., 269.50348, 269.39746,\n", " 272.64 ],\n", " [276.39136, 272.1738 , 268.95856, ..., 291.94778, 289.79297,\n", " 284.37097],\n", " [260.77368, 265.89886, 275.41898, ..., 301.7583 , 299.66028,\n", " 292.9348 ],\n", "...\n", " [289.9028 , 281.8377 , 285.37466, ..., 169.81645, 173.29109,\n", " 213.98285],\n", " [286.0285 , 282.36426, 284.31454, ..., 111.96492, 154.03249,\n", " 224.03793],\n", " [290.05353, 295.02466, 291.87067, ..., 125.69296, 153.77583,\n", " 191.87067]],\n", "\n", " [[240.00652, 211.87251, 198.56546, ..., 264.23984, 258.3333 ,\n", " 255.25803],\n", " [224.23218, 243.02698, 246.38681, ..., 279.6334 , 274.43097,\n", " 277.21472],\n", " [234.04726, 253.98969, 263.0449 , ..., 289.64203, 291.71185,\n", " 293.91864],\n", " ...,\n", " [286.8454 , 287.29822, 284.08643, ..., 165.07278, 165.68568,\n", " 180.77968],\n", " [291.43097, 289.64923, 295.36426, ..., 178.16243, 158.17258,\n", " 182.52911],\n", " [294.91678, 297.96875, 296.73392, ..., 174.35318, 157.13422,\n", " 152.69089]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 1998-01-01 1998-01-02 ... 2021-12-31\n", " * lon (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n", " * lat (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import xarray as xr\n", "lats = -20\n", "latn = 30\n", "lon1 = 79 \n", "lon2 = 161\n", "\n", "pcp_ds = xr.open_dataset('data/gpcp_precip_1979-2019.pentad.nc') \n", "pcp = pcp_ds.sel(lat=slice(latn,lats), lon=slice(lon1,lon2)).data\n", "olr_ds = xr.open_dataset('data/olr.nc')\n", "olr = olr_ds.sel(lat=slice(lats,latn), lon=slice(lon1,lon2)).olr\n", "\n", "olr_rmp = olr.interp(lon=pcp.lon, lat=pcp.lat) # 利用interp的method進行網格內插。\n", "olr_rmp" ] }, { "attachments": {}, "cell_type": "markdown", "id": "1889e350", "metadata": {}, "source": [ "## 改變網格解析度\n", "\n", "時間和空間的網格解析度可以用採用 `xarray.DataArray.coarsen` 更改。\n", "\n", "**Example 3:** 將每日OLR轉換成侯(pentad)平均資料,意即將時間解析度調整為5天一次。" ] }, { "cell_type": "code", "execution_count": 3, "id": "8cda226c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 1752, lat: 50, lon: 82)>\n",
       "array([[[284.27383, 285.73615, 288.25266, ..., 231.88799, 241.6569 ,\n",
       "         249.84024],\n",
       "        [286.65228, 288.0508 , 288.27435, ..., 215.95383, 230.82944,\n",
       "         246.1481 ],\n",
       "        [290.7838 , 290.2586 , 287.82904, ..., 198.27681, 214.98921,\n",
       "         225.9622 ],\n",
       "        ...,\n",
       "        [247.29614, 246.06245, 247.9498 , ..., 279.0298 , 277.99088,\n",
       "         276.57684],\n",
       "        [244.55948, 242.81021, 239.57669, ..., 273.2099 , 271.63373,\n",
       "         270.99365],\n",
       "        [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n",
       "         266.7093 ]],\n",
       "\n",
       "       [[257.097  , 249.0689 , 260.7727 , ..., 251.24785, 258.4394 ,\n",
       "         267.57504],\n",
       "        [265.49664, 263.9062 , 270.4431 , ..., 237.29636, 248.2174 ,\n",
       "         250.10226],\n",
       "        [261.7508 , 266.22888, 276.74783, ..., 222.4416 , 235.64157,\n",
       "         227.53247],\n",
       "...\n",
       "        [246.52588, 246.06046, 249.06099, ..., 256.54034, 259.21564,\n",
       "         260.40427],\n",
       "        [244.2377 , 247.02632, 246.57185, ..., 258.28464, 255.90445,\n",
       "         257.71054],\n",
       "        [237.54703, 235.23251, 224.96394, ..., 255.28891, 253.66435,\n",
       "         255.53586]],\n",
       "\n",
       "       [[286.864  , 287.83688, 290.30945, ..., 194.66502, 212.79057,\n",
       "         210.36748],\n",
       "        [288.31   , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n",
       "         223.37724],\n",
       "        [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n",
       "         232.43852],\n",
       "        ...,\n",
       "        [236.44717, 236.95544, 234.64787, ..., 268.50082, 268.91937,\n",
       "         267.25333],\n",
       "        [235.04623, 231.87952, 229.08992, ..., 267.69647, 267.49542,\n",
       "         266.0851 ],\n",
       "        [233.44182, 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n",
       "         264.84662]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 1998-01-01 1998-01-06 ... 2021-12-27\n",
       "  * lon      (lon) float32 79.5 80.5 81.5 82.5 83.5 ... 157.5 158.5 159.5 160.5\n",
       "  * lat      (lat) float32 -19.5 -18.5 -17.5 -16.5 -15.5 ... 26.5 27.5 28.5 29.5\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ "\n", "array([[[284.27383, 285.73615, 288.25266, ..., 231.88799, 241.6569 ,\n", " 249.84024],\n", " [286.65228, 288.0508 , 288.27435, ..., 215.95383, 230.82944,\n", " 246.1481 ],\n", " [290.7838 , 290.2586 , 287.82904, ..., 198.27681, 214.98921,\n", " 225.9622 ],\n", " ...,\n", " [247.29614, 246.06245, 247.9498 , ..., 279.0298 , 277.99088,\n", " 276.57684],\n", " [244.55948, 242.81021, 239.57669, ..., 273.2099 , 271.63373,\n", " 270.99365],\n", " [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n", " 266.7093 ]],\n", "\n", " [[257.097 , 249.0689 , 260.7727 , ..., 251.24785, 258.4394 ,\n", " 267.57504],\n", " [265.49664, 263.9062 , 270.4431 , ..., 237.29636, 248.2174 ,\n", " 250.10226],\n", " [261.7508 , 266.22888, 276.74783, ..., 222.4416 , 235.64157,\n", " 227.53247],\n", "...\n", " [246.52588, 246.06046, 249.06099, ..., 256.54034, 259.21564,\n", " 260.40427],\n", " [244.2377 , 247.02632, 246.57185, ..., 258.28464, 255.90445,\n", " 257.71054],\n", " [237.54703, 235.23251, 224.96394, ..., 255.28891, 253.66435,\n", " 255.53586]],\n", "\n", " [[286.864 , 287.83688, 290.30945, ..., 194.66502, 212.79057,\n", " 210.36748],\n", " [288.31 , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n", " 223.37724],\n", " [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n", " 232.43852],\n", " ...,\n", " [236.44717, 236.95544, 234.64787, ..., 268.50082, 268.91937,\n", " 267.25333],\n", " [235.04623, 231.87952, 229.08992, ..., 267.69647, 267.49542,\n", " 266.0851 ],\n", " [233.44182, 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n", " 264.84662]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 1998-01-01 1998-01-06 ... 2021-12-27\n", " * lon (lon) float32 79.5 80.5 81.5 82.5 83.5 ... 157.5 158.5 159.5 160.5\n", " * lat (lat) float32 -19.5 -18.5 -17.5 -16.5 -15.5 ... 26.5 27.5 28.5 29.5\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "olr_noleap = olr.sel(time=~((olr.time.dt.month == 2) & (olr.time.dt.day == 29)))\n", "olr_ptd = (olr_noleap.coarsen(time=5,\n", " coord_func={\"time\": \"min\"}) \n", " .mean())\n", "olr_ptd" ] }, { "attachments": {}, "cell_type": "markdown", "id": "cff8b1de", "metadata": {}, "source": [ "也就是在時間的維度上,5天為一個單位平均。 `coord_func` 預設為 `mean`,也就是重新取樣後的座標 (時間) 軸會選擇5天平均後的時間軸 (如1998-01-03, 1998-01-08, 1998-01-13, ...),其他選項可選 `min` 設定為最小值 (一侯的開始日) 或 `max` 最大值 (一侯的結束日)。\n", "\n", "**Note:** 雖然`xarray.DataArray.resample`看似也有同樣功能,但根據API reference,\n", "> The resampled dimension must be a datetime-like coordinate.\n", "\n", "根據以上範例,就是 `olr_ptd = olr_noleap.resample(time='5D')` ,然而`datetime` 物件無法選擇日曆格式,也就是在計算五天平均時,不論原始資料 `olr_noleap` 有沒有2/29,這個方法都會納入2/29 (延伸閱讀:[StackOverflow 的問答](https://stackoverflow.com/questions/64476727/can-we-assign-the-calendar-of-pandas-datetimeindex-as-noleap-or-can-datetime))。" ] }, { "attachments": {}, "cell_type": "markdown", "id": "8b1e7f9b", "metadata": {}, "source": [ "```{admonition} Exercise\n", ":class: seealso\n", "請利用coarsen改變空間的解析度 (i.e. 將1˚解析度的OLR資料regrid成2˚解析度)。\n", "```" ] }, { "attachments": {}, "cell_type": "markdown", "id": "d466983e", "metadata": {}, "source": [ "## 滑動平均 (running mean)\n", "\n", "可利用 `xarray.DataArray.rolling`,連續選擇3個單位,再進行平均。" ] }, { "cell_type": "code", "execution_count": 4, "id": "be44470f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 1752, lat: 50, lon: 82)>\n",
       "array([[[      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        ...,\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan]],\n",
       "\n",
       "       [[      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "        [      nan,       nan,       nan, ...,       nan,       nan,\n",
       "               nan],\n",
       "...\n",
       "        [258.01865, 258.54132, 260.59457, ..., 265.62262, 266.46997,\n",
       "         267.72852],\n",
       "        [254.52092, 255.43341, 253.74515, ..., 262.07703, 262.12787,\n",
       "         264.36252],\n",
       "        [249.05486, 243.50095, 230.53357, ..., 257.8312 , 259.1329 ,\n",
       "         259.55786]],\n",
       "\n",
       "       [[285.45612, 286.57214, 287.6652 , ..., 247.677  , 257.28473,\n",
       "         259.3609 ],\n",
       "        [288.13184, 288.3128 , 289.0145 , ..., 255.27068, 264.8253 ,\n",
       "         264.77902],\n",
       "        [288.0848 , 289.45697, 289.93057, ..., 261.4938 , 269.81818,\n",
       "         268.2691 ],\n",
       "        ...,\n",
       "        [248.90976, 249.10083, 250.33572, ..., 262.9018 , 263.4146 ,\n",
       "         263.58185],\n",
       "        [247.00436, 247.02068, 245.05011, ..., 261.76514, 261.24374,\n",
       "         261.8905 ],\n",
       "        [243.24814, 237.90851, 224.16135, ..., 258.3669 , 257.77066,\n",
       "         257.97882]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 1998-01-01 1998-01-06 ... 2021-12-27\n",
       "  * lon      (lon) float32 79.5 80.5 81.5 82.5 83.5 ... 157.5 158.5 159.5 160.5\n",
       "  * lat      (lat) float32 -19.5 -18.5 -17.5 -16.5 -15.5 ... 26.5 27.5 28.5 29.5\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ "\n", "array([[[ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " ...,\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan]],\n", "\n", " [[ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", " [ nan, nan, nan, ..., nan, nan,\n", " nan],\n", "...\n", " [258.01865, 258.54132, 260.59457, ..., 265.62262, 266.46997,\n", " 267.72852],\n", " [254.52092, 255.43341, 253.74515, ..., 262.07703, 262.12787,\n", " 264.36252],\n", " [249.05486, 243.50095, 230.53357, ..., 257.8312 , 259.1329 ,\n", " 259.55786]],\n", "\n", " [[285.45612, 286.57214, 287.6652 , ..., 247.677 , 257.28473,\n", " 259.3609 ],\n", " [288.13184, 288.3128 , 289.0145 , ..., 255.27068, 264.8253 ,\n", " 264.77902],\n", " [288.0848 , 289.45697, 289.93057, ..., 261.4938 , 269.81818,\n", " 268.2691 ],\n", " ...,\n", " [248.90976, 249.10083, 250.33572, ..., 262.9018 , 263.4146 ,\n", " 263.58185],\n", " [247.00436, 247.02068, 245.05011, ..., 261.76514, 261.24374,\n", " 261.8905 ],\n", " [243.24814, 237.90851, 224.16135, ..., 258.3669 , 257.77066,\n", " 257.97882]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 1998-01-01 1998-01-06 ... 2021-12-27\n", " * lon (lon) float32 79.5 80.5 81.5 82.5 83.5 ... 157.5 158.5 159.5 160.5\n", " * lat (lat) float32 -19.5 -18.5 -17.5 -16.5 -15.5 ... 26.5 27.5 28.5 29.5\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "olr_3p_runave = (olr_ptd.rolling(time=3, # 選擇幾個時間單位\n", " center=False)\n", " .mean())\n", "olr_3p_runave" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4462f456", "metadata": {}, "source": [ "由於頭尾會有缺失值NaN,可加上`dropna()`移除之。" ] }, { "attachments": {}, "cell_type": "markdown", "id": "240e35ba", "metadata": {}, "source": [ "## 相關係數地圖 (correlation map)\n", "\n", "給定兩個DataArray,我們就可以計算兩者之間沿著特定座標軸 (e.g. 沿著時間軸的) 的相關係數。\n", "\n", "**Example 4:** 計算NDJ [Oceanic Niño Index (ONI)](https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php) 和十二月降雨的相關係數地圖。\n", "\n", "Step 1: 得到GPCP十二月平均資料 (先所有選12月資料,再用`groupby`)" ] }, { "cell_type": "code", "execution_count": 5, "id": "58b45039", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'data' (year: 41, lat: 20, lon: 32)>\n",
       "array([[[1.0133333e+00, 9.1833329e-01, 7.9833335e-01, ...,\n",
       "         3.6333334e+00, 2.7116668e+00, 2.5383332e+00],\n",
       "        [2.0333333e-01, 4.2833331e-01, 2.5000000e-01, ...,\n",
       "         2.4483333e+00, 2.3216665e+00, 1.7766665e+00],\n",
       "        [5.4999996e-02, 1.3666667e-01, 1.5833335e-01, ...,\n",
       "         2.2033336e+00, 1.8683332e+00, 1.2850000e+00],\n",
       "        ...,\n",
       "        [1.1466666e+00, 1.4949999e+00, 1.8333334e+00, ...,\n",
       "         3.6483333e+00, 4.2433333e+00, 2.9916668e+00],\n",
       "        [7.1833330e-01, 1.3866667e+00, 1.4466667e+00, ...,\n",
       "         4.0750003e+00, 3.2466669e+00, 2.8599999e+00],\n",
       "        [3.9666665e-01, 8.2333332e-01, 1.1883334e+00, ...,\n",
       "         2.9016666e+00, 2.7083333e+00, 1.7416667e+00]],\n",
       "\n",
       "       [[4.6500000e-01, 2.8333333e-01, 3.4333333e-01, ...,\n",
       "         3.8716667e+00, 3.8799999e+00, 3.4633334e+00],\n",
       "        [6.0833335e-01, 1.7000000e-01, 1.4666666e-01, ...,\n",
       "         3.9750001e+00, 3.6300001e+00, 3.1483333e+00],\n",
       "        [1.2800001e+00, 3.2166669e-01, 1.2000000e-01, ...,\n",
       "         2.4466667e+00, 2.1550000e+00, 1.1616668e+00],\n",
       "...\n",
       "        [7.9235015e+00, 7.0794005e+00, 5.7172127e+00, ...,\n",
       "         9.7668800e+00, 1.0939357e+01, 1.0846936e+01],\n",
       "        [9.5492640e+00, 7.4848499e+00, 3.3095343e+00, ...,\n",
       "         1.2228072e+01, 1.2528176e+01, 1.1302447e+01],\n",
       "        [7.2531962e+00, 5.3915715e+00, 2.0546637e+00, ...,\n",
       "         1.0486613e+01, 1.3482674e+01, 1.1387763e+01]],\n",
       "\n",
       "       [[2.0096309e+00, 1.1509016e+00, 4.8980752e-01, ...,\n",
       "         2.0202532e+00, 2.7056713e+00, 2.6676538e+00],\n",
       "        [1.2896461e+00, 1.1470729e+00, 2.6983759e-01, ...,\n",
       "         1.3239046e+00, 1.6525987e+00, 1.6284056e+00],\n",
       "        [8.9463830e-01, 3.9747801e-01, 1.5476857e-01, ...,\n",
       "         1.1533502e+00, 1.1403440e+00, 9.9328095e-01],\n",
       "        ...,\n",
       "        [1.2956619e+00, 6.6536534e-01, 5.8920252e-01, ...,\n",
       "         4.1320643e+00, 4.3791137e+00, 4.1250496e+00],\n",
       "        [1.7519032e+00, 1.2151116e+00, 9.6764684e-01, ...,\n",
       "         5.1612849e+00, 5.1797566e+00, 2.8651981e+00],\n",
       "        [3.1523111e+00, 2.0467207e+00, 1.0773114e+00, ...,\n",
       "         3.6295269e+00, 4.3244128e+00, 2.4604805e+00]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n",
       "  * year     (year) int64 1979 1980 1981 1982 1983 ... 2015 2016 2017 2018 2019\n",
       "Attributes:\n",
       "    long_name:  GPCP pentad precipitation (mm/day)\n",
       "    units:      mm/day
" ], "text/plain": [ "\n", "array([[[1.0133333e+00, 9.1833329e-01, 7.9833335e-01, ...,\n", " 3.6333334e+00, 2.7116668e+00, 2.5383332e+00],\n", " [2.0333333e-01, 4.2833331e-01, 2.5000000e-01, ...,\n", " 2.4483333e+00, 2.3216665e+00, 1.7766665e+00],\n", " [5.4999996e-02, 1.3666667e-01, 1.5833335e-01, ...,\n", " 2.2033336e+00, 1.8683332e+00, 1.2850000e+00],\n", " ...,\n", " [1.1466666e+00, 1.4949999e+00, 1.8333334e+00, ...,\n", " 3.6483333e+00, 4.2433333e+00, 2.9916668e+00],\n", " [7.1833330e-01, 1.3866667e+00, 1.4466667e+00, ...,\n", " 4.0750003e+00, 3.2466669e+00, 2.8599999e+00],\n", " [3.9666665e-01, 8.2333332e-01, 1.1883334e+00, ...,\n", " 2.9016666e+00, 2.7083333e+00, 1.7416667e+00]],\n", "\n", " [[4.6500000e-01, 2.8333333e-01, 3.4333333e-01, ...,\n", " 3.8716667e+00, 3.8799999e+00, 3.4633334e+00],\n", " [6.0833335e-01, 1.7000000e-01, 1.4666666e-01, ...,\n", " 3.9750001e+00, 3.6300001e+00, 3.1483333e+00],\n", " [1.2800001e+00, 3.2166669e-01, 1.2000000e-01, ...,\n", " 2.4466667e+00, 2.1550000e+00, 1.1616668e+00],\n", "...\n", " [7.9235015e+00, 7.0794005e+00, 5.7172127e+00, ...,\n", " 9.7668800e+00, 1.0939357e+01, 1.0846936e+01],\n", " [9.5492640e+00, 7.4848499e+00, 3.3095343e+00, ...,\n", " 1.2228072e+01, 1.2528176e+01, 1.1302447e+01],\n", " [7.2531962e+00, 5.3915715e+00, 2.0546637e+00, ...,\n", " 1.0486613e+01, 1.3482674e+01, 1.1387763e+01]],\n", "\n", " [[2.0096309e+00, 1.1509016e+00, 4.8980752e-01, ...,\n", " 2.0202532e+00, 2.7056713e+00, 2.6676538e+00],\n", " [1.2896461e+00, 1.1470729e+00, 2.6983759e-01, ...,\n", " 1.3239046e+00, 1.6525987e+00, 1.6284056e+00],\n", " [8.9463830e-01, 3.9747801e-01, 1.5476857e-01, ...,\n", " 1.1533502e+00, 1.1403440e+00, 9.9328095e-01],\n", " ...,\n", " [1.2956619e+00, 6.6536534e-01, 5.8920252e-01, ...,\n", " 4.1320643e+00, 4.3791137e+00, 4.1250496e+00],\n", " [1.7519032e+00, 1.2151116e+00, 9.6764684e-01, ...,\n", " 5.1612849e+00, 5.1797566e+00, 2.8651981e+00],\n", " [3.1523111e+00, 2.0467207e+00, 1.0773114e+00, ...,\n", " 3.6295269e+00, 4.3244128e+00, 2.4604805e+00]]], dtype=float32)\n", "Coordinates:\n", " * lon (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n", " * lat (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n", " * year (year) int64 1979 1980 1981 1982 1983 ... 2015 2016 2017 2018 2019\n", "Attributes:\n", " long_name: GPCP pentad precipitation (mm/day)\n", " units: mm/day" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pcp_dec = (pcp.sel(time=pcp.time.dt.month.isin([12]))\n", " .groupby('time.year')\n", " .mean(\"time\"))\n", "pcp_dec" ] }, { "attachments": {}, "cell_type": "markdown", "id": "bdaeafa1", "metadata": {}, "source": [ "Step 2: 製造NDJ ONI index矩陣。" ] }, { "cell_type": "code", "execution_count": 6, "id": "5a9f165e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (year: 41)>\n",
       "array([ 0.6,  0. , -0.1,  2.2, -0.9, -1.1, -0.4,  1.2,  1.1, -1.8, -0.1,\n",
       "        0.4,  1.5, -0.1,  0.1,  1.1, -1. , -0.5,  2.4, -1.6, -1.7, -0.7,\n",
       "       -0.3,  1.1,  0.4,  0.7, -0.8,  0.9, -1.6, -0.7,  1.6, -1.6, -1. ,\n",
       "       -0.2, -0.3,  0.7,  2.6, -0.6, -1. ,  0.8,  0.5])\n",
       "Coordinates:\n",
       "  * year     (year) int64 1979 1980 1981 1982 1983 ... 2015 2016 2017 2018 2019
" ], "text/plain": [ "\n", "array([ 0.6, 0. , -0.1, 2.2, -0.9, -1.1, -0.4, 1.2, 1.1, -1.8, -0.1,\n", " 0.4, 1.5, -0.1, 0.1, 1.1, -1. , -0.5, 2.4, -1.6, -1.7, -0.7,\n", " -0.3, 1.1, 0.4, 0.7, -0.8, 0.9, -1.6, -0.7, 1.6, -1.6, -1. ,\n", " -0.2, -0.3, 0.7, 2.6, -0.6, -1. , 0.8, 0.5])\n", "Coordinates:\n", " * year (year) int64 1979 1980 1981 1982 1983 ... 2015 2016 2017 2018 2019" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oni_ndj = xr.DataArray( \n", " data=[0.6, 0.0, -0.1, 2.2, -0.9, -1.1, -0.4, 1.2, 1.1, -1.8, -0.1, 0.4, \n", " 1.5, -0.1, 0.1, 1.1, -1.0, -0.5, 2.4, -1.6, -1.7, -0.7, \n", " -0.3, 1.1, 0.4, 0.7, -0.8, 0.9, -1.6, -0.7, 1.6, -1.6, \n", " -1.0, -0.2, -0.3, 0.7, 2.6, -0.6, -1.0, 0.8, 0.5],\n", " dims='year',\n", " coords=dict(year=pcp_dec.year)\n", " )\n", "oni_ndj" ] }, { "attachments": {}, "cell_type": "markdown", "id": "a093360c", "metadata": {}, "source": [ "Step 3: 用`xr.corr`計算相關係數。" ] }, { "cell_type": "code", "execution_count": 7, "id": "999a0b40", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 20, lon: 32)>\n",
       "array([[ 3.62929452e-01,  3.42366935e-01,  1.36141385e-01,\n",
       "         2.86181885e-01,  1.81635007e-01,  1.49191933e-01,\n",
       "         2.91984747e-01,  4.77790062e-01,  4.72934980e-01,\n",
       "         2.59950214e-01,  3.45925729e-01,  3.45836394e-01,\n",
       "         2.41839289e-01,  3.26920710e-01,  3.12002374e-01,\n",
       "         2.78955901e-01,  2.83943380e-01,  3.95803450e-01,\n",
       "         4.20742051e-01,  4.71375054e-01,  5.46175408e-01,\n",
       "         4.34086465e-01,  3.36992606e-01,  2.34458518e-01,\n",
       "         3.30061209e-01,  2.83089068e-01,  6.62670164e-02,\n",
       "        -6.41038383e-02, -8.02357126e-02, -1.32435603e-01,\n",
       "        -6.14116577e-02, -3.57627814e-01],\n",
       "       [ 3.83909987e-01,  3.03894582e-01,  2.37785616e-01,\n",
       "         2.14941992e-01,  1.29919746e-01,  9.02064326e-02,\n",
       "         1.65142443e-01,  2.02511225e-01,  2.68816770e-01,\n",
       "         1.56273306e-01,  2.46169180e-01,  3.13843048e-01,\n",
       "         3.71282366e-01,  3.76425080e-01,  3.56976452e-01,\n",
       "         3.31840158e-01,  1.84695348e-01,  4.19843103e-01,\n",
       "         4.71277802e-01,  4.27318315e-01,  3.51365941e-01,\n",
       "         2.37002913e-01,  2.34139483e-01,  2.04142657e-01,\n",
       "         1.27191143e-01, -7.16084696e-02, -1.17030947e-01,\n",
       "...\n",
       "        -1.63141768e-01,  2.02073967e-02,  8.64961743e-02,\n",
       "        -6.46165929e-02, -1.30967877e-01, -1.11179142e-01,\n",
       "        -2.19488532e-01, -3.89394397e-01, -5.41138832e-01,\n",
       "        -5.55411086e-01, -4.62892783e-01, -3.87886292e-01,\n",
       "        -2.86447708e-01, -1.87858258e-01, -4.88526454e-02,\n",
       "        -6.03390847e-02, -5.92937090e-02, -1.09022023e-02,\n",
       "        -1.62940949e-01, -1.06521328e-01, -1.63654736e-01,\n",
       "        -2.66138362e-01, -3.63495740e-01, -3.56191141e-01,\n",
       "        -3.43018577e-01, -4.02329768e-01],\n",
       "       [ 2.18229674e-01,  1.50764053e-01,  4.34983952e-02,\n",
       "        -2.31485281e-02, -1.24680834e-01, -2.82829671e-01,\n",
       "        -2.27022137e-01, -1.80625263e-01, -6.68313177e-02,\n",
       "        -1.22718872e-01, -7.70160205e-02, -1.92838402e-01,\n",
       "        -2.63437000e-01, -4.77678670e-01, -6.13706400e-01,\n",
       "        -5.25689479e-01, -3.34162312e-01, -3.46265743e-01,\n",
       "        -2.73299118e-01, -3.36175549e-01, -1.75612517e-01,\n",
       "        -7.18667328e-02, -2.45879382e-02,  2.50092725e-03,\n",
       "        -1.46619847e-01, -7.41479082e-02, -3.23609599e-02,\n",
       "        -1.90437806e-01, -2.59385838e-01, -3.08636754e-01,\n",
       "        -2.93624430e-01, -3.09437350e-01]])\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75
" ], "text/plain": [ "\n", "array([[ 3.62929452e-01, 3.42366935e-01, 1.36141385e-01,\n", " 2.86181885e-01, 1.81635007e-01, 1.49191933e-01,\n", " 2.91984747e-01, 4.77790062e-01, 4.72934980e-01,\n", " 2.59950214e-01, 3.45925729e-01, 3.45836394e-01,\n", " 2.41839289e-01, 3.26920710e-01, 3.12002374e-01,\n", " 2.78955901e-01, 2.83943380e-01, 3.95803450e-01,\n", " 4.20742051e-01, 4.71375054e-01, 5.46175408e-01,\n", " 4.34086465e-01, 3.36992606e-01, 2.34458518e-01,\n", " 3.30061209e-01, 2.83089068e-01, 6.62670164e-02,\n", " -6.41038383e-02, -8.02357126e-02, -1.32435603e-01,\n", " -6.14116577e-02, -3.57627814e-01],\n", " [ 3.83909987e-01, 3.03894582e-01, 2.37785616e-01,\n", " 2.14941992e-01, 1.29919746e-01, 9.02064326e-02,\n", " 1.65142443e-01, 2.02511225e-01, 2.68816770e-01,\n", " 1.56273306e-01, 2.46169180e-01, 3.13843048e-01,\n", " 3.71282366e-01, 3.76425080e-01, 3.56976452e-01,\n", " 3.31840158e-01, 1.84695348e-01, 4.19843103e-01,\n", " 4.71277802e-01, 4.27318315e-01, 3.51365941e-01,\n", " 2.37002913e-01, 2.34139483e-01, 2.04142657e-01,\n", " 1.27191143e-01, -7.16084696e-02, -1.17030947e-01,\n", "...\n", " -1.63141768e-01, 2.02073967e-02, 8.64961743e-02,\n", " -6.46165929e-02, -1.30967877e-01, -1.11179142e-01,\n", " -2.19488532e-01, -3.89394397e-01, -5.41138832e-01,\n", " -5.55411086e-01, -4.62892783e-01, -3.87886292e-01,\n", " -2.86447708e-01, -1.87858258e-01, -4.88526454e-02,\n", " -6.03390847e-02, -5.92937090e-02, -1.09022023e-02,\n", " -1.62940949e-01, -1.06521328e-01, -1.63654736e-01,\n", " -2.66138362e-01, -3.63495740e-01, -3.56191141e-01,\n", " -3.43018577e-01, -4.02329768e-01],\n", " [ 2.18229674e-01, 1.50764053e-01, 4.34983952e-02,\n", " -2.31485281e-02, -1.24680834e-01, -2.82829671e-01,\n", " -2.27022137e-01, -1.80625263e-01, -6.68313177e-02,\n", " -1.22718872e-01, -7.70160205e-02, -1.92838402e-01,\n", " -2.63437000e-01, -4.77678670e-01, -6.13706400e-01,\n", " -5.25689479e-01, -3.34162312e-01, -3.46265743e-01,\n", " -2.73299118e-01, -3.36175549e-01, -1.75612517e-01,\n", " -7.18667328e-02, -2.45879382e-02, 2.50092725e-03,\n", " -1.46619847e-01, -7.41479082e-02, -3.23609599e-02,\n", " -1.90437806e-01, -2.59385838e-01, -3.08636754e-01,\n", " -2.93624430e-01, -3.09437350e-01]])\n", "Coordinates:\n", " * lon (lon) float32 81.25 83.75 86.25 88.75 ... 151.2 153.8 156.2 158.8\n", " * lat (lat) float32 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "corr = xr.corr(pcp_dec,oni_ndj,dim='year')\n", "corr" ] }, { "attachments": {}, "cell_type": "markdown", "id": "c1ae19a0", "metadata": {}, "source": [ "Step 4: 將計算好的結果畫出來看看。" ] }, { "cell_type": "code", "execution_count": 8, "id": "0fb4af2d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/waynetsai/micromamba/envs/p3/lib/python3.10/site-packages/shapely/predicates.py:798: RuntimeWarning: invalid value encountered in intersects\n", " return lib.intersects(a, b, **kwargs)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGeCAYAAACtobqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUxxvHPxd3gQRCEkiQENzd3V2KO23R4sUpTrHi+muRFmixUqQ4lODuwZ0kJFjcZX9/hDtyybnkLnCf58kDtzs7srsz8913Zt4RCYIgYMKECRMmTJgwkY2YGToDJkyYMGHChImvD5MAMWHChAkTJkxkOyYBYsKECRMmTJjIdkwCxIQJEyZMmDCR7ZgEiAkTJkyYMGEi2zEJEBMmTJgwYcJEtmMSICZMmDBhwoSJbMckQEyYMGHChAkT2Y5JgJgwYcKECRMmsh2TANGA27dv069fPwoWLIiNjQ0ODg5UqFCBBQsW8PHjR0NnT4pTp04hEok4deqU2tfeu3eP6dOn8+LFiyzn+vbti6+vr9b5+xpo2LAhgwYNkvwWPxPxn5WVFe7u7tSsWZPJkyfz8uVLA+bWeNDm3TVW6tWrR7169ZSG8/X1lbwfZmZmODs7U7x4cXr37s3Ro0dlXiMSiRg2bJjk94sXL6Tes4x/lSpVUim/Fy9epHPnzuTLlw8rKys8PDzo1KkTFy5cyBJ206ZNiEQibGxsZL7D9erVo1SpUlnK2apVK8nv8PBwXFxc+Oeff1TKn4mcjUmAqMn//vc/KlasyJUrVxg3bhyHDx9mz549dO7cmbVr1zJgwABDZ1Fn3Lt3jxkzZsgUIFOnTmXPnj3Zn6kcxt69ezl37hxTp07Ncm7u3LlcuHCB//77j99++4169eqxYcMGihcvztatWw2QW+OiQoUKXLhwgQoVKhg6KwahZs2aXLhwgfPnz7N7926GDRvG8+fPadq0KZ06dSI5OVmleIYPH86FCxek/jZt2qT0uhUrVlCzZk2CgoJYsGABx48fZ9GiRQQHB1OrVi1Wrlwp87rExESmTJmiTlEluLq6MmrUKMaNG0dSUpJGcZjIQQgmVOb8+fOCubm50KxZMyEhISHL+cTERGHv3r06SSs2Nlbm8ZSUFJlpy+O///4TAOG///5TOw87d+7U+FoT6VSpUkXo2rWr1DHxM9m5c2eW8B8+fBDKly8vWFhYCLdv386ubGpNUlKSkJycbOhsGD1169YV6tatqzScj4+P0LJlS5nnfvrpJwEQfvzxR6njgDB06FDJ7+fPnwuAsHDhQrXzefbsWcHMzExo1apVlueanJwstGrVSjAzMxPOnj0rOb5x40YBEJo1ayaYmZkJN2/elLqubt26QsmSJZWWMzQ0VLCwsBC2bt2qdr5N5CxMFhA1mDt3LiKRiPXr12NtbZ3lvJWVFW3atJH8TktLY8GCBRQrVgxra2vy5MlD7969CQoKkrpObJo8ffo0NWrUwM7Ojv79+0tMqAsWLGD27NkULFgQa2tr/vvvPwCuXr1KmzZtyJUrFzY2NpQvX54dO3YoLcfVq1fp2rUrvr6+2Nra4uvrS7du3aTMpps2baJz584A1K9fX2K6FX85yRqCSUhIYOLEiRQsWBArKyu8vLwYOnQoERERUuHEZtfDhw9ToUIFbG1tKVasGBs2bFCad/E9WbhwIfPnz5eUoV69ejx69Ijk5GQmTJiAp6cnzs7OtG/fnrdv30rFsX37dpo0aUK+fPmwtbWlePHiTJgwgdjYWKlwffv2xcHBgcDAQBo2bIi9vT3u7u4MGzaMuLg4pXm9ceMGly9fplevXkrDismVKxfr1q0jJSWFJUuWSJ17/Pgx3bt3J0+ePFhbW1O8eHFWrVqVJY6IiAjGjBlDoUKFJO9dixYtePDggcK0xc9lz549lClTBhsbGwoVKsTy5culwomHRv744w/GjBmDl5cX1tbWPHnyBIDjx4/TsGFDnJycsLOzo2bNmpw4cSJLeg8ePKBbt27kzZsXa2trChQoQO/evUlMTJRKJ+MQjLbPRBZPnjyhX79++Pn5YWdnh5eXF61bt+bOnTsyy/3nn38yefJkPD09cXJyolGjRjx8+FAqrCAILFiwAB8fH2xsbKhQoQKHDh3SKH+ZmT59OiVLlmTlypUkJCToJM7MzJs3D5FIxJo1a7CwsJA6Z2FhwerVqxGJRPz8889Zrv3xxx/JnTs348eP1yjtvHnz0rhxY9auXavR9SZyDiYBoiKpqamcPHmSihUrkj9/fpWuGTx4MOPHj6dx48bs27ePWbNmcfjwYWrUqMH79++lwr5584aePXvSvXt3Dh48yJAhQyTnli9fzsmTJ1m0aBGHDh2iWLFi/Pfff9SsWZOIiAjWrl3L3r17KVeuHF26dFFqXn3x4gX+/v4sXbqUI0eOMH/+fN68eUPlypUl+WrZsiVz584FYNWqVRLTbcuWLWXGKQgC7dq1Y9GiRfTq1Yt///2X0aNHs3nzZho0aCDpVMTcunWLMWPGMGrUKPbu3UuZMmUYMGAAp0+fVunerlq1inPnzrFq1Sp+/fVXHjx4QOvWrRkwYADv3r1jw4YNErPxwIEDpa59/PgxLVq04LfffuPw4cOMHDmSHTt20Lp16yzpJCcn06JFCxo2bMg///zDsGHDWLduHV26dFGaxwMHDmBubk6dOnVUKpOYypUrky9fPql7ce/ePSpXrszdu3dZvHgxBw4coGXLlvzwww/MmDFDEi46OppatWqxbt06+vXrx/79+1m7di1FixblzZs3StO+efMmI0eOZNSoUezZs4caNWowYsQIFi1alCXsxIkTefXqFWvXrmX//v3kyZOHLVu20KRJE5ycnNi8eTM7duwgV65cNG3aVEqE3Lp1i8qVK3Px4kVmzpzJoUOHmDdvHomJiUpN79o8E1mEhISQO3dufv75Zw4fPsyqVauwsLCgatWqWYQFwKRJk3j58iW//vor69ev5/Hjx7Ru3ZrU1FRJmBkzZkjq/j///MPgwYP59ttvZcanCa1btyYuLo6rV68qDZuWlkZKSorUn6BgE/TU1FT+++8/KlWqhLe3t8ww+fPnp2LFipw8eVKq3ACOjo5MmTKFI0eOcPLkSfUK9ol69epx7ty5LB8vJr4wDGyByTGEhoYKQBZzujzu378vAMKQIUOkjl+6dEkAhEmTJkmO1a1bVwCEEydOSIUVm1ALFy4sJCUlSZ0rVqyYUL58+Szm0VatWgn58uUTUlNTBUFQbQgmJSVFiImJEezt7YVly5ZJjisagunTp4/g4+Mj+X348GEBEBYsWCAVbvv27QIgrF+/XnLMx8dHsLGxEV6+fCk5Fh8fL+TKlUv4/vvv5eZTED7fk7Jly0rKKAiCsHTpUgEQ2rRpIxV+5MiRAiBERkbKjC8tLU1ITk4WAgICBEC4deuWVBkBqXsiCIIwZ84cAZAyP8uiefPmQrFixbIcVzQEI6Zq1aqCra2t5HfTpk0Fb2/vLOUYNmyYYGNjI3z8+FEQBEGYOXOmAAjHjh1TmDdZ+Pj4CCKRKIvpvHHjxoKTk5NkWFCc/zp16kiFi42NFXLlyiW0bt1a6nhqaqpQtmxZoUqVKpJjDRo0EFxcXIS3b9/KzY+sd1fbZ6IKKSkpQlJSkuDn5yeMGjUqS35atGghFX7Hjh0CIFy4cEEQBEEIDw8XbGxshPbt20uFO3funABoPQQjCIKwZs0aARC2b98uOYacIRhZf4reD1Xbui5dugiAEBYWJgjC5yGYK1euCImJiUKhQoWESpUqCWlpaYIgqD4EIwiCcOzYMQEQDh06pDAPJnI2JguInhAPk/Tt21fqeJUqVShevHgWk7SrqysNGjSQGVebNm2wtLSU/H7y5AkPHjygR48eAFJfNi1atODNmzcKv7RiYmIYP348RYoUwcLCAgsLCxwcHIiNjeX+/fuaFFfypZO5vJ07d8be3j5LecuVK0eBAgUkv21sbChatKjKK0BatGiBmdnn17d48eIAWSw04uOvXr2SHHv27Bndu3fHw8MDc3NzLC0tqVu3LoDM8ovvs5ju3bsDn5+xPEJCQsiTJ49K5cmMkOELNSEhgRMnTtC+fXvs7OyyPO+EhAQuXrwIwKFDhyhatCiNGjXSKN2SJUtStmxZqWPdu3cnKiqK69evSx3v2LGj1O/z58/z8eNH+vTpI5XHtLQ0mjVrxpUrV4iNjSUuLo6AgAC++eYb3N3dNcqnps9EFikpKcydO5cSJUpgZWWFhYUFVlZWPH78WOb7kHGYFaBMmTIAknf3woULJCQkZMljjRo18PHxUTt/shAUWDAyM2LECK5cuSL1V7VqVZ3lQSQSZTlnZWXF7NmzuXr1qkrDwpkR15vg4GDtMmnCqLFQHsQEgJubG3Z2djx//lyl8B8+fAAgX758Wc55enpm6WhlhZN3LiwsDICxY8cyduxYmddkHuLJSPfu3Tlx4gRTp06lcuXKODk5IRKJaNGiBfHx8XKvU8SHDx+wsLDI0qGIRCI8PDwk90NM7ty5s8RhbW2tcvq5cuWS+m1lZaXwuHisPCYmhtq1a2NjY8Ps2bMpWrQodnZ2vH79mg4dOmRJ38LCIktePTw8JGVWRHx8PHnz5lWpPJl59eoVnp6eknRSUlJYsWIFK1askBle/LzfvXsnJezURVw2Wccyl1fee9mpUye58X/8+BEzMzNSU1PlmveVoc0zkcXo0aNZtWoV48ePp27duri6umJmZsbAgQNlvo+Z0xbPBxOHFedB0b3UFnH7IX5HFOHt7a3ysltQva178eIFdnZ2WeqcmK5du7Jo0SImT55Mhw4dVE4f0j9IAI3bIxM5A5MAURFzc3MaNmzIoUOHCAoKUtp4ihupN2/eZAkbEhKCm5ub1DFZXxHyzomvnThxotyK7e/vL/N4ZGQkBw4c4KeffmLChAmS44mJiVr5MMmdOzcpKSm8e/dOSoQIgkBoaCiVK1fWOG5dcvLkSUJCQjh16pTE6gHIHWtOSUnhw4cPUp1OaGgoIFtEZcTNzU2je3r58mVCQ0MlS7pdXV0xNzenV69eDB06VOY1BQsWBMDd3T3LJGd1EJdN1rHM5ZX3Xq5YsYJq1arJjD9v3rykpqZibm6ucT61eSay2LJlC71795bMeRLz/v17XFxc1I5PnAd591Jb/zmCILB//37s7e3VEhaqYm5uTv369Tl8+LDcti4oKIhr167RvHlzzM3NZcYjEomYP38+jRs3Zv369WrlQVxvMreTJr4sTEMwajBx4kQEQeDbb7+VOVEuOTmZ/fv3A0iGU7Zs2SIV5sqVK9y/f5+GDRtqnA9/f3/8/Py4desWlSpVkvnn6Ogo81qRSIQgCFlW8fz6669ZJpNl/rJThLg8mcu7e/duYmNjtSqvLhF3mpnLv27dOrnXZPbJsW3bNgClDqWKFSvGs2fP1Mrfx48fGTRoEJaWlowaNQoAOzs76tevz40bNyhTpozM5y3u9Jo3b86jR480nvwXGBjIrVu3pI5t27YNR0dHpf44atasiYuLC/fu3ZP7XlpZWWFra0vdunXZuXOnQkudIjR9JrIQiURZ3od///1XY/N/tWrVsLGxyZLH8+fP68TJ3IwZM7h37x4jRoyQWAp0jbitGzJkSJZ2ITU1lcGDByMIAhMnTlQYT6NGjWjcuDEzZ84kJiZG5fTF9aZEiRLqZ95EjsFkAVGD6tWrs2bNGoYMGULFihUZPHgwJUuWJDk5mRs3brB+/XpKlSpF69at8ff357vvvmPFihWYmZnRvHlzXrx4wdSpU8mfP7+kc9GUdevW0bx5c5o2bUrfvn3x8vLi48eP3L9/n+vXr7Nz506Z1zk5OVGnTh0WLlyIm5sbvr6+BAQE8Ntvv2X52hN7LVy/fj2Ojo7Y2NhQsGBBmV+ZjRs3pmnTpowfP56oqChq1qzJ7du3+emnnyhfvrxaS1H1SY0aNXB1dWXQoEH89NNPWFpasnXr1iydrhgrKysWL15MTEwMlStX5vz588yePZvmzZtTq1YthWmJHYs9evSIokWLZjn/+PFjLl68SFpaGh8+fODSpUv89ttvREVF8fvvv1OyZElJ2GXLllGrVi1q167N4MGD8fX1JTo6midPnrB//36J4Bg5ciTbt2+nbdu2TJgwgSpVqhAfH09AQACtWrWifv36CvPs6elJmzZtmD59Ovny5WPLli0cO3aM+fPnY2dnp/BaBwcHVqxYQZ8+ffj48SOdOnUiT548vHv3jlu3bvHu3TvWrFkDwC+//EKtWrWoWrUqEyZMoEiRIoSFhbFv3z7WrVsnV0CD6s+kYcOGBAQEkJKSojDfrVq1YtOmTRQrVowyZcpw7do1Fi5cqPEQkaurK2PHjmX27NkMHDiQzp078/r1a6ZPn67WEExERIRkbk9sbCwPHz7kr7/+4syZM3zzzTdSq5/EKLKkqkPNmjVZunQpI0eOpFatWgwbNowCBQrw6tUrVq1axaVLl1i6dCk1atRQGtf8+fOpWLEib9++lXqnFXHx4kVy585N6dKltS2KCWPGYNNfczA3b94U+vTpIxQoUECwsrIS7O3thfLlywvTpk2TmtWfmpoqzJ8/XyhatKhgaWkpuLm5CT179hRev34tFZ+s2eGCoNyR0K1bt4RvvvlGyJMnj2BpaSl4eHgIDRo0ENauXSsJI2slQVBQkNCxY0fB1dVVcHR0FJo1aybcvXtX8PHxEfr06SOVxtKlS4WCBQsK5ubmAiBs3LhREISsq2AEIX0ly/jx4wUfHx/B0tJSyJcvnzB48GAhPDxcKpy8me+qOGmSd0/krSzJODNfzPnz54Xq1asLdnZ2gru7uzBw4EDh+vXrUuUTl9He3l64ffu2UK9ePcHW1lbIlSuXMHjwYCEmJkZhPgVBECIjIwUHB4csK4PEeRX/WVhYCLlz5xaqV68uTJo0SXjx4oXcsvfv31/w8vISLC0tBXd3d6FGjRrC7NmzpcKFh4cLI0aMEAoUKCBYWloKefLkEVq2bCk8ePBAYX7Fz2XXrl1CyZIlBSsrK8HX11f45ZdfZOZf3iqegIAAoWXLlkKuXLkES0tLwcvLS2jZsmWW8Pfu3RM6d+4s5M6dW7CyshIKFCgg9O3bV+JoT94qGFWfiXh1mTLCw8OFAQMGCHny5BHs7OyEWrVqCWfOnMnyPsort/idzPjupKWlCfPmzRPy588vWFlZCWXKlBH279+vliMy8fshEokEBwcHwd/fX+jVq5dw5MiRLOFjY2MFQBgzZkyWfGniiEzMhQsXhE6dOgl58+YVLCwshDx58ggdOnQQzp8/nyWsrLompnv37gKg0iqYtLQ0wcfHRxg+fLjG+TaRMxAJghrTqU2Y+Iro27cvu3btUst0nJnhw4dz4sQJAgMDdfZ1qi98fX0pVaoUBw4cMHRW5KKLZ/IlcuPGDSpUqMCqVaukfAjlRE6cOEGTJk0IDAykWLFihs6OCT1imgNiwoQemTJlCsHBwezevdvQWTHxBRIUFMSBAwcYMmQIdnZ2tGvXztBZ0prZs2fTv39/k/j4CjAJEBMm9EjevHnZunWraTmhCb3w66+/0qlTJ1JTU9m3b59Ky3KNmfDwcOrWrcucOXMMnRUT2YBpCMaECRMmTJgwke0Y1AKyZs0aypQpg5OTE05OTlSvXl1qwyZBEJg+fTqenp6SDccCAwOl4nj48CE1a9bE29ubmTNnSp3z9fVFJBJJZpKLGTlypEbL9UyYMGHChAkTusGgAsTb25uff/6Zq1evcvXqVRo0aEDbtm0lImPBggX88ssvrFy5kitXruDh4UHjxo2Jjo6WxDF06FB69erF3r172b9/P+fOnZNKw8bGRuNdGU2YMGHChAkT+sGgAqR169a0aNGCokWLUrRoUebMmYODgwMXL15EEASWLl0qceNbqlQpNm/eTFxcnMTpEKSvlS9fvjxlypTB09OTyMhIqTS+//57Ll68yMGDB7O7eCZMmDBhwoQJORiNI7LU1FR27txJbGws1atX5/nz54SGhtKkSRNJGGtra+rWrcv58+f5/vvvAZg5cyaNGzcmPj6eVq1a0bRpU6l4fX19GTRoEBMnTqRZs2ZSG5jJIzExMcv28YIgGP0yShMmTJgw8XViZWWlN8+4+sLgAuTOnTtUr16dhIQEHBwc2LNnDyVKlOD8+fMAWTbzyps3r5Q74xYtWvDu3TuioqLk7qw5ZcoUNm7cyNatW1XyyDlv3rwsXgYdHBxMvgdMmDBhwoRR4uHhwfPnz3OUCDG4APH39+fmzZtERESwe/du+vTpQ0BAgOR8ZquDLEuEtbW1wm293d3dGTt2LNOmTaNLly5K8zRx4kRGjx4t+R0VFUX+/Pl5/fo1Tk5OqhbNhAkTGnL8+HE6duwo+d27d28GDBhAuXLlDJcpEyaMFHEflZSUZBIg6mBlZUWRIkUAqFSpEleuXGHZsmWSiaOhoaFS236/fftWoy3OR48ezerVq1m9erXSsNbW1lk2pwIkq3VMmDChP65cuSIlPgYPHsxPP/2kUb03YcKE8WJ0jsgEQSAxMZGCBQvi4eHBsWPHJOeSkpIICAhQaQOkzDg4ODB16lTmzJlDVFSULrNswoQJHZJ507tGjRqZxIcJE18gBhUgkyZN4syZM7x48YI7d+4wefJkTp06RY8ePRCJRIwcOZK5c+eyZ88e7t69S9++fbGzs6N79+4apffdd9/h7OzMn3/+qeOSmDBhQlds3rxZ6reqO6iaMGEiZ2FQARIWFkavXr3w9/enYcOGXLp0icOHD9O4cWMAfvzxR0aOHMmQIUOoVKkSwcHBHD16VOFW3YqwtLRk1qxZJCQk6LIYJkyY0CE//PCD5P8PHjzA39/fgLkxYcKEvjC5YleBqKgonJ2diYyMVH0OSKavOLXx9pZ/Ttl+DyEh2qWtTlrqoEq+goK0u15TFJVT0bNQlF9doygfitB3HjXNlxxO3bxJ/bFjqejry9Xp01W/UJ/vhzy0ubfq3jdN6qK2z0aT8qmaprzyKLk+Gs0+QNVBX8WWFW/m1zZjmD59VEtboz7KCDC6OSAmtMQQjfCXjLJWRcedr0LUbRWDgrJHIOkwnbiEBN5GRACwrEcP1S/M5vc+ODKSGSdOIFq9mr2azCnLCeJD3Ti8vfUuPvSNNq+yJtcqEh9fAwZfBWNCA0JCZFdgXTfCut5Z09NTeR7FDZCsmijOT3aVU9XG0Ns7+1oOcTrK8maIliwoSKsO5MDFi7SdNg2LT84C/711i5p+fsovzGbx8duVKwzcs0fy29zMTPF7m5HsEB6apKNKXJnLpkkaWtQ1fVo+dFldVI3raxcfYBIgJuShr229VREhoLhTVzUOVfMjL311yE4RAvI7e0O3YqoKpAykpKay+/RpxqxbR1paGmYWFgxt25ZulSrpKZPa8XeGDTEvDxlC5Yxlzfj/jM8iu4SHJmllV7xGKD4MUV1kNV2GrraGwiRAciqZrSA5aehFHREC+rOG6NoMbGgRYkytmBpC5P7Ll3SdMweAOmXKMLRNG74R71ZtRGVKTElhxIEDjKxZE5FIRK9y5aTFR2Z0aSFQFQMPYchEy3r2JYsPI3q9DYJJgBgj6jYixj70Ii8NVfOtzBqiKhnT09cYtCFEiDGjwrDM+n//BeD4ggU0rFAhO3KlESFRUay7fJkjjx/zfNw43UauizpnTOJD00ndGTDWIRddNbfGXnWzA5MAycnImwuiDdkhPjKmpY4IAe1qrbKy6aoBz24RkoOJS0hg5d69tKhSxajFB0DBXLlY0bo1BVxcdBuxMQ63aIoO6pi+V7mYxIfxYBIgOZ2cNPQiC3Xnc+irc9d1Q64LwfQV8N/NmwB0rltXdgAjE3PDqlfXXWTGMMFUF6hSDiMQHqD5q5TdwiOnN+uqYhIgJj6TndYPbdB1567PBt3IOlCDIGcYZvPRowxaupQ21avTs1EjA2TMQBhqSa2u0YHwyA7RIUaTaqhLIaAs/a9FdGTEJEBMpGNI8aHpqhZdCBF1/BZo2kKYrCESBEHgwr172Flb892SJXSoVYsNY8diYW5u6KzJJDk1lZCoKPI7O2NmpqXbJHXrWE4VHWIU5D87hQcYRnyYrB3KMQkQE8aBNqtaNF2Oqq7TJG2X/37N1pCgIB4KAsX69ZMcyu/uzsZx47CxslJ8rQHuW3RiIj8HBDD31CkATgwYQIPChTWPUEcdt8GQk/8Nu3cTn5jIkG7dEIlE6QeNSHiA9s7BjCWNLxGTADFhXEMvulparEyUaOqxURciJHNevhJcHBykfneoXVu5+DAQy86dk4gPgBJ58qgfSU63eKiQ/8AnT9h97Bj92rfHToHTOEMID9CfMDD0XJIvBdNeMCqQrXvBGKIR0ocA0fVXqyFqrr733PnaRIi3N0euXKHZxIlULVaMs8uWqT70Iu9e6eG9eBEeTsGFCwGo6ePDjm7d8FRnf42cPsdDjfynpaURYm6Ot5eXzPOGEh6gXvXSp/DQ5hWdOFG1cDl1LxiTBcTY0NKdtdroS3yI/9VVJ5s5n/oWJKrcF5M1RCUuPHnChtOnqV+zJmPWrcPZ3p7xXbvKFh/y7mk2DsPsuntX8v8TAwZgbaFCM5nTV7RomH+zAgWQVQJNhYe8R6zubTKk+DBZOVTHJEC+ZnQtPgwhnPRR27N7SOoLnxsSGBzMr6dP8+vp0wDsmzWL1oqWs6oj7HTplv8TbnZ2uNvbs6lTJ+XiI6cKDz15XFVXeKj62qsjTHQtFL7gqmlwTALEGMluK4i2KHNHrc8arE8homr6ukj7CxYhA+rU4W1UFL8cO8aHqChCP37ULKJsukd9K1akb8WK8gPkJMdhuhTTOphcquvHp8+5GJrGrQdN/MViEiDGir5FyJfo+lkXtd6QE3K/YBHSoWJFXsTH89uhQ3y3ZAm+Hh40VtTJy0PWPcqOPZGye48WY5kYrgMHYsb0SutTeGTEJEJUwyRAjBl9iZDsbkyzq2PV1hpiDI3+FyhCVp04wfAtW6SOPXvzRm745ORkboeHU8reHmt1V8noUowYQqQbyzuoAjlJeIDy18GY8msMr0F2YBIgxo4xDcdok4/s7Fg1+fzQpsbr+nPnC5qcuuPyZYn4KOnrS4UiRWhUsSI9GzbMEjY1b15Onj/P1OXLuXT7NpX9/Vk1fDiVixWTDqjqu6TJxGVdtfw5TXiokV9FwsNYX1lFj15feVa3WTD0K2AITALkayOnTppTF3WsIcZa83O4EElISmLq339jbWHBxFatGNi1K15ubjLDpqam0mLQII6eO4efjw9LJ05kwuLFNJ80icDffiOvq6v0BWoI2qSUFMzNzDCXZR0x9ERsQw/5qUhOs3aIMYTwyIgyEWKsTU92YRIgOQFDW0Fy8i6xX0ILkAOFSGhEBP4TJxIVH8+U1q35qV07kCM+AH47dIij586xZ/ly2jZsiEgk4vLt2xw9exZbLZ2VlZ82jZcfPvBi0SLcHD91pF+r8FAznzlVeIDhxYcYWU1QTmh2sgOTAMkpGEqE5DTLhyzkWUNyWitg5ELkzuvXdFi5Eitzc1zs7IiKj6dvrVrM6thR4XVn79xh+KpVDOzUiXYZNqV7Fx5O3TJlcLK3l31hJkErCALzDhygjr8/tYoWlRx//v498UlJPH379rMA0RU5QXhoUIe/VOEBhst7TmtusgOTAMlJaCtCjKEGGHKSZcZPEV3fi+yc9m6EQuTKs2dUmTlT6liHihVZ3LVr+g95fiPi4ug6Zw7Vihdn1ZQpUufeffyIu7Ln5O3NDz//THB4ONdevODlhw8MbdhQSoDErltHcmoqVqo4FFMFTeqgNnvBaPKc9SA6NM1KdmISHzkLkwDJaWSnJeRLsH5k5ktqCYxIiBT18JD8v1eNGthbW7OkWzele738tHkz4TEx/DF+PFYZwp67fp2bDx4wbcgQhdfHxMez4vhxAPzz5QNgUqtWUmFEIpFuxIe+hYe8NPRcD/UlPGSJAX1UP22W1oaEfFlNQk7DJEC+FoxpY6wvcKmpQTGwEElLS2PhoUMANC1Vio0DB2Kuwtb1t54+ZfmePcwdMIAC5ctLnZu1di0VSpSgTf36EBYmNw4HW1suLF/Oy7AwWlevju27d593ZdUFmtYDY6pvMtC14zBVjX8Zw2na8atraFS2jZAu8mRCM0wCJCeibyvIl2j5+BowgLC7+vw5tebMITElhW7VqvFrv34qiY+0tDQGL1uGf/78jOzQQeqcIAhcvXuX4T16YK7CZnXVSpSgWokS6T/y5/98Qpt7YRIectHVSKM6U7I0TVPdPQxNYiR7MQmQrwE1a1JERAQ79uxhYJ8+mKnQmWjEl2gFMQb3h9lwX2MSEui6Zg3xSUmcvH8fSB/2mNOpk8px/H32LBfu3ePU4sVYWVpKnbv98CEfIiKoVaFC+gFN72vGzl2Ve5Kd86u+YuGRXfFru4GyocTI1/T9ZxIgJqToOmUK2//+G4AqFStSrkwZA+coh2HovWlA/Y5XDaLi45m0axf/3rqFg40NAMMbNVIsPmS0qI+Cgsjl6EjdsmWztO4Xb93C3NycGpmGZbRC3j3RtrXXZnKpnlFnYzhDCg99oMvX3iQ+9IdJgJhI59Ob/zE8XHLoTmCgfgXIl2gFEWMMQgRkdrxxiYnYWVtrFE+DIUO49ugRXevXZ9ukSRrPt4iJj0dkbi6zdT96/jyVSpbE9pPAAXRrXTJS0aGqYHAkWus4MmISH/LJLvHxtQkPMSYBkhNR521VpQZliO/o3r0UKVuWp8+f8+7DBw0yZ0IKYxiW+USapyfuHTvyMTqaJwsWUFg8xKECYeHhnL59m2uPHlG+SBF+Hz9e88menp5cffmSEoULZzn19sMHDp4+zYxhw2ReZ9B7qWpvpKO9VHR9XUZU6aSN5LVVC1U99BuLg+SvVXiIMQmQnIYuxYeMuFJSUnj6/DkA6zduZNTQoUSk2jFu3HD8/IoxZMgIlZJW9JX21WHojvMTo9as4WN0+nN5a2NDxu4/LiGBNEEgPjGR7adOUaVYMfZfuMDH6Ghi4uPZe/48kbGxWFpYsHPaNCzVXdaa6V3s0KgRg2fOJDgsDK+8eYH0yacjf/4ZG2trBshzXmaIe6mmiJeHLoSDNuh6RYsm6emzw1XH8qHoNTIJj+zDJEC+VuTUgIxDMA8fP2bM9Llcu3aZ06f/A6Bbt964Zt6XQwbROJpESEaMYEimdunSLN+zB4COM2Zwe/16zM3M+OfcOYauWEF8YiIuDg5ExMRIrvFyc8PO2pr+zZpRs2RJKhYtim8Gnx8yUaEF79K8OcPnzuXPf/9lbP/+AMxas4Y///2XbQsXktvFRXH8+r6POrJ25BTRIUbb26osPV1Ov9HH6K1JfGQvIkEQBENnwtiJiorC2dmZyMhInJycVLto82bdZ0QD60fY+/fkyZ1b2lwuI54Nf/xB2Nu3TBwzhmIVK/Lw8WMg3YmTs7MLERHpwqRdu078/vtOlbOhVIR8qXNAFGFAEdJ97lx2BgSQkpoKgKujI+GfrCK21tbUK1uWNSNGcPXhQ1wdHWlQvrzeWuXc1avzMTKSbQsXUq5YMUq2acNPQ4bw09ChqkWgj/toBNYObTtpTauUNrczu1Y867q5yM6VLpo8SxmbRstEoz7KCDAJEBXIqQJEEATMSpbEM08eXh4/joWFhVQcqamp/Dh1Kv169qR0tWoAJH/8yP/++ochQ/pLRefl5U1wcHrtHzToBxYsWKZyVkwiRAbZLEJuP3uGb968/LBqFX8cP06+XLkIfv9ecv7fOXNoUbVq+o9smnn39sMHGvTrR+CTJ5QvXpxXb94QcuqUlEdUhejyHmaj8DC2113XPja0QdYt1uf90rcnVG2tHV+6ADENweQUNLB+iK0eIW/fUqptW9ZMm8YPnTrx28qVrFy/nllTpvDLypX8vX+/5FLLXLlkdgAnTlwkISGBcuWKEBb2Rq2sm4ZjZKDnIZnEpCSi4+Nxc3bmxuPHVBg8WHKuTunSPA4Olvz+acgQWrRvr5d8KCJP7tzc2buX2r16ce76dSqXLq26+ADdDMXoYKhFkegwNrGRGV15FdUVhtgsW1eYhlbUxyRAvmAEQaBn69Zs2b+fwvnzM3vTJu7eu0fVBg0AaPZp59EXL19KXefm5k58fDydOnWjQoXKuLoWJy3NCysrqFSpLmfOnFbbr5NJhMjhUyf6y65dHLlyhU0//ki+3LnVj+MTR86e5WVICMfOn2fX0aM0ql6d4xcuANC6fn2GdutGo+rVEYlEpKWlkZySIr3cVRF6GA8QiUS0qluXc9ev45Unj/rx63s24RckPAw1xPIlYhIbusE0BKMCBh+CUdP6Efb+PRdu3uSP/fv5+9gxlS7buPEv9u/fw+HD+9m5819q164HZG14SpRIt6ps2XKOChVqqJV1uQJEm9ZNX7vbZiPHzp+nycCBADStVIkBzZtTq1QpEpOTmf7770zp0YMiXl7pgeWUUxAEJi9dyrz//U/m+RnDhind2E0mumppFTzjpKQk/ti/n2plylDSz0836WnLFyA8dGFc00V5vqQN37JbeHzpQzAmAaICBhUgarzxF+7dY9CqVdx++BCAIgUK0L5RIxZt3Ejmx2xpaUnvbt2oWqsx1avXwsfHF0hfhmvxaYmlrManYcMCvHnzmiFDfmLYsOlqZ1+mCNHlrLkc0tI9ffWKmWvWEPjkCdcCAyXHLS0sSE5JAaBelSqcunwZgKHdu7Ns4kTJ3ihx8fGs+esvTl+9Smx8PFcDA4mMjqZ7y5ZM+PbbdAG6bx9nr18HIP7GDWzUcT5mLOslDYGcsmsqPIxgBbZa6Orx5ODqmQVDWTxMAsREjhAgt54+pcbIkZQpWpSRvXtTo1w58n/anjw1Xz5SU1MRBIHQsDByubri6Ogot0FV1ACdOnWA0aO70KfPaEaMmKVREXQiQhS16kbcykVERdF30iQOnj5NLmdnGlWvTs0KFWhWqxb5Py1vHb94Mb9s3kxuFxfK+vtz8tIlAN4EBLB+505uP3pEwJUrvP+0ZLp+1arUqViRBtWqUadSJUlaSUlJRMXGEhMXh6/YgqKI7G5ljU2IaGD1MAkP2WSnoy91NrXTBEMOt5gEiAnDCRA13vxeP//M+YcPubt3r/SYvppfc6o0Qj171sba2oZffz2axRumvBERpUMx6rR+xuLGUEViYmOxsbYmOSWFKcuW8cundyPszBnyyJjvIQgCsXFxONjbs+vIETqPGsWcESOoUKIEzb//HoCaFSqwYMwYqpYpo9KOsQrRsy+LHLEKSof15GsWHqBe+fUhQvQ89SdbEJeheHHVwudUAWKahGpsaPjmO7m7k3z3rrSZXUeNauYGpU2b0Uyf3oHff99C48a9soTP2ACoZP1QF0UrSPQlPDQcyI5PSMCjTh1i4+Oljnu4uckUH5A+MdPB3h6Ay3fuYGFhwbj+/XGsXFkSZtbw4dpv1mYsTrTE+cj0AoZHRvI+PBw/X1/9py0DWeU3CQ/lKFvgpY8qqm2c+hYcRvQ9ZFSYBIi+yE4J7elJ4+rVWf3nnzx5+VJhg62t+ACoVas9dep0ZunS7ylWrAr58/tnzIoEvYiPjOSAWm1tZSURH2ZmZvRp25bf9+1j/KdJp8rw8fQkJSWF01ev4mRvz7ukJHq3bUvdDGJEbYzVbXimzQmnrljBnuPHCT51SvfpKEAXdSTjNYb+ms5MdhmcMgoRY6uqunwmxla2nISZIROfN28elStXxtHRkTx58tCuXTsefppAKUYQBKZPn46npye2trbUq1ePwAyT9gAePnxIzZo18fb2ZubMmVLnfH19EYlEXLx4Uer4yJEjqVevnl7KlW14ekre/nM3bgDwITIy/ZyMGibvi06ThnXUqHW4uXnTr18xevYsRGjoC6nzaosPY2ulMyK+ERp84q7dvh2A3m3aMLJXL1ZOmULKnTuM7N1bpeuHdOuGs6MjS//4gyOfVrgEXLlC6idPpirj7f35TwHRyJ8bpAlqi84M+UyztaVy5co8TkjQ7P3IWGYVyi+v7PLqSEiI/Fci4zXGMMIkxhB5MWQHreYroBBxc5v5T5/5/dIxqAUkICCAoUOHUrlyZVJSUpg8eTJNmjTh3r172H8yQS9YsIBffvmFTZs2UbRoUWbPnk3jxo15+PAhjo7pjcXQoUPp1asXlStXZtCgQTRs2JCaNWtK0rGxsWH8+PEEBAQYpJw6QcGbfvfxYxZt3MiPAwZQrWxZtcSHLFTpZx0dXVm06CTduuUnNPQ5PXsWpHHjDixbtlv/lo8cgiAIbD90iLL+/mz++WeN4hCJRBT19eXAqVPY29pSxt+fO48e8S48HE9V/GboeWdWfTJzyhTcCxYE4J8//9Rri6yO1UOZxUPecUN2KMYkghRhLJ2uaU+Y7MGgAuTw4cNSvzdu3EiePHm4du0aderUQRAEli5dyuTJk+nQoQMAmzdvJm/evGzbto3vP03Ii4iIoHz58pQpUwZPT08ixVaAT3z//fesWbOGgwcP0qJFi+wpnKao8eZ/jIhg27//Mm7RIvK5uzO8R49sER9i3N29mTPnXyZPbgnAsWN/c+VKAG5uVbH5NBE2x4sPDQf2U1JS+HbaNE5fvcryBQu0ysKaadOo1Lkz2w8dws7Ghh6tWrHmr7+YOmiQfM+harRuxig+ANxy52bTmjVUr1JFb2noW3hkDvO1LzTKjLF0wsbmjv1zu2mcdVNXGNUqmCdPnuDn58edO3coVaoUz549o3Dhwly/fp3yGSbctW3bFhcXFzZ/Wk1w8OBBunbtSnx8PK1atWLXrl2SlQG+vr6MHDmS58+fc+rUKW7cuIGZmRkjR47k5s2bnJIxvpyYmEhiYqLkd1RUFPnz51dvhvGJE8rDqPnWn712DQc7O8oVL87HiAjKtG9PcFgY7Rs1YvO8eTj6+2e5Rl/iIyP//vszS5ZMlPx2c3NnytgxDP3uO4lPEbUwplZTg4mu/xw/zrA5cwj78IENq1bRq1s3+YHllPXpq1ecuHiRvSdP8ubdOyzMzbly965UmEL583N43brPc37UbOmyQ3gYqwBV16eHoqEWdcmuTteYqlFGDCk6jE1oZERmXXFUrY6aVsFoiSAIjB49mlq1alGqVCkAQkNDAcibN69U2Lx58/Iyg/vwFi1a8O7dO6KionB3d5cZ/5QpU9i4cSNbt26lV6+sKzcyMm/ePGbMmKFNcbKixZuflpZGz/Hj+fPffwGoXq4cl27fJi0tDWsrK7bMn4+dDA+S2SE+ADp1GigRIBYWlrx//46REybQrlUrfAoUUD/CjDXZkK2oBjclLj6e72fMoEiBAmxbuJA67dopvkBGq5WQkECREiUA8ClQgKYNG5KUlETffv34GB7Ok2fPqF+7NkPGjGHzyZPMnjZN7Xx+beJD1fKqIj60fSX1bQkxRuGR3aLDmIVGRoypjhgCoxEgw4YN4/bt25w9ezbLucy+JgRByHLM2tparvgAcHd3Z+zYsUybNo0uXboozMvEiRMZPXq05LfYAqIWOqwBB0+flogPACcHB9ZNn06zWrXw9vDQathFN3t5uXHt2kNCQ0Ows7NjwrihXLp6lbGTJ7Np7VrJfB6NkLNE01jZvHcv78PDubBtG4WqV1f7+g8fPtC5Tx8AxgwfzsLZs7O86wD7Dx0iLi6OR0+fqhW/sQ63ZCRzHjVppNUtp6p1Q1evoT5EiKGrSHaIjOyc0KqP8qj0Lmd8kKo6AsmhGIUAGT58OPv27eP06dN4Z3jqHp88Q4aGhpLvk1dPgLdv32axiqjC6NGjWb16NatXr1YYztraGmt13Fbrmgz3ID4+nmU7dwJQpWJF/vnzT/J9ui/yyF7xkY6fX1H8/IoSG/aE9x8+ALBr716CQ0I4r8pwlDKy2yqi6OYoWFd44/59ShYpQiF1BStw6swZOvfujSAIHNixg5bNmskM9+z5c7r170/tGjX4efp0leM3dvERjSOCILBx4zrOng1g/frfsbCw0Hu+s8PqIS9dXXRy2Sk8vkR/Gfouk9qi4yvCoAJEEASGDx/Onj17OHXqFAU/zXgXU7BgQTw8PDh27JhkDkhSUhIBAQHMnz9f7fQcHByYOnUq06dPp3Xr1jopg06QUwPef/hAq86duR0YyM7ff6eTMnM+hhEf4uw7Es37+HiePn8uOXfhyhXtEpKFkVpFBEHg6t27+Pn4aHT9kNGjKVqkCLv++EOhyBw1cSK5c+Xi3507JSvBFGEI4aGO1SJj/pYsmc/06enDebNmLcDLS3+9Q3ZbPeTlQdMOMLtff3111F/SihO1rXXKxsRNFhD9MXToULZt28bevXtxdHSUzPlwdnbG1tYWkUjEyJEjmTt3Ln5+fvj5+TF37lzs7Ozo3r27Rml+9913LFmyhD///JOqVavqsjjqoaRGCILAhJ9+4u79+5w+dIhKFSoojVIf4kN8vbzsZj5e0NeXIV27svqvvyTHhNev04cRdN0KGMtckU9s2rOHG/fvM3fkSI2u//DxIz2++Uah+IiMjGT/oUMsmjPHaMWHqmTOW7rPn4l4enrx99+HEYlE9OjRgXHjplCunPL3XxnKXhFVrB762HxZWR1TlqfsQNdVV1+iIzvnmmg1f0Mfk/FyIAYVIGvWrAHI4hBs48aN9O3bF4Aff/yR+Ph4hgwZQnh4OFWrVuXo0aMqNb6ysLS0ZNasWRoLGK1Qo3as27CB337/ndW//KKS+JCFrsRHZsSNh6z9XW6fOCElPgAW/PZbuufPjBEasxhR5SbJGIZJ+7SgLK8cF+vKSElJUepgbN/BgwiCQKe2bRWGUyY89PkolCEvbyKRiH///Q9LS0tKlChF375d2L9/D23bdtJYgKj6KigTH5nP68PNuCJriCH1ta7eD0X35u7dq6xdO5s5czbi7OyaLflRFZ1NFDWJjiwY1TJcY0WjJU7376f/q0FtOXzsGG27dePbPn1YuXixStdkbtS1ER+yrs1YDEUCJP7JEwo0bMj78HD+WbGCdsOHA5AWGJh1MmV2tCSatNyq3qhMLWpKSgql2rbFK08ejm/YgEjNeSBN2rbFxsaGfZ+8p2YkMjKSoWPGsHXHDurWqsWpgwflxqPptvFi9LKcEPn5unfvLv/73ypCQ98A0LhxL/r168C1a1d4+PAeLVu2w8bGRuJbRhna7muoTHyoi7qixJhGGLV5F9Qp98WLJ7l16yLNmn2Dj0+RnCsy5KHpJkIqbodrWoZrQhoNfTKcP3+G9j160LBhU2bMW0k0nx1Nqdqw61p8qIOtjQ0vjx/n1sOHVC9XTiJCrgUGUunT8mrAeDwQ6RALCwsW//gjrQYPZt727UwaO1at66tXqcLM+fNp2bUnvXr1p3z5SuTL58naZbOZPHMmKSkprFy0iL49esi8XlvhkTlsdjyi2NhYateugEgkonr1WiQkJDByZCc2bKjKwIETyJu3JCVK+ODsnIt9+wKxtbXTWdrZIT7EcajTGedk4aFOOTOm0alTAzp1aqBZoiqQI5e7GsOLoGdMFhAV0EhdRqs3Ce/Dh/esXPkLa9Yso0KFyuzZc0TjlTiaChBF77uqFpDMkYitAr5eXhxev152hPpE00qs7IYpaGln/PEH0+fNo3Xz5mxeuxZXV8UmZbFwSE1NZceObSxZ8jMPHtwDoHBhP54+fUyzZq3o1q037dt3Vq8caNeOaefFURpZAunUqRO0adOI48cvUKVKNYKC4NKl/1iyZCK3b1+SCvv33zcpVqys+hnKgDreTHVtGc8pm5ap+8yVlUvV+O7du8vHjx+oVauuSuFznKhQZwhGHPbTknxl5FQLiEmAqIA+BUg0jhw48A/ffdcLQRD49tuhjBo1QWmnJQ99WT9UFiAyIlr7118MmTWL2GvXsLWxyV7rhwEEiODlxfbduxk2diw+BQpw+tChLL5QlM3RePXqJWfOnOLEiSPUq9eQ3r0HqJjxz+jqA0qdx6WoU5BV5sGD+3Hp0nmuXXuASCSSyvOLF4949uwBS5ZMxMvLl9Wr92Nmpv7+mZqIb30NyxuzCFHnOatSDnWreblyfgQHvybh3Tv1LswpmARIFkxDMAbm4sVz9OvXlaZNW7Js2Tpy53bTOK7sHnpRdQlh2WLFEASBe0+fUrFpU/UTMgSenprNNPT2RgR07dSJd+/f88OPP3LkxAk6tGkDqL4qpUABH3r06EOPHqo1QBnRteVWX547BUHgxIkjdO7cPYv4APD1LYqvb1EmTepD27a91RYfmr77+pwTaIxb04Pqz1db4aFIoF47dZInz56plhETXwTqf06Y0Bm7jpyhQ4dmVK5cjd9+26aV+DBmyhUrhpurK1v271cYTtdbwRt6DPWv3bsBOH7uisplE2/jnvFPHfRVZFXiVdckfu/eXUJD39CwoXxRmpaWRlRUBE5OqlkEQ0I+/6mCOuJDV/fWmBY9qLrtuypbz8uKy1Hy5kcrfT9cXFw0XvFnImdisoAYgAePHjFt/i/s3LmNpk1bsmnTdq09rxpy4qkybG1sqFOpEndevVIpfDSOnDmyi8KFCuEvY4+bbEORFUQWmVrfQ7t3U7NZCzZuXEffvt9SvHhJuZcqegaqDI3lhPlqjkRLibD4+Hil15iZmVGwoD8BAQdo374flpaWknOaduSarIYUX6Mra5AxWEJ0ZfWQF4/KgjS7Xt4vcOJ7TsdkAclG4uLi+O6HHyhRuTLnzgWwcuWv7NixX7u9UjCOzkfZ1/3rDx9wV+AfI/P1LTt3pljFipy9cEEn+dMZ8lpjGY2byMmLY8fOU7BgYZo3r8vJk8eyhNHEyqHL6w1JhQqVMDc35+HD+wrL0LXrVP77bz/Tp49V28KREUX3yhBWCUNaQvQpPrJYO2SZ9TQ18WmDodM3kQWTAMkmkpKSqNeiBVu2b2f+/GXcuvWU3r0HyNxoTBcY1PqRqVW69eABV65fp6Mc51myxIvYBXfd5s15lsG1e7aj4WequEz29vYcPBhA+fKV6NixOf/8s0sSJrvbvoydt647P5lfu0oaeJFIhCAIWFlZSR3PnM+GDXtQvXpr9uxZzrNnt9XKlyr9jLJ7kflaXT637BYhqg65gNKpTnLFh4Sc0sHnlHx+gZiGYLKJM+fPc+X6dTZv3qHRUsqM6KquZFedO/HgAWZmZjSuXz/LOXFHLQgCgYF3KFmyNJDuU6NMmXLcvn2TO/fuUSjTPkEGQQ3rR0Zy587Nzp0H6NKlDRMnjsLS0puyZavJDCurQ9LUVK+sczP0MEBwcBBpaWk4OTkrDVumTF0uXNiPu7ty527aOiLTNC5Nya7noItVLioPt2ij+LRF05uZnQ5wTAAmAZJtlC2d3rG+eaN+5VO3ETSmSW4Ah44do1mjRjg7S3c0GS0f//13nHbtmrBkyRqsrKx4+fIFe/ceY+TIQSxbv4FajTtgFhuq8fJkrVBzLogsi46FhQWjRy9n3Lhu9OxZi/Hjl9Cz53DJeWWb78rKkirhlKFO56fW/Ac5L23GeSA7dmzF3t6e0qVbKowqLS2No0c3U6VKcxwd5T9/XQoPZfHpemWQPkWIrpbXqiQ+snNJkTwypqnJTTUJkWzDJED0RFRUFAB2dnbsO3iQeUtXYGlpSePGzRVelx3bmOgiHVV5EBfHf6dPM3vqVBq2bs2CmTOp+Gln44wUK1YCgFGjBgPQt++31KvXkIkTp/Pdd71wc0ufpCt8uq/ZjoqfhPLmwgQFgY9PEbZtu8DQoW2YO/cH3r8PpXPn2RoNw+myXde281M62VBObx0WFoqXV34cHD77LZBVroCAHTx/fodRo9bJjFoddFk/coII0af4UGr1UPMlff32LfmTkpQnrA7aiBGTENE7JgGiB9auXcuQIUMQBAEzMzPS0tKoUqU6e/cew8+vqNzrvqhhyE+V9tzvv5OamkpwSAgnAwL4eckSdmzeTIwovdNJTU3l+PEjDBr02d/Fxo1/0b59Z0QiER07dmHWrCm8fv2SihWrEI2j8XhAVKFhyvxMLSwsWL16P+vWzWHlyp/YuHExs2bto1KlJnrKpAFQ8CIHh4TQrNM3dOjQBW/v/Lx69YLY2Gjs7WULt+TkJA4e/JWSJWtSokR1ZdHLRF2xZsh6qCsRoitvpjqxeqhwQ2+9esXcAwcY3qgRtYpmaCNVfRiqFDhzvtQx/amahgm1MAkQHZOWlsacOXNo0aQJPbt04fX7GGrWrEPp0opdSOui0TO2oReAp58mkK785IZ91z//8Puew8THx2NpacmVKxdZt24FPj6+LFu2jtat20tZBCwtLZkx42cGDOhB3brpe0WoJEIM0IuosicPQFiYOW3bTgVycfjwBiZMaMovvwSQK1cdmeGzo93LrnkIZy9c4O7d29y9e5tixUqQkJDA/fs3qVSpttT7Gx8fw5Yts9i/fy1xcVF8++3v2TIUqYnfFV0/H0PPzdEpKt5Q71y5qF+sGFULFdIuHXUehqab9Oja7PUVYxIgOuDOnTts3LiR+Ph4HB0dCQoK4q8NG6hZrZpuHWvpEG9v9TcoE9e7jPU243FZwkDW0ts5c6bx+PFDAKytrRk58ke+/fZnRCIRskYjmjZtiYWFOUFBr1XPrL5RcehFHiKRiHbthtGoUS+++caD5cuHsGLFJT58yLokO7s+wFSxVsvqcLM8dwUvl71d+mZyLVu25fr1K9Ss2YRSpSplCTdlSmsePrxM27bD8ffvQKFCVTQqh6p8UdZH9Oe9Vm1UbGhyOzgwqIEONqNTt7KIXxZd7xaYOX11HDV9aS+jAkwCREt+//13+vbti7u7O2/fvgVg8ODB1Kha1cA50y+qipCRQ4ciANt270EQ4Pr1KxLxAeDvX46ePacpnAfh6OjI2LGT+eWXeaxf/zvOZrH6KJLqqCA+VPU34eDgzMqVlxgypBLbt8+nUaOZcpPNTkuwonZZbRGSIXDtpp2oVq0mycnJnDgRLDPttLQ07t07T5s2Q/n22591Prk0M9q291+yFcRohIy6qJtxTYSIsvRNKMXkB0QL4uLiGDduHJ07dyYoKIirV6+ybt06Fi5cqNbEQl29q+rWHV3O78pYhowdcozIiW+HTeS//y7z99+HuX//NW/exLBs2W5Gj/6ZzZtPYWen3BFbhQqVSUxMJDhYyc3Sd8XXYN6HMgoVKkO3bpPYtm0Oly/vUCn+7Grf5PkNkZV+FiGWyVlENI6YmZlRsmQZXr2SrxQePLhMamoKefP6qJ1XdfjS3T9kW9mMVaFocgP04SRHXjomTBYQbfjf//7Hx48fmTdvHpaWllSsWJGKFSumn1RxN1xDo85QjKyPCkWWkMzkypULyEVQEDRu3EGtfLq65gLSV06UyC9nKaYRzPtQhKI2p2fPqQQHP2b16i4IgkDVql2UxqdtcdXtNzJ/latkCZFBgQI+/PXXFpKSErGyyroFwdq1o/HxKUnbtkPVyps6fMnCQxOMweJy6elTUtPSqKHL7Rc0NeHo2iIiK24TJguINhw5coRGjRpRSNOJU0aCviwhmdHmi9PFxQWAiDdPNItAF2gx9KIMc3NzJk7cQpkydTl5crVmkaiJJt6oNbKEZDpWvnxrYmOjOXPmsMw0EhPjcXBwwdzcgps3/yM+XrdiXh/iw1gFjUHylbnTVqGBufr8OdVmzaLd8uW6z482N0HXFhFj8HxnRJgEiBaEhYXh5eVl6GwYPbowdfv5+WNubk7Yp3k2MhPRJ1qKD1XaMJFIRJ06nXj69AKxsRFqZlA71NkeQ10RkvH/QUFQpEgJnJxcuXfvGoIgcObMYeLj4yRhevf+iTt3zrBixTDGjm3A8uWyXfjLy488vvQhl5zM7qtXAdjQv3/6AV1bCXThYMlkudA5JgGiBf7+/gQGBho6GzpBVSuIKpMr1enMVEUkEmFubs7gUaMIDQtTLVPyULch0XLFizrUqdMJgOPHV+gtDVVQ9vw0tYSIqVChJmvWzGLs2G58/31zqlVzZe/eVQDUqNEWNzcvzpz5G4DwcO0b/q9ZeOSEstcuWpSpbdrQqnz5zy+XPkSIIYWIScBkwSRAtKB+/fpcvnyZ8PBwQ2dFJ+hyKEYf1K1ZE4Dtu3frN6GMqHhTdLX1Ra5cHlSv3oYHDw6qfpGekdduqytCMp6fN+93qldvxKFD2wGwtbVnxYphvH8fjEgkIn9+f8zMzAEoXjzrHkLy8iAv/9mBrtP5ovorJfWoRdmyzOwgY16YPm6CrpwuyfuTF95EFkwCRAtKlChBWloar1+r6J8iB2DMImTt0qUAeGcc9tKn9UPGzdDlvA95FClSnhcv7pKYaODlxpnQVITIOu7s7MrixduxtU33CxIVFU7u3Pmwt3cBwMenJIKQxs6dofTuvZrQ0Mfs3j2VQ4cWExr6SOX85oSv/+xAlftgFG4pZGXCWEWIPFQVJdmZJyPFJEC04MyZM9jY2OT4Sajqou4cAV3gSDQFfX0pUawYazds0H0CmVFRfChDk3tRv3434uNjCAoyHiuIGFXaSFXbUReXXBw9+hxzc3Py5/dn2bLz2NqmL8lu1qw/Hz6EMHlyKyZOLM7EicU4cWIle/ZMZdKkEly5souHD0NJTU2WxJeSksSbN7fVysPXhC7via6GIU8/fMjA7KjPsjC9JAbHJEC0wN3dnaSkJGJjjetLVVt0saxfHyJEJBLRrFEjjv/3H0dPnNBfA6KG+NBHFjw9C5EnTwEuX9aPANHk4ywjyrb+yBxG1j1KTU0lOjqS3LnzIAgCuXLlw97+827J4pUvjx5dJTT0IYKQRoMGg5kwIYAKFdqzalVn5s3Lx+LFRbh2bRNxcR/4++8BrFhRllOnlPtS0RdfbZ+Wuc6ouHx19r59xIk3oFN3S2hdYDKTGRSTANGCZs2akZaWxvbt2zWOQ9fvvq6WretKhOhi8nhGvxKWlpYANG3fXrtI5WVKh+JDm3K/ffuKI0c26WRITJngUDScraojMnkiRN49WrZsClWrunDgwDbS0tK4desU331Xllu3Ati2bS6jRtXB0tJKEt7MzJwDB+Yxc2YVXF0/v+QREa/YvbsfCxcW5vnzSwAcP96LlJR4le7P14ZB+1oZL/PRcePYNmiQatfrc3xX17PmNUn/K8QkQLRg/PjxAPz4448GzolhEQSB06d3c/bsHrlhdLWKzSd/fsn/XymJMCExkXPXr7N+xw6mr1zJ3XPnEARBrfSMdS8fWWg69KxO/BlRRYTIo3r1RgAcOLCNvn3H0L37ZMzMzBkzph4bNkymbt1vWL78Iq1bD8Ha2gFzc0vJtceOpfuKKFmyA/7+LQGwtc1HZORjANLSkjAzs8KEcSIIAt3XrsV/wgTCIiMNnZ2sfKViwBCYBIgWlClTBoDExEQD5+Qzuup0lNXBjOdPn97FzJmdWLx4oNJ4NfHDk1EEDBowgAM7duDl6cnUFfKXqt568IBCTZpQq2dPvp8+nRmrV1P6228ZvnFjuplIlrMkNZbb6ruNql+/m2T7eVXIrkn2qogQVfLi49OQmTP3cvr0v2zatJht2+YQFvYCgJo12zNx4hb+/HMu+/evJjExBienPJJrixZtBoCjoyfFirUCoEyZkRQt2hMXl2I0bPi7ZAVNdqNLr+T68kyqyYotlV3vZ0RWAby9WXXtGn9evMij0FCSUlIUhxcfl1VndYm4/stoB7IFY3Vnr2dMrti14McffyQsLIxffvmFtLQ0zMxyvp7TpGO9ceMEANHRH1UKr4nbZ7GLb5FIhEfevHRu1451GzcyfehQCsqovKv+/JM3795xbdcuCnp5YW1lRf4GDYiIisoauY4mnGbG01NzYWBjY8fHj28+WWxU31coO5Dlkh2kb2PmMLLug79/Zby9ixIS8pQ+fWbg4eHLrl2/cO7cHrZunY2LS7roEIlEDBiwiQUL0ndLbdZsPnnylOLcuV8YMSKQcuV6cvr0IPr2DcPOLk/WhEyohbz6Kc/1PmQYJhUHEL8U4ogyvAAvP/nx+XPyZPJn3i1bHyLjK+3ccwImAaIlcXFxlC5dOseLD02/6MPDwwgI2AlA3brfqHydIhEib/sGsQipVLcuANbW1uy7fp0R1aplCVuzQQP+t3MnjnZ2uDqnT260t7XFw83tcyA9CY+MaCpCatfuyKFDv3H//kWcnBRbQgzhYkDWVhmZn5uyfOXOnY8lS04zY0Yn9uxZzpYtz2nQoDs//dSeP/6YyaZNj7Cx8SVvXj9KlKhPjx7LANi6tRMfPqQPt/z+e0ty507fO2TTprzUqLGIcuXG6KychsLQ+7LIQ1ndlJB5k6kMQmRGnz7ULVuWZpUrg7n554g1xSQwciw5u9c0AgIDAylZsqTG1xtD3dGm7u/bt0Zi+WjQoLta1yrqoBTlacGsWTg5OVGyWDGu3rghM8yTZ89wcnLCs3x58PZG8PLizfv3FCpdWmJmTUpKIiWDCVhV8aHu/dLEely0aCUALl0yvqW4GZE1JKPO/XF1zcugQYuJiHjL48fXEIlElClTF3NzC7y8itCixTgqVmwHQOPGP9C48Q80b75Acr1IZMbjx0ckv9+8OaNNcbTCGOqyrtCkbkbjKF2HZA1neHpiZ2NDq2rVsDA3VxxWHoYeLtEXX1JZVMQkQLQgKSmJ27dvU6pUKUNnBcj+7ciDgtKXjIp5/17/k7eicaR8mTLEx8eTO3duHjyS7ZTq+KlTtGzSBHv7dL8S796/JyUlhaFjxpDPz49Kdevi7O2Nd7FirN26m/AUW73nXR0hMmVKayB9a3pjb5dUWSWjCB+fEri45GH9+vTJ3K6ueUlNTeHWrVc8eXKBoUNzs3XrSGJjwwkOFihRoh29eu0HwMzMEgsLG0lcIpEFDx5s5vXr4zx/vo+7d1dz//5GKX8hxk52WD+0cUwmvl6REJFC1twQeYXMLCoyiw1jrwwm1MI0BKMFe/bsITIykrZt5W+W5Ui0Ua6k0NUkSkfHz2O4IpH6eladoZjk5GR++OE73N3zkJyczNkLF/DKl0/mta4uLsTGfd7gLI+7O2uWLOFNaCiCIPAqKIiuHTty+tI1Bg/ux+DB/bh69T5FixZTuwzqImNYPAsPHqQvKW3Z8lu950cWst4PZW2/KnNDABIS4hCJRFhbp4s+W1sHvv9+EfPn9+bOnbMcPvwbLi7u2Ng4MXu2LwDXr//DsWPLKF68Ld277yQ+Pt3q9u7dfQCsrHJha5uLoKATPHv22VW/SGSOIKTy/v0NatfWw06ryC6jphjr0Is85D1jpXNDQHFFMAmNrwKTANGQN2/eMHz4cFq1amU0FhBV0eUKjo8f30j+37RpX43iUFWE3Llziz17diASfZqUKQg8efZM5nVuuXPz7MULqWODBgyQ/F/cQH4PHDy4j65d21KpUnGGDBnJuHFTyJ15clyG/OgKZfNDXFzySDank4em8z80KUfGa+T1D7KeZebrfvihOs+e3Wbu3EP4+1fG2Tk3det2Zv/+NYwaVRuAPn1mEB8fIbmuZcvx/P77EO7f30tycjwgvZza0tKW9u3PcO7cGEJCAmjb9iRWVk7Y2Lhz7two7txZgb29JxUqTFC/4NmEMYoPVSeMKxIiWeaGZLwAVFPkXwuZ58584ZiGYDRk3rx5pKSksMFQboQ1RNfv9oUL+wCwtLQmIuKtxvGo0vaUL1+REiVKU6VKDaZP/5nkjEv4MhATE8O5ixcp5OsrOSYen84yTg20aNEGK6t0vxGrVy+la9c2avsL0RRF1uhatWRszqUDdPEOKNspV/FyznTLx6RJzenaNX1fHysrG2bN2k/jxr0ZNGgxNWqMwc3NFwB7+1w0aDCYuXPvMXToNWxsnLh1a5tUvLGxwRw71oMyZUYSHx/GsWPdiYkJwszMnMqVZ2Br686jR1u1L7gMdPGxboziQ4w6ukDWeyGrzsm8afpeamvC6DAJEA1ITk5m8+bNDB06FHd3d0NnBzDMrqAfPrzmwoX0sfjk5EQGD66oVXzKfBCIRCL+978t9Ov3Hfv27ZZMIH2VYTPAaBxZvH4zb8LCGD56quzGTwZNmrQA4LvvhnHp0nkWL56nVVnUJWPb+/r1QwACAnTvUlzX74AyISKLdAsGWFvbU6/eZy+Yzs65GT9+M506jcba2p6IiBBsbJywtnbg/PktpKX54+VVAYCYmPSlnIMGXcDCIn2eT3DwSSwt7Wnd+jgpKQns29eY16+PY2Pjirm5Lfny1dJRqXWLofpcfX5oyxMiUsib05HR74dJlHzRmIZgNODChQtERUXRrl07Q2fFoFhafp78N2TIUkqXrq23tMRDMeXL+2U517pbD86eTV8Nk5CQwObNv1KnTgOKFSuhcvzbtu3h4MH9DBjQDXNzc2bOnEzt2vWoWrWGVB70jacnHD16EYABA+bqNG59dziQtT+RtVy3TJkWvH59m/r1B9G16yK513748JqEhCgSEqJYv74XhQtvws+vCblyFaZHj7+xs3PDxsaJ3r1fcuXKDO7cWcHr18c4f34M7u6VSEqKYP/+xvTv/wFraxeSkqIxNnJK36qJ7x7IOo8ry9wQkD0skxl93yhjGv75ioZhTBYQDXj58iUA3jloopQ+3mcnJ3dy5Up3jV6uXH38/CpoHaeydmDt2s1ZjvXt+53k/1u2bOTly+fMnr1QbhwZt33IeF+KFSuBvb0Dhw4FALBgwWz1Mq8DBEFgzZpRWFpaUa9eF53EmZ1bXMhLKyQEXr6M5/Llnfz7788UL16fVq0mybxWfH2RItXo1WsVAEOGbOft20AOHx7Ptm2dWLSoMKdPzwfAxiY3tWsv57vv4nn4cDOCkMrbt5ck8Vpbu+DqWpz3728gCGk6La82TUBOER9itJlvpPGwTHZhsrQYBJMFRAMCAtI7qIsXLypcAWMs6LPzCQ8PBqBQoTL6S+QTQUHQvXtvgoJeUaFCZeLi4ujZswPlyn0e+tm//28aNmyKv3/xLNcqihfAyqow//33hoiID7i6unP58iWCgiA+Pg5bWzt9FElCWloaFy+eYMKE3kRHhzN79n4cHFwUXmOIYTdVyWzVSEtLY926msTFpa9eqVixAw4OuZTGk5gYg62tM1WqfEO+fO1JTo5n9+7+BAbuRiRK9yNx5coMnJwKERx8Eju7fIC0b5ijR7vg49OaJ0+28/z5PgoVaqerYmpMTu3rlL1zisoly9Kl0iTV7ESZ+14TOsVkAdGA0aNHA3Dnzh2VwktVsC+MtWuj2b9ft+VT5n+gTZsOFClSlNu3rwOQJ09eAD58+MDZswGS+RyabHApEolwdXWjQIEiuLl5sHLldKpWdWHfvi0al0cZMTFRjBrVmYEDm5A3rxezZx+gSpUWWsdrDFZc8f1/8GAfISE3iIh4ycyZiZQoMUyl9j02Nhw7OxdCQsDc3JKEhEjS0lIQicxwcSlAfHwEV65M5+TJ/jx4sAlPz/RhwLJlR9G48V8APH26i5Mn+wBw+LCWuyh/Yej6HdFkJ2W51hBD+/4wpFUkB1nXtcFkAdGAEiVKkC9fPtLSdGPO1feQn77iP358JQ4OuTE370SGBSc6Qd6Y87///sm4cd0pXbosd+7cIn/+AhQo4APA7ds3SE5Opm7dBlqXt0WLrsybN4LVq2cAsHTpRNq06aldpDJYtmwKmzYtxsLCkiVLdtK4cQdCQ7X/LtDl85YlFNRtl48dEw+XOGNh8XmnWmVzCwIDj+Hmlr7MPTk5gT/+aMvbt/cAEXv2fMu//46hSZPtHD2aPlzl7Jw+R+jWrSX4+6eLjurVF2FpaU9c3BsSEyPUy7ie0HROhT6QNwdHl2SeC6SSNSQjmTOXnepalQelD2vJVyBCDGoBOX36NK1bt8bT0xORSMQ///wjdV4QBKZPn46npye2trbUq1ePwMBAqTAPHz6kZs2aeHt7M3PmTKlzvr6+iEQiLl68KHV85MiR1KtXTx9FMhjZ3Zi9e/ecLVuGs3Ztdx49OpNt7YG3d0EAnjxJ3wtk0qR0gZCWlsbs2VMpVKg4NjZFtU6nXbs+FC5cAnf3fDg5uRAaGsSWLSuIiPig0RLd0NAgtm5diSAICILAqVMH6Nu3PuvXz6VevW6sW3eb0qU7yRQf8uZU6BN5X6+qns9MTEwQDg75SUiI5PHjozx9elIqLlmkpCTz4sU1LCysOXToR+bPL8CbNzewtnYgX77adOlym6SkKG7fXp7hmgR8fdtQqFAHHj5Mny8UEfGAUqUGUaXKDGrXXqZahlXEGKxMuiI75gopc92v6qo1o/OQKmvljmklj1IMKkBiY2MpW7YsK1eulHl+wYIF/PLLL6xcuZIrV67g4eFB48aNiY7+rJKHDh1Kr1692Lt3L/v37+fcuXNScdjY2DB+/Hid5z0pKUniO0IX6Lv+6Dp+a2t7yf/d3dPdsevDnJuZsmWrcfz4S9q27YO5uTnduvUG4MCBf7hy5SLTp6/DwkJ7w56jozOdOg2kWbMuREVFADB37g/UqOFGx44VePHisUrxvHjxmBIlRDRokJ85c4bTrl0levZszJAhrYmLS2HIkKWMHr0eDw9fmddrIj60eQ7qiIrM18i7LirqBWlpyXh51Qdg48am/PZbQ0JD78pNNyQEXr9OBCAw8G9u3dpKXNw7AOLiPlCmzAjJqpaoqGeYmaXXxdu3l/DixT7y5KmChYU95ctP4P79X4mNfcPLl4eIjHyiXuH0iLFOMdBk6FId1BmWUVmQgGxRos6fvjEJkiwYdAimefPmNG/eXOY5QRBYunQpkydPpkOHdIdMmzdvJm/evGzbto3vv/8egIiICMqXL0+ZMmXw9PQkMjJSKp7vv/+eNWvWcPDgQVq00G5c/fTp08ydO5f4+Hg+fPiAtbW1ytdmh0t2bbZ/VxdHR3cGDfoTe3tX3N19Jcfl7ZapKbJM1Z6eBahcuR5//bWGV69e4utbkEWLFuHhkZ9KlXS3FLhPn1EIgkDp0pXZuXM9V64E4O1dkISEOLp0qczEicto1uwbbGyy7iNz+fIjrK3t6NZN2hrz+PF1fH1LMWPGP9So0eazV1cdoUmnoct3JmNcnp4QFHSSAweak5aWxMOHvwMinJ2L4Ovbmjx5iiu8XiQyw9u7MiVKtKNGjVEsWVIWMzMLwsPv4+PTnAMHWuDo6EN09EssLOywsLChbdtTWFracfHiZFJSYrlx42cALl+exv37v+Ln14PGjXU7n0fX77wxoenwTOb3UNb1qgzLiMnYduptTp28QupLiZkmvBrvHJDnz58TGhpKkyZNJMesra2pW7cu58+flwiQmTNn0rhxY+Lj42nVqhVNmzaVisfX15dBgwYxceJEmjVrhpmZ5kaffv36kT9/fipUqECVKlUkwkhX5KS5ICKRiGrVuso8p+8G+dWrpwQGXgWgTJlC3LsnEBUVQeXKdVWOQ/X6LqJChe6YmeXjypUGBAU9559/Ihgzpi6TJvVlyZIpDBr0C3XrdgYgNTWF6Ohw+vb1zxLT9Ol/4+bmhb9/ZZWEh7rWD3Wfrb7bvHv3rnH2bFvS0pIAKFq0FxUrTsbV1V8qfXnvipWVHUOGXCYoCN6+hW++uUFg4FrOnx9LTEwwISEBWFikr04yM7Mgf/6m/P67N05OhShQQLodEFs+LC3tefv2GvnyWZIvXxmd1QdN33ljmguiCG3vkyJxoeoeQmIyf8jpfZK/Kg9W2xuU+SX4SgSJ0QqQ0NBQAPLmzSt1PG/evBI/HAAtWrTg3bt3REVFyfVKOmXKFDZu3MjWrVvp1auX0rQTExNJTEyU/I6KigLg/fv3rFixgq5d0zveJ0+ecPv2bUqUKKETsz9oLxKy0wqiCF2KkIwN1N27V/nmm8qYZ9zKG4iJicTb+/POvIIgEB8fh52dPZnR5P6UK1cff//KlCxZEwcHZxYsOMGVK4f4+edezJr1DRUqfMTR0ZXTp3cxZ063LNd36zaRWrVUX4GR3WPxuiY29hmnTlWS/HZx8adWraXY2GRdeqvoXRHfh6dPd3H0aFcEIRVPz7rcu7ceEJGcnN75uLlV4OnTnRQp0oXXr4/w4MHvFCvWjwcPNgKQkpK+MeHr18e4d289IpGIOXN06xPEhHLUcVinyt5DIMPD6ieydfWhrkVKTlClOsDol+Fm/lIUBCHLMWtra4Uu0d3d3Rk7dizTpk0jKSlJaZrz5s3D2dlZ8pc/f7qzrfr16/PNN98A0LFjR/z8/ChbtixNmjQhNTVV3aLJRZ/Wg+w0FetjHNnCwpJy5aqzbFn6jqdLluwEIDo6AkdHZ0m4e/euU6mSA9HR0kNy2nS8K1ZcZMiQJUC623Bn5/R3rlKlptjYpAudatVaS8LnyuUh+X+3bhM1T/gTurJ+6Ft8JCSEcuHC5+HOBg3uULfufT5+lO/3Q9a7kvH3w4e/4+JSlNatj9GmzQlCQgKwt09vpG1t8xIScoqyZcdQtuwYEhMjiIsLoUGDDQwZItCkyV+Ym9vg6OhLgQLNgPR2JDo6TKf1QdN3PTs/GFJSlLd/2YEih3Wy7ocm81IyzyOR95dtGMuEWSPCaAWIh0d64y22hIh5+/ZtFquIKowePZr4+HhWr16tNOzEiROJjIyU/L3+tNfI+vXrJUM4Fy5ckIT/77//8PX1JSIiQmG86ijyL0WEgG5EiLhRKlasLNu2nSco6PmnYaCGAOTPX5ibN89Lws+aNRRIFybi67Vt6DMP3924cQJ39/zMm3cIS8v0SZC2tvbs2JG+Q/DHj+nvbq1aHbCzU72hM8SqF12RlBTB+fONiYlJ38+mcOFRODmVknw0KHsO8joad/dKREY+wcLCDjMzc1JTE4iJeQVAqVJDsLXNy61bi9m9uwo2NrmpX/83ybUFCjTnzZvTREe/4P79XwFo2XIpjo7qtyM5mfPntzBwoDVXruwydFYkqCtEMl6jq48bg4gTkxABjFiAFCxYEA8PD44dOyY5lpSUREBAADVq1FBwpWwcHByYOnUqc+bMkQypyMPa2honJyepP0ifNPvvv/8C8Pr1a/r27Su5JigoiFq1ahEXF6d23uSh6TuqivVOl+/+69e3lfpE0UWDIW6QBEFg27ZVNGv2Dc7OrgA0atSBo0d3c/jwTubM+YGHD28B4OLiprfOOzw8jLx5faQscrGxURw/vgUbm/S5Cf37z2XECMWiV55reFUxFutHePgVLl5sRVzcC+zsfLG2zkuxYj/JzYc6ealQYQLu7pXYs6cmR450plSpdIFpY+OOs3Nhuna9S7t2p+nY8TK9er3A07MuqanJAFhZOeHiUowiRbpSqlQnQERqahLJyQmAbuuCMVtB7tw5AoCHh/bL1JWhzBlZZjQRIoqu0xWqWlE0FitfuVXEoHNAYmJiePLk87K458+fc/PmTXLlykWBAgUYOXIkc+fOxc/PDz8/P+bOnYudnR3du3fXKL3vvvuOJUuW8Oeff1K1alW1r3/y5AmtWrXi0qVLHDlyhLi4OMqVK8eNGzcIDAykYsWK/PTTTyxcKH8fEk3Q1+RUXcT7/v1Lfv99CJUrd6ZJkxFKw+vC6dH+/Vt49eoJ48Ytkhzz8vIFYPTob7C1tSM5OYl//31IRETWOSDqIu8evX37EQuLdAGUnJzEpk3T2L9/DUlJ8TRs2JOePaeSL19BleJShK46J312ck+fLuPOnZGS36mpCVSrdgBLS2f5F6H6JExzcyvatfuPwMB1nD07gtTU3AAkJkZy/HhP2rY9hZdX+iTkpKQotm4tgq2tO716vSIxMRx394rExATSu/dFwsLucPjwj3h4lKZo0fQhma9h/6++fdfSt+9aqSX02qDJcm0x8p65OnNEZF2Xmezs15WJEKUWcEO7oTcABhUgV69epX79+pLfYhfnffr0YdOmTfz444/Ex8czZMgQwsPDqVq1KkePHsXRUTO1aWlpyaxZszQWMLdv3+bJkydERkYybdo0RCIR06ZNA6BkyZKMHz+emTNn0qxZMxpWqaJRGvJQt4FUdTKqtu+8tbU9Xl4lKVasnlrXabNq4N279CEOH5/PO+O2b9+XEiUqYGtrj52dA3XqeHDp0h3q1NH8a0/ZPRGEVCwsbAgKgh07pnLkyBKaNh1N48Y/4OrqSWqq/tsSY2ir7t+fxsOHs8ibtyVhYQfJl689xYvPwslJtd2IlXUun8NY4+b2A3nyHOTFi3XkydMUO7uCvH9/Smpyq6WlA76+bQgO/o+//67J+/fpLvsLFaqPhYU1Q4ZcYf78/Fy58j+JANFVPsF4V8SoIjyya6hPmRiRNwFVFREjL56MGMLgIHMnYFl8RdYQkaCJW8evjKioKJydnYmMjJQMx/zwww+sW7eOyMhIbGxsJOFat27Nw4cPCbx4kdy5c8uMT5uxRX2a2w3Vmalb3xYvHsjNm8c4evRZltUwAMHBAq1bO9Cnz0w6dx6jdn5UvQ+zZlUnPDyITp1+ZsOGAbRqNZF27aSHHEJC7nPw4AK6dl2Eg4Ps90ERunI6pouORVZaYWHLeP16JHZ2viQnR2Jjk4+6dS9hYeGgfYJyEIQ0kpI+ACLevNmDh0drbGw8pDqkwMD1BAR8j61tXlJS4mjZchHFi7fF0TEvgiDw559dePXqHBMmBCstoxhVBQho3odk5+IHY5xXpKj88u6pPu5ZdmkApWJExY9tWX1UTsBol+EaO3Z2djg7O0vEB4CTkxN//fUX/v7+jJ40iU1r18r096CNUzJ1LCHqLsk1lBla3S/GV6/uU7VqfZniIyQkfeWUt7c/f/wxk8qVm+HrW1KtvKjKixdXSU1NYf36nlSp0oXmzcdlCZOUFMfZs5vo1Gme6hGrSHY/q8zPKCbmMVevjgQgLu4F+fP3onTppXoVH+mIePv2CE+fLici4gogwt9/Gp6e03n4cAvnz48mOTkOF5eidOt2H0FIo0CBz03dkyfHuXt3J7lzF9FbDo3ZOZkxCg8xiiwcyoZnZF2jKZrULU2et8pWkS8UkwVEBTKry/j4eOzs7Ojfvz+//fZblvD9+/dn48aN7PrjDzq2bSs3XmO0hGjaqX348Apzc0ucnPJq7OxN1Qo8cmRtrK1tqVSpCnXqtKB8+fRJyRnLefbsHqZPT3cUd+RIikyxoghV7sONG/t5/Pgsfn41KVu2lVS5M5bl1as0je+JMTseu3dvMo8ezcXc3IHq1Q/g5qa6IzhteP58LbduDcbVtQpFivxIePhFnjxZRPfuD9m7twHW1rmwtLSjTJlR+Pmlb1KX8XnExr7nzz+78OzZSYYPv0W+fGWk4teVsNOFANFVh2pI0aGtGJN3D1SN01hcaqiS3yxC5Au3gBjtKhhjpnHjxgBUq1ZN5vnffvuNIoUKceLUKYXxaKN61anQ2VEBT5xYxciRnuzdO5PBg10IDg5UflEmVG34ixQpz7Vrx1i3bg59+tTnxo1XWRrYWrXaM3Ro+sZjDx9eVjsvqtzf8uVb88038ylfvg1mZmZyJ7QXKGCmF5O8unHq8j1IS0vByirdD0r+/D30Lj5SUxN5//4M9+9P59Gjn3F1rUrdupfw8uqIt3f6nK5t2/yJjQ2hUaM/6NjxokzxAWBv70bPnn9jZWXPrVtb9ZpvbVFnJYmiaw2FuE5rs1pF0XJcVa/X5j7qClXuQbb7JjEwpiEYDRBveCd2UJYZkUhEvdq12f7330ybMAEPBX5LjG04RtNhmHbtpmNnl4szZ34jPj6SsLAneHmpPvQhRpOvpREjajB16g5KlpRent269WDWr/+RBw8uU6JEdbXzomyCrrr5zBjeUPNtdOUp986dETx/vho/v4n4+PTXPkIFfPx4iYsXW5OU9A5LS1ccHIpSsuQCyfmXL9N9e+TOXYZKlabh5lZWaZw2Ns64uRUlLu6j3vKtj2EYWc/OGLcUkfd+q+rdNDPy5t9ouqpOnfuk6w84VfL8eWjmy8ZkAdGA6dOnA0it4MnMvOnTsbS0ZPCoUUrj+xIsIVZWttSs2YuwsMe4uxekbNmWGselfPVJ+qhhkSLlGTjwZ2xs7Jk4sRnh4W+lwt25c4bk5ESuXTsmKxqVyXiPdbVsP6cv/Q8JSfdEW7jwDzg46G8uRXJyNBcvtsbBoQhFi07Cw6MN5cqtx8bGk9TUeAICqvHy5QZKlPieDh3OU7hwR5XjTkiIIi7uA5lHoY3tuaSmJvP69SW55w39ZZ8ZVcW1JlaR7HJOljlNVf/UQd8+THICJguIBoh9iLx58wZfX1+ZYdxy52by2LGMGD+eJ0+fUqRwYYVxZpclRJ/xubp6snx5GCKRGebm2r1air4emzbtS1xcFAMGzMPNzZOnT29y7NjvjBvXkDVrrkm8kq5Yke6s6tKlf7XKC+ivU1LFKqLr/X10EV/NmieJirqNjY2H8sBaEB19j6Skd3h4jOLevUkAvH69GQAvr66Eh1/C1bU49+6t4/XrI7Rt+x9OTr4qxV2z5ij27x/Gq1fn8fGpqZf868LvzapVFQkNvcPUqeHY2rroJF/6QNM2SN17pIlPEFXiTk1N0brdklevFH386eIdyamYLCAaIBYdr169UhhuYJ8+ODg4sGmrauPM2TETWt/zQZyc8vD8+VUWL25OdPR7reKS16AVLVqR8eM34+aWXhgXlzwAvHhxl9WrR/LgwRUAfHw+DwG9f28kn4cKyE6riKendn/FipUgXz43IiM3ZrEg6JLw8MuIROYEBf2Ji0tFChToh7jZCg7+C4DOna/TvftDRCIzjhzpKJWfjPczJSWJe/f2kpgYA0DFin0BiI4Oy5Kurp9DZm+3qn6xJyXFEhp6BwBra+OcXKirL3l1rRjqTq6Xd98fP77OqFF1uHBhP3funFUv0yqijTfYLxmTANEA8V40YWFZG66M2Nra0qdbN1asX69y3JqKEF0PxWjTAB8+vIg7dw6ze/cUrTsnVSrkwIHzWLPmOtWrt2b//jXMm9eDtLQ0Ro5cJwkzZkxdvXaUmcnYWesqPlkY6qspKuo5+/c35r//+uPg8FyhWNGU5OQonjxZiCCkEhV1h5IlF2FubgukUbXqfsqV+x8VK27FwsIGZ2c/vLwa8PFjIIIge2PIP/5ozZYt7Th79heADPM/DLsQUFHnaGlpR4kS7WjSZI7GK6n0ib46TFU7Y22GnsRpvH4dx9OndwgOjsHGpqxCsaitSFBHiHwNYsT43ugcgIuLC5aWlooFyKe3p7i/v9r7wxiLCNGUokXTV0ScOrWOoKC7WsenrCKam1vg51eeWbP20aBBd4KDHxMYeA5n59wsXHgCgODgJ/zyy3fExkYRFvaS8HDF4lET5HW66t5rYzfFBgau5/nzvQDky1cbR8cCCsNr+q5FRt4iPj59I0hn53K4udWlTJkVtGwZRb58rfD1HUjVqukrYJ4/38v9+79Srdo8zMyymtEfPjzE48dHATh/fjkxMe/Yt28otra5KFSonmYZ1CPiDig4WETPnnuoV2+SobMkRXZ1kKp2xtrMgylatBarVn2kZs1e2NqqNgyurTCRldfHj+9y6NAOoqIiVI8oh2MSIBogEonIkycPb968URwwKIiQN2/I5eqqdhrZIUL0RcWKn32fREaGKgipOqpW7t690z2RXrt2DEEQKF++AcePC4wZ8ysnT26lbVtnevTwpXNnD9asGa21VUTVL31dWkMMSUjIGQICvufcufTJ1WFhFxGJlDcjmpTd1bUS9vb+ABQtmr71gUhkhqVl1k7i7dvL2NrmpWzZrJO+ExOj2bWrD+7uxQGIj//A3Ll5ePBgPx07bsDOTraHWmOoS2B8X8OGyou6VhF1JojKchipTR5VFSYZ8zZ5cj/GjOnC+vVzdZKXnIBJgGhI5cqVOXr0qMIwgiCwd+9eGtWrp1Ea+hYhyjoFTRvg/PnL0LbtT/j4VKBo0dqaRSIDVRqggIBd2NjYsWXLLPbtWyM53rz5ADZseMDw4auYPXs/AwbMY/fuJRw79rva+dBmeEHV62Tde0MLGEEQuHBhvOS3ra07aWnJnD07ithYJWJcAx4/Xkhs7EMAbt7sT3KydH3IeD/y5KlMfHwYUVHPs8QTEnKD2Nh31Ks3mR9/fImfXxMASpXqTIkS8h0FGhvGYJo3BiGk6T0wpD8QVYRIu3bjKFeuOvXqtc6+jBkY0yoYDenatStdu3YlKCgIbxm9RVpaGrPXruXu48csn6S5+VSb1TGqoOsVFmLat59Ou3Y/6ezLIiOKVsi8eHGHhIQ4ihatxOrVI/D3r0yxYpUByJu3AG3bDgGgWrVWvHp1n5UrfyB3bi8qVmykME1dd/76uu/65PLlaYSFXaBgwfZYWtpTu/ZKbt5cxJ07K3j8eBvduz/Cxka+tU/dMiclfZ7EnJwcQWpqrEzrB4CLS/qmg1FRz3BySt+BWPyOeHtXJn/+auzd+z2jRz8iT56SPH58FG/vykrzYKy75GrqT0NXaRoDurgH2tZBddsFRSte6tX7hnr1vtEuQzkMkwVEQxo3boylpSU7d+6UOp6UlMTBgwdpNGAAP61cyfShQ6lftapWny6aWEJ0NR9Em8ZNH+JDjLxbWadOZwAePbqKi0teNm6czOvXgsyvx6FDl1O8eDUmTGjCvHk9uXUrIEt8+hw6URa3qlYQfXZA4pU5r1+v5Nq12TRrtoBvv/2bvn3/oHBhZ6pWnUWLFvtISHhPaOh5pfGpspOs+BmVKPEz3t498fLqSsOG96SW/GaOx8XFHyenwpw7N5rIyCdS5ywtbenb9xCpqcncvr1dYgHJlauQ8huQA9C3VcTQVhdV0NUkUXXR1KKiztDMl4xpLxgVkOdnv1evXvzzzz/MmjWLYsWKcebMGdatW8eHDx8oWaQISyZMoHENae+c2vQWmlpCdLGszZANkLq37MCBdVhaWuPs7MaUKa2ZP/8oFSs2lhk2NTWVXbsWc/jwBsLCXvK//93By6sIYDw7k8q697re30fRPY6IeMXChb5Ur/4DLVsukRKWQUFw797/OHXqO6pUmUlsbAi1ai3H3NxSbnyy8h4T84jLl78hOvo+Hh7jcHcfTKFCXgrznPn5vH9/m0OH2hAbG0KJEt/StOlo4uPDOXhwNM2aLWDv3kEUKFCDtm1XExx8nXz5yqm0ssTYO19Z6EqU5sSyy8IQ83l0sdqwYUPV0sqpe8GYBIgKyHu4MTExfP/99+zYsYOUlBQcHR3p378//fv3p7SFhWwLgJY1QdvhGFUncWkbhyKePr3Eli3DKV26GR06zJQc13UjIQgCffr4UaVKC4YNW64wbHx8LN9+W4rcub3YtOkQ9vbZ7wRZk/ueHV9Jhw9P4Ny5JUyaFIqtratUXtLSUlm7Vnok18mpMNWqzaVQoY6YmUlvAigvv4GBE3n8+GfJb0/P2VSpMllhvmQ18MnJcdy+vYybNxeRmBiOpaUtyclxVKs2lOvXN1Or1hgaNZquuMAZyO4OWB87u2pSr74U4QHZLz506ebAJEBMKH240dHRfPjwAW9vbywsPjXG9+/LjkwHtUEXc0J0IURUjSczERFvGDnSk4IFS9GkSV9q1myHp6diT7GaMm5cIxwdXZk2bafSsHfunGXq1JZ4efmydOlufHyK6CVPijAmEfLkyXEiIl7x998DaNx4NvXrT5aZh5s3fyEh4QP37/9KfPxnd/je3o1o3nwPlpYOSvOalBRBYOBukpPfIBKZkyfPcHx8HGQHzoC8xj45OY4nT/7i7durBAamT0Z2dMzHDz/cxt7eTWm8huiANfGiqQ7Kmp4vSXSIyYniI2McxYurlq5JgHzBaPRw9ShAxBiTEFE1Lm/v9CWy48c3wcXFnYSEWFJTUxg16n80adJbtYRU5P79S8yZ0w1f31LMnr1PYVhxpX/8OJBhw9rw5s1rfvllO40atVd4nSqPU9MZ+5rGqQtBcunSOvbuHQSAl1dFhgy5gkgkUphuZOQzwsIu4uvbimfP/uHkyT7Y2LhRvPhAbGxy4eb2A+bm1pLwgpCKSGSusDzqNNbyOHduDCEhh+jQ4Vd8fGooDW9Iq4c8dD0caAwbI+qb7BQfurJ6ZI7HJEBMGK0AAd2IEFDN0Y+mcWUu8smTfzJ3bnf++isIBwdXVq4czuHDGyhVqhZ+fhVwdMzFs2e3MTe3oESJ6sTFReHpWZgGDbqrNbF10aIBHD68AWdnN3bvfic3XOZKHxsbw+TJfTlz5jD79t3Fy8tXJ49N10JE3fjUeYYrVpTj3buHdOq0maJFm2Jj46x2elFRz7l2bS4vXuwjPv4t5cv/ho9PfxISwrhxoz9hYQepXfscuXPX0FiAgOqds77EojaoKxYNvRQ7p5DTxIe8OL50AWJahpvD0dUyXWVbz4sriCoNprLK5u2dvmTy8uVDtGgxkDFjfqVChUacPr2La9eOEhn5Hl/fUiQlJXDu3B4cHFyIiHjHs2e3GTjwZ5VFSP36XQkNfcHNmycJD3+Lq2semWXKjL29A3PmbKRFC3+WLZvCtm1bVEpPGZos6VR035U9M3lxickcZ3JyPIGBeyhQoDr+/q148+YWZmYW2Ng4q5XnkJDTxMe/J1euknh7NyAh4T3Pn/+DpaULaWnJHD9ehJSUGADi4p6RO7dyq4QuULR8W3w+u9DUSqVsIzYT2bufkjJ0KaC/REwWEBUwZgtIZrLDIqILE//cuT24des//vjjGVZWNnLDCYKASCRi164lrF07mgYNujNx4haVRcj79yF06+bN2LEbaNq0r+S4KpX+6NF1jBo1mHPnblKqVBmV0lMFbfeS0GW84vhevbrAX391JSIifYNFCwtrnJy8GTr0SpaJp4rjO8M//9SROubsXJ6CBYfi49MfELh2rReCkIKf30ScncsSHKz4Weq6EZcVX3aJD13vamxCmpwkPlSJ40u3gJgEiArkJAGSEX3PEdGmMQ0KeszAgSVp2fJ7hg1brpKgOHr0dxYs6MOCBcepUEHF6eHA2LENEIlEkn1hVG08kpOTKVbMm969B/DTT7p3j6wvIaJqGh8+vCY8PIiAgL85f34Z3t5VKFiwHnFxH3Bz86NChT5SbspVye/du2s4fXoI1avPJ0+eyiQmFpfy36FuHkF3nn1lxZkTrB7KMAmRdDRpWvV17xTlRR3x4qhiE55TBYhpCOYLJqMDM03FiKKGWhtvnt7efgwdupxlywZjYWHJzJmLJSJEXpyNGvVk167FzJ/fi4ULT1KgQDGV0qpYsQl//jlP7a8WS0tLihcvyfPnz1RKR1208bKp6r2X1xBevfqISZNKkJaWiq2tE3XrTqJevUlYWFhplqFPlCjxHW/enOXChfEULjya0qXrKwyvSwEQEqJ6hyJONzr6FX//XYNatZZRuHBH3WUmU770iT6W7uY0vkTx8TVg8oSa3Rhoyrkj0ZI/TRB7xMyMNp5CW7cexJQpK9m9ewmzZw8jJSVFEqcszMzMmD//KFZWtqxaNULldKysbEhNTZLELw9Z5bOxsSUhIV7ltNTF2xtevHhEUlKi2tdqc+/j4m6TlpbK6NEHWbr0Db17T9dYfISHP+T3333Zu7ch58+PJTLyMQAhIbs1y1wm1N1lVB1CQ88TGxvMkSOdtN6YUBf50UV6X4sXTTHGIj7ktZHi9FTZe+trEh9gEiBfJRnFiLqCRFEFUwdxhezefSgzZ/6P7dvX8t13zSRbUcuLz9U1L0WLVuLp05u8fHlPpbQaNqxDYmICf/65Wm4YeeV6+zaUvHk9tBJv8hAEgfHjR9KihT9//DFD43gybo6nSkP3/n0wa9aMonjxarRo0RxraztJPPKQJwISEyPZu7c+MTEvCQ4+ycOHf2BtXZySJRdSq9YJhfnQlxZXp/N1cMgv+b8utw4wBhHwNYgRYxIfmqb3NQoPMSYBYkJtQaLIGqIMWR1kp04D+e2349y7d50RIzpIWUJkxdm+/Q+YmZkxYEBJpZYQT08oUaICACtWTFW5LJC+oeDLF88o7J1XckyXQiQw8A5r1iwDYOnSBdjYyF8qrC7yBMnHj6GMH5++F8pPP+0CpMuvbuOclBRBXFyY5HepUsuoWHEzfn5jsbfXj3M5XXLmzDAAypYdo7M4jbHDN9QusPrkSxEfXzMmAWIiC6oKEnWGZJR9mVetWp8VK/Zw9eppmjUrwoQJvXn27IHk2oyUKlWTrVtf0rfvTPbsWc7SpYN58ybrNuwZr+vdeyQxMVEcP/6PwvxnJOjhVcIjIqhaqVKWc7oQIv7+n6e4p6amEh7+USKIdP1V5OkJTk5RTJhQn/j4CDZtOo6bm+y9VlRppAVBICjoBBERjyT7vhQpMpb8+XvoLtNakLmTvXZtLg8ebMoSzs2tPACJieE6STOndO45XYyoWzf0tamkpkMuX7PVIyOmSagmFKKrZb2qULlyXf744wwHD/7FqVP76dmzFjt3XsPLyyfLpEtLSyt69JiCjY0D27bN4eDB9XzzzY/07TsTCwvLLJV/9Oj5hIUFM2pUJwICrlKmTDm5+RALC2cnJ8zMzHjw6BGN6iueTKkJlpaWzJ69kClTxtGlS0/8/PyzhNGV+2xBEJgxYxBhYcHs3HkVX9+iUvcz84RYZZNcQ0JOsW9fo0xppKmWmQxpitHGEZk8Mk5KvXQp3Y28h0dNXFz8JGEaNNhAoULtsbXNKysKtdLKqRi7bxFt3oHsnmiqrcUj60dN9u9JlZ2YluGqQE5dhqstysSHvE5DVmOsbkMQEfGRjh3L4+HhzebNAZ/32JERf0JCHLt3L+H336dTsmRF5szZSOHCWRfQJycn0717RRISEjhx4iK5cuWSOi/LouFfoQJNGzZk+cKFMvOp6B7FxMTg4KB8PxOxrxN9ERQEGzcuZuHCsSxe/BfNm3eRnMt8LzM+U0XnBEHg9u3lnDs3Ent7b2Jjg+jS5S6JiSX1UALt8PRMd8d+69Yv1Kq1nDJlhuss7pwsPDJiTOJDF02kpuXRNG1l1g5lyLWmqrgON6cuwzUNwZjIgnjwRRHqiA9NcHHJxaJFf3Lr1kU2blwkdS5zZbexsaNHj8ls2XKWiIgPtG9flv37t2aJs2BBS7Zu3UNoaAgLF86WHFc0nGJlZaVwdUTm6x49ekBaWhqrVy/D09ORR48eKCuq3sRHcnIyly6dZ+3acSxZMoERI8bx7bddpMy/ihpORedEIhFly47A1jYP8fHpc0Bsbd2NqiMTExICNWospF27AIoX76/TeBWRmppIVNRdnaX3JaOLYUdVJ2FnTk+btBWlpyxObVcmfgmYBIgJCaoID9Dt6oWPH9+xYcMi3r7N2pqXL1+DPn1Gs2rVdPbt+0NKCGSu9J6eULZsVfbuvUOLFl2ZPLkvN26cB6Qbgnz5PElNTeWff3ZpVPlTU1Plnnv16iWVKhWnUqXitGrVjpIlS2fZjl4RgiDQpk0jJk4crVaexDx9+oR//tnFrFlTadeuKfnzu9C4cU22bt3E0KGjmDp1tlR4WSJEUYMp61zDhn+QlpYMgLW1a5b4jIU3b8zw9KyDpaW91nGpOnciKuoWISG7SUrSfn7Jl4au5jppKjq0RRfCQy5BQZ//vnBMc0CyEyMeftHFXA/FcwZkV9hp077l5Mm9/PHHUqZOXU2DBm2kzv/wwyzevg1hwoTe2Nk50qhRO8k5WfFZW9swa9ZvPH/+kJkzh3Du3GXgs38LW1tbCvr4cP/hQ27cukX5smUVlqmQry/7Dh3i2759cXF2xqdkSRbNmcOY4VnN+C4u6R1wvnyeFCjgw4ULtxXGnRmRSMSLF88wN1e9WqakpDB4cD+Cgl5x7txpAPLkyUvZshWYOHE6tWrVo2zZ8lJDWNqQea5IgQJNKFCgOa9eHeLUqW9p2HAToJ2TOl0TGXmHBw+mUb36eDw8qmkcj7rlcXDwRySywsrKVeM0vxR01fRpIm6zK21lokMpX4HgyIzJAvKVo6rVQ4yu60j58ukbkYWFBTNsWFuWLp1MWtrnyYzW1jYsXLgVHx8/rlw5pVKclpaWTJu2mqdPAxk6dICU1cKRaE7s30/pkiWpULs2HXr0IC4uTnZEQUEsGzUKZ1tbKtety4XLl6lUvjyuLi5SwcSNi5OTE0+ehLJ37zHVb0AmTpy4yI4d+1UO//LlC7Zv38K5c6dZs2Yjz5+/48mTUHbvPsiIEeOoWLEyrhbxWVY2ifOszAoiq9HN3NA2a/Y3hQp15OnTXURHv1R4rSGIjr7Hmzf/EBQUqva1ISFw8+Zxtm2rzIsXv6rlrMzS0hkXl3Iqhc340fsl9UO6tHCo+z5pO6yiStrKrComa4diTJNQVUAnk1CNzPqhicVD231hZFViQRAICPiXHTvWcerUAQDmzdtM27a9pcINHdqGsLBgVq7ci4eH8nvp7Q27d29nwIDujB49gWnT5vDoxmmcnZwoUrgwCQkJ/LlrF8PGjqV8mTLs/P138nl4yCxkQmIitXv1IjU1lasXLmBmllW3Z+dqoYwsXjyPGTMmAZAWGan2fBJxvsXFzvgcZR3LSMZblZgYwY4d5bGwsKNz56tYWNgqvDY7EQSBDx/OkDt3bUQikdKOLGOeIyKuERBQFUFIF7GNGz/D3r6gxnlRp58xti3l1UUfEzp1naa+JqsqtXgoexHEL2FD1fa8Mk1CNZEjUNfiIUZfAl0kElGvXitWr97P4sXbqVy5Lr6+6ctRd+78HyVKiJgxYzCdO3/Ho0e3adAgP0OHtuH1a/n7s4gbh44duzB58kx++eVnWjStQaW6dfErX55Fy5cTGRVF/dq12fvnnzx7+pSSlSoxb9o0YmJjs8RnY23NkvHjuXH/Prs3bJCZpqEmkt2+fgGA7/v102gya2ZLiCwUff2JsbZ2wc+vG+Hh9/jw4fPES3lfk8r+dIlIJMLNrY7CvYYy+8VISorgxo2B3Lw5CCur3BQqNBwLCydsbfNnvVgB2lg2suvDOKeLD3Xndmjznqli7VDJ4iGPnOycRQNMFhAV0NoCYgTWD22+0FUV68pQt8I/fnyXtm1LA3DvnsC7d284f/4Yy5ZNITz8Hd9/P4UBA37E0jLdEZas22yXGsHYyZNZujrdDXut6tU5+8mKkZaWRsu6ddkwezYz16xh/Y4d5HVz49SmTRQuUCBLXI369yciOpor58/L7Ox1aQURBIGtWzfxv/+tpmPHLvzww1ip8+JGrufAgezet4+YN28wN1cy4TXzg/x0w7SxgojDBAauIyBgEIULd6Jx47/UmnyrK3TVbqekxHD6dHWiou5ia+tLfPwLAIoWnUiJEqrviqxL8aDPJkTXAiQ7PJRml6VDlbS0tnaA/Jf3C7eAmCahfuFo2ykacmjSz68UV65ESVbIuLvno23b3jRq1IE1a2ayatVPREZ+ZPz4xTIbCUeiwdycJT//TOf27Rk5fjxrJ0yg3+TJXLmb/pX+OjSUPLlzs3LKFMb260fTb7+lYufO9O/QgYnffot7Bl8h4wcOpMnAgZzYuZNG33yj17IfPLiPIUPSl4zeuXOT+Ph46tSpT0JCAnXK+8OneSjXbt6kxzffKBYf8h5iUBB4e+NINNE4SiaYyppAqmhSqbc3fPxYG4C0tFTAMN804k5GnM+0tBSiou7i4OCHhYXqq1/u3h0rWT5bvPgszMzMsbLKjbt7IyVXpqOPOvPpURk9+hIG2W1RUQWdDbN8xZgsICqQ0ywguvoS10a4y0KTxiAuLpbz549Rt25LiaVDzG+/LeSXX8Zz7dpDihTxkzons3H4VKCTFy/SsH96514of3483d3xcHOjdf361KlUiXXbt7P6r79IS0vjxwEDmPTddySnpPDN6NHs/+8/Ojdtyo6dO2XmVxf3/tWrlzRuXIOCBQuzZ88RZsyYxIYNa0lISAAgl6sr40aMIPD+fbZs386mNWvo0yOTC3RVJuyIH4gSS4gqVhCAs2f3c+hQe7y86tGw4e/Y2xtuFmpwsMCVK98QErILe/siNGhwB3NzG6XXpaYmcPBgLgoVGsGbN3/j4FCc8uX/x+vXW0lKekfRopOxsLCTe72+Bbs+mhJdWED0YfX4IkUHKK9IGePo00d5fORcC4hJgKiAVgIkG8VHdgoPUF/Aq9sw/PbbAhYvHg+k7xWzfv0RqeGWhIQESpQoQNeuvZg7d7HkOkXiQ8zTV684ffUqc9at4+nr15Lj4/r3Z8HYsXyIiGDe+vX8snkzzg4ORER/jjNv7tyEnjkj89nq4hl0796e27dvcPz4BTw88gEQFxfHh1eBxMbG8r/Nm9m0dSvJyen+NxbMmsW4ESM0++Ly9FRZgMiLIiMXL57k+PGepKYmUrPmYvz9+6g0N0UQBN6+vYy5uS1ubmWUhldETEwQR492JTT0HE5OpYiKukutWqdxc6ut9NoPH85z5kxNatU6xcuXG3n9ejMWFk6kpEQBUKPGEfLkaZLluuy2FOp6nyBt0LXVI7s2mdOZ6ADthYe8679wAWKahJrDybiwUhcY02owR0cXAJycXLh69TRr1owlb95kScNhY2NDq1btOHhwn2R5pCriA6BwgQL069CB67t3U8b/8x4sl27fZtW2bSQmJbFw3Di6t2xJVIaJqa5OTvj5+tJj3DiOnlC83bwmpKSkcODAP7x69VIiPhyJJq9dKiWKFaNyxYqsX76cqOBgzh49CkBaeLhi17TKJrZ9ulbe0lxVd8tNTk6gatX6dO16hwIFmnLyZD8uXpyg0tLVs2dHsHt3NXbsKMvGjXm5dWspqanJpKYmKr02IzExwRw92oW3b6/QqNEW0tIi8fBoQ+7cNVS6/vnzNdjaFsDWtgBv3x4BIFeu6jRq9PBTGSOzXGOIOqOrNI1JfGiybFafy3NVclSoykxhRfXvK16CC6Y5IPojGywful76qU49yI7hy2+++Y7nzx+wefMSBg4cwtq1ywkJCWLLlt2SMM2bt2HTpv/x6NEDqd1lVcXJwYFFY8fS5NtvATh99Sqnr15l2OzZjOnUia0HDrD5xx+Jiotj+MqVhEdFcfbaNQAOBAQQqeMbcezYYQCGDRutsPGzef+emt7eCPfuyQ6gxweUea6FmPnzvYmL+8BPP0XTr982/v23CufOjSIq6jlNm+7IEk9o6EWiop7i7FyUO3dW0qTJHHLnLsqdO9s5d24U586NwszMgty5y2BtnQsHB2/8/Hrg6lqc9+9vYm3tjLOzH7a2eRCJRLx5c56AgO+Jj39HkybbCQk5RWxsCFWqHEIkUm1SrCAkEx//iv/+K09KSrrY8PBozZMnSwCwsnKXhM1pVg9DTzbVdfo53uphwiRATKSjbmOqiadLTXbd/P77Keze/Rt//bWFatUacuzYIanN2+rVa4ijoyO7dv3F5Mkz1MvQp0zV8vTE3cWFdxERUqcW79qFh6srVx4+5NazZ/h6efEiOFhyvkzRouqnp4THdy+Ty9WV5XN+kh1AV42eeFaj2EWtkgmpmT2ggvQ78PHjM+LiPgCwcGFBPD3LY2aW3rwkJDzL0vBHR4eyenV1AMzNLfHyqkjNmqOxtLShZMn2BATsIjU1npSUON69u05SUjRhYZd58GBTlqJYW7tga+tBRMQDcuUqSZs2x7l7dzWBgWsoU2YFTk6qbZAXHn6ZqKhAAIn4KFx4NHfvjsHMzIoSJebi5lZHcvv0jTHuAgv6+bYypgm22SY+vmLLh5gvToCsXr2ahQsX8ubNG0qWLMnSpUupXTt97Dc0NJR+/fpx69Yt2rVrx8qVK2U6lcoJGMrxlS6Q55ZdFi4uuTh8+AndulXj4sUTFClSkuBgkaTBsrW1pW3bTuzerYYAydQw2Fpbc2PtWuqPGcPjDAIDIDQ8nN1nzhCflMT4Ll048/gx7Rs14taDB/Rt31619FTEkWhiYmNxdnbOOm9Cl8JDh3h6QkpKEgsXNsTRMR+NGs0kIuIlYWF3EYQ06tWbTLVqQ7Nct3VrB2xtc+Hn15TIyNd06rQJS8v0SaJmZubUq/cNwcHS90AQBF682M/bt5cpVqwvqamJREQ8Ijz8ATExr6ladRaFCnXg+fO9BAauoVy5dfj6fqdyWZKTY4iLey75XbjwaFxcKpKWloiHR2vy5WuPSGSm134ju+Y/aIohnIvpKj6tdqXNiMnyoTO+KAGyfft2Ro4cyerVq6lZsybr1q2jefPm3Lt3jwIFCjBlyhQqV67Mzz//zMSJE/nzzz/pkXn1QA7AkEMvukIda0iuXO707TuGRYvG0axZ+vJXcZ69vaFRo2Zs2bKRkJBg/D01m4Dl5ebGw02bCP34kcNXrtB/0ecdeAvkzcvxBQtwsLVlgp5ae3HD5+riwoePH9MP6nI2sCpxaWAFATh7djMRES+ZPfsOIpFya8ONG3/w6tUFqlQZxIMH+4iKCmHp0hJ4e1chMTGS8PAXJCXFkjt3WSwt7YmJeU1ycgyCkIogpJGWlsLdu2uoWXMxfn49KFiwHVFRz3n//jonT87kyZOF5MvXDh+fb5WXOQPu7vXx9R3I06fLKFNmBaGhB3j37gRmZlaEhOzizZu9NGsWDLgrjUtdDD2ckRljskhkFzpzJmiAD4Gcyhe1CqZq1apUqFCBNWvWSI4VL16cdu3aMW/ePDp16kTnzp3p3Lkzw4cPp2TJkgwZMkRpvBrNMI7Wj2dMYxIfuhL5qjamGYdexHh7Q3h4OKVK+VC2bAUWzZhGlUqVpMNlLqScjAe9e0f+bt2kji387jtmbtlC3TJl2DdrFiIvL4JCQ/lt9276d+hA/sqVpcJr+nzEjd/BI0do2bkzUwYNYtYPPyi+SBcNnZwZp6o4JxMzeXIp8uUrxrBhu5RmLTk5gQULfHB39ycsLJA8eUrQoMFU3r69z+vXF7G1dcXVtSCWlnYEB18hOjoFR8cCWFk5IRKZIxKZIRKZExp6gadP0+eViERmCEL6/kEWFg7kz9+LkiUXKVwuq4jz55vz9m36XBx394bExDwhPv7zHjflyr3HwiK3RnFnxNCiI7tEhjGsetHamZgYXfj2UKfR/cJXwXwxFpCkpCSuXbvGhAkTpI43adKE8+fTt2WfMGECLVu2pGfPnlSuXJn58+fLjCsxMZHExM+z76OiovSXcTXIycMuilB1SEYsKhIS4tm37w9atOgKOOHq6spff+1j6NABVGvYkGaNGrH3r7+wsrLKGomCBiL4/XvJ/1f/8APftWyJubk5NlZWDF+5kisPH1JFJCIiJobpq1YxfdUqUiMitB7GkzR+QUE0L1GCeaNGMXHJEooVLEiP1q1Vzr8UevzCEjfmQUGQmBhHcHAgzZpJe2qVN1E1MTGK2Ni3xMd/xMbGhV69/sHOLjd+fk2AETLTk1WUMmV+IDj4O6KjX5GWlkRSUgGcnStgbZ1HI5f0YgICqpGWliT5Xbr0UpycShEd/ZCrV8cSF3eT1NQowIKoqKPkytVZElYQBNLSYoiLu0VS0nOsrYtgb18ZkUi6mVXHZbg6GKPVQh+WGl3HqTPxYUJtvhgB8v79e1JTU8mbN6/U8bx58xIamr4LZqVKlQgODub9+/d4eHjIjWvevHnMmKHBhEY9og/xYUz1SZ0hmWfP7jN9+vesXTubkydf4e0NtWvX48aNRxw48A99+3Zh7W+/8cPgwWrloWrx4gjHj0sd23z0KKPWrMHFwQEXBwcAnmeYJ3Lg8GFaNWumsQjJ3PiJRCJ6tGrFxCVLPk94VcfUpO1DVcM7qrd3+m68AHnyFJYZXebnuXfvOiDdS2mFCn2ws9PMkiASmeHt/dlNtS6scSkpMSQlfSQ5OUJyLDExXZRGRvrj5/d5l+KrV9NFTmrqetzdv0UQBB49akR09EmpOK2sClCkyD8ULVpe5Xyo08Eao+gQYyy7ISu6RzoVH6ahF7XJmTMwFZD56yez2d7CwkKh+ACYOHEikZGRkr/XGRxVmdAvqtRhf/+yAISGvubFi8eS4+bm5rRt25GeXbrw85IlfPjwQesK33fBAlJSU0lNTcXZ3p6ImBjGLlwoOd+2a1dm/vyzzGuVJS3V+GUIfOzTXjOD69VTz+JhgPG09+/TrytWLJ/a15YpU1XuZnSCIPDw4SHCwgKzpZONirrHgQOOxMe/JjX1s9+X4ODtMm9r6dJPsbDIQ2pqBACpqZFZxAdAUtIrXr7sLHUsPPwqd++O4/r1ATx58gvR0ek+RlT1aaHu5mvZjTq+OQw5DGXU4uMr2ZTuixEgbm5umJubS6wdYt6+fZvFKqIMa2trnJycpP4MyZdu/ciMsnp3+/Ylyf9z586T5fyMSZNITk6mXsuWROho+Kyyry921tb8smsXj168AGBU7950b9mSjm3bqh2fTPHxqdERPi0HvvLwoeJINN1mNXMcSsg8TSQj+fP7IxKJuHv3rEqdYr58n52+hYfLT/vatQ1s3tyCZctKkZgYIzkuCAIfPwYSGLiO+/c3kpwcpzT/qhAZeROAtLQEUlPjMDdPnz/y4sVaEhNfZglvbV2IcuXC8PAYB4CFhQulSz/HwkL6fXR0LEHhwiMBSE2N5/r1/gQEVOb16y1ERd3h3r3JnDhRjOvXWxIZ+VRu/jKLjvQ9d4wLfexkrC1aizTTihe98sUMwVhZWVGxYkWOHTtG+wzLI48dO0ZbDToIY+FrEx9iFM0LcXV1J3/+QrRu3QtHR+cs530KFOD04cPUbNyYrmPH8u+aNcp3ipVDvWLFeBQaysHRo7G2s6NDrVrM2rIFgOE9e1JQ209RGQ+jS716DFy8mGYTJ3J7/XpKFyokN6xGKBvvyjQMk5HMczvc3Lxwc/Pm7t1zNG3aF5CeI5KRtLRUTp78PEH83LnfadRoOObmWZshHx8PSpXqjI9PTd6+DeTBg3+Jikrj6dPdREQ8+BRKxMOHm6hSJUDVksvFza2u1O90EeJEamoUgYHFKVcuEjMzSzlXp2Nt7Yun50zCwpZSsGAPPD07YG9fkLdvj3LnzmjCwg4RF/eCsmVX4+PzLWZmFuTJk8DTp7u4fHkKf/5ZjPz5m2JrmwcQqFy5A8WLt86SzvnzKzhwIH2Ccv78VenYcSrlyrXUuOy66D/16RRMH2T7cltj8/JoJHwxFhCA0aNH8+uvv7Jhwwbu37/PqFGjePXqFYMGDTJ01jRCl+JDFx/L2Y08K6Svrx9HjjylZ88fWLJkEuPHj5SaNAxQ3N+fHZs3c+TsWbYeOKB+4p9u1oz27XkXHU3pKVNYvXkz3u7uHJs/n8jLl9PFhwZknHQqIUNBHWxt6d6gAQAtJ0xg2vLlpLzM+hWuMhndsStq3NRo+Dw94e3bC3z7bWnevXuNm5tXljCZtdn+/XN58OAUAMWLN+D169usXt2Fd++eS1136tT/WLq0DW/fBvL/9s46uoqjjcNP3D0kIUqAYAGCE9yluENxChT6oS1QSmkLpRRtqQItXgqUtlhx10CA4hI8DkSJu+z3x20u8dzIvbmBec65B7I7O7o7+9t3Zt558eIG69a14cqVNTx69LtcfGhp6WFu7kZo6BWFXL0Xha6uFbq61rmOykRrZmYSz54NLDKO1NSXBAZOJiXlIQ8ffs7VqwM5f741V6704+XLvZibN6ZNmwu4un6ApqY29vagra1PzZojGTbsHi1arCQzM42EhAf4++/j99/7EBoqc4yWnBzLqVOLiIx8ip3d671ygoKu8MMPfbh48fcSlz338FdJrlUFKp2UW5E6ygrMG7UMF2SOyFasWMHLly+pW7cu3333HW3bti1VnOWxDLcsxIeynyFVCvX8Op9Fi/7HX3/9SmZmJmvXbmbEiLFAzq+bVu3aYWVuzv7Vq2UHSjBWezcoiAX79vHPjRtk/ve4/PPzz/T5TyRk7+lyL1/N3QkWJT6yjr+IiqLbN99w77+JqD3r1+fAhx8qtsJD0YbJXqmFbACTvUypqak0aKDH2LGz+OuvX6lRox6jRy+jXr02heYtISGWd991pGfP96latRdOTvW5eXM/u3fPR0tLm+XLn6KtrcPt24f5/vteNG48kKSkGF69CqNOnQG0bz+P5OQYVq1yR0fHFC0tPaKi7uPo2IUmTY4rVt4ikKRM0tMTCAqKJTr6HwwNm2Bg4E5Q0IeYmnbG0nJIodenpAQSENCTuLhHSJJso0ANDW2qV/8Id/fXK+4KepFmv1cePz7Gli3dmTz5Es7OLeRWD01NLTZtSicmJpQffuiLr+/r4cgmTQYxdWr+uzSXhoL2MCwtyp7/UVD8ZbKjLShvRVr2eOfNU+iSiroM940TIMpA1QKkNOJD1cK9PEXI4MFNMDOzRE/PgGfPbnP79jO0tLRydDBrv/mGqYsX8/DgQdzyW5abm0IqMCQ6mtOhoYxZsYKRnTuz+TvZ/iCFCZDspwuc91FA2k0WLuS6vz962tqkpKezb/p0+jZqlH/mStoQuQVHPqIke5kSExNo0kS2GsjNrS47dlzCyMikyCz8889q1qyZyfbt/jmsJZcu3eaLLxrQvv0k6tXrxtat/6NKlcbMmLEfTU1NeZxpacn89lsPgoKukZb2uh5NTFxxd/8JO7uSD0FkJzgYoqL2kZLih5XVCHR08s4xKoisKrx3bza+vj/Jl/O2beuNpaUnoJj4AEhPT+GnnxpgaGjNl19eIDIykHXrRtOy5UjatZsAQGJiDIsWNSMk5DEAnp7vMnnyjmKUtvxQtvhwcJD455/dtGvXCQsLC/nxCiU+4I0XIG/UEIwg52Q1VcyUV6UJNvezOWTIJC5dOkGDBi2IiYnmhx9W5rlmbL9+2NvY8PG335Y6o3bm5gzv1IkxXbtyx9c3x7mkpCQ2/PYbY8cOY9KkMfz7r4LzEnLl6aqvL2cfPABg6aBBLOjbF/9vvsHdwYFDt28XHk9xG6OorUnz4X//6wXAuHGz2bnzilx8FMX16yeoV69NDvERHAzOzh40bz6Ms2d/5aefBpCRkcaIET/mWNYcGnqfjRs7ERjoTc2a3XPEGxfnR0TEeYXyoAghIat49qw/wcGzuXevNmFha+VOzhSlRo1PsbBoLv/7/PmWXLjQjidPvuXFC8Xyqq2tR6NGYwgKukxmZiZWVs7Mm3dWLj4iIwNJTU3i66992Lr1KRs23OOrr7bnefYdHCSCgg7w66992bZtNPr6L8p1BU1Jd7wtLjdvXmf06MG4uFgSFRVV/AjKC3WbxatkhAVEASrqEExhKMtSogqLSNYzKkkSI0a0IjIylKAgX5ycnLl/XzZXIvuXzs5163h39mxObNhA5ypVFE8odyX913Ou/PNPvty2jfCLFzGoXh2AgSNHsmf/fnlQExMzzp17ib6+QeEWEJBXWnpAADrjxwMQvWYNZoavPXk2XrCAGnZ2/FFM3yYKoYD1IzExka5dO3LnzhUWL97EgAHjcme/UD7/vA+pqcksX348T7VKkkRqahJRUc8xNbXB0FA2sfjmzQP8+ed8QkLuYmbmxPDhf5OY+IrffuuR43odHUt69pRthBcZeZHr10eSkhKOsXENjI1rYGpaF2fnCWhogIaGFunpcWhpGf7ntCznN9jJk7VJTAzA2Lg1sbEnAKha9a8cDsdyk5YWQlTUPpKT72NjU5Xq1T9EkjIJCtpOWtorNDR0CA09SGjoEQA++CAzX4++2ZHtr+NC9erNmTFjX45zKSkJTJpknOOYs3NtmjTpiqmpNTY2TrRtO5gHDy6zbt0cnjy5QY0aTQgN9SchIYZGjTrTps1AWrcegImJRY541Gmfm9K8iy0sEmjSpBbPnwdz4cINPDxkflgKtYAoa6JoSSo1K/433ALyxqyCERSP7J1BWXY62TsNZYmRrBUyGhoafPnlOmbPlrlPNzQ0koeJw0Te2QydOJHVO3YwY+lSbu/di3ZYmGIJFdBjNm7RgoT167l08yadqldnz/79/HPoEJ07dyc6OorJk6fzwQfj2LRpJf/73xf55ik/tF1c2Pb++xjq6eUQH6/i47kREEAbJey+m28Zc4kPgL17z8qXP/fvP1Z+XNE2NjW14vHj6/neaxoaGujpGWJn50ZqajKffVYffX1j/Pyu4erajpEjF1Gjxjtoa+sBMGLEU7Zvr079+h+SkPAcAwMbwsPPYm3dDj+/X0hLi8HaugOhoQeJibnJ8+d/8uDB53nSNTBwomvXgBxioEaNefj4LCMzMxVT03eQpBSMjVsWWK6QkJUEB38s/zssDKpUmYS2tiHOzqPkx6tW/R8vXx7gypU+xMQ8xdzcrdD6Sk6OJi4uhObNh+Y5p6tryDvvzOHIkdcWv8DABwQGPpD/ffbsX1y9epg6dVrwzTdnaNCgPXFxUZw8+TsXLuxm1aqJrFv3MdOnr8HTsycGBjJBk9/tUNr+oaSu1mXO3e4SGPgUXV09qlatTaVKldHXNyjyeiMjI3x8AgkJeUnlyuVsVShoE6XCeEssIUKACJQqRpRtEXFzq8vu3TcJDHyKs3N1hg/vT0CAH4cPn8PETPZ1q6GhwWeTJ9P9/fd55OeHu1u2zr8EGWzZsCF1qlWj2/vvsygggM+++kq+EqNv34F069aTdu16cu1aIeb2AjqlEUOG5DluYWRETw8P1p87xzfDhqFdwiXFhZLP5NPstG37DoaGxpiamstf2IpW3atXIXh57ad+/XeKDJuUFENw8F0A6tfvwcCBu9DRyfnC0dOzwM1tBPXq/Q8zs+ocOzaEe/c60KnTQ0xN3QkO3kZo6EH09SuTnh6PkVENYmPvIkmp2WLRpHr1WXksEc7Oo3F2Hq3wc6CpmfdlGBycRJUqefehqVSpA9raxnh5zeSdd/ahpZV3Wa8kSYSG3iMkRGYtuXBhC7duHWTy5O3yMBoaGgwduoJZs1YQHx/DhQu7+PffoyQnJ2JkZEb16g25fl1mvfnqqwOYmcm8zZqYWNC//3T6959ORMQLVq2ayNdfD8PAwJhBgz5i4MAPMTY2z5MnVQ7XZH/vLlkyg+3bf8oTZv/++1SvXqfIuDQ0NBQXH8qePFcSEfIWIIZgFKC8NqMr771fytrtRFmT30dCkyZGJCYm0qFDZ/7554Tc4nDrzh0atm7NwbVr6dmuXd4LFc3of4kmJCZSb9AgkpKS6NmtG/8cPoKZmTnPnj2hR49hODlVY+fOtZw8GUDNmq/N5UUNw+ThvzCHb9+m53ffEfDttzhblX4jNEChoZesLERFRdCqlWwX2B07LmFj00KhJIKDYd++Lzl2bBUrV/pibFx03l+8eMjixS1ITU1iyJAd1K07IE+c2UlLS+TRo7tYWDQDMgkNPYaurgUWFs3zDLGcOdOImJibNGmyE0fHvNaFwtIpiKQkH2JiDpOW9gIrq1EYGsrM/fm9uENCDnH1aj90dc3R1NTB3NwNExMTQkLukJAQBmiQnp4sD29nV5N69boxYsQPOeLJHXdw8BPWrJnBw4dXiY2NRFtbh0GDZjFhwtI8ecje3M+ePWDPnk1s3/4z2tq69OgxgWbNeiBJEtWrN5SLF2WT37Pcq1dtfH0f5jhma+vAokUbWLBgIj/9tA9398b5xpe7fpKSktDR0cFCOyn/DKjKT0dxO9U3fDM6MQlVUCBlNZFVWdbE/PqBr7/+DYBz504TGRkpf5F61KtH8yZNmLViBQmJBXjPLMYkztWHD+Pn709IaCgbt24lIiKcuLhYhg0bxalT+/Dw8CQpKYHu3auza9dOwsJCc1wfEhrK8YsXCYuMLDyh/xqg3n+77t74zwtriSmsUQtpaAsLaz799EcALl68plBSwcGyL/qnTy/h5FRfIfEBYG9fi6VLH+Lh0ZPdu8cRH59zyCx3NnV0DKlbtzkaGhpoaGhhZ9cDS8sWecQHyIZYAEJC9uc5V1IMDOpgZzcbJ6dVcvEB+b9r7Ox60r+/F7VqjaNWrbEYGTny6NEhYmKCSE9Pwd7+9SqnmjXbkpQUg7t7F3x9r8qP59dMv/46iydPbtC//3TmzdvGH38Ey8VHYX4+qlWrzZw5Kzlxwo/hwz/g+PHNfPxxZ+bO7cK77zoyblwtPv+8DxERz/MmWkYU9MitWLGDNWsO8PvvF9iw4QTHj/ty5kwwvr4PCAkJJiIiJP8Ls5GRkcH48SOwtTWkVi1Hbty6RVpaGqmpqUVeqxTU2Yd+OSAsIArwtlpA8qMcthsplPw6r0qVUmje3B1f32d8++3PfDRxNAAPHz+mUevWtGvShN+XL8fawiLvxbnJnulsiY1fupRNv//O++PG8f6Uj4mLi2PRovlcvepNQkI8n376Ix4ensydOxJ//8doaGgQHZ2BqUY8mZmZVHJ15dV/s/NH9+3Lhg8+QEe78BFRx2HDGNmpE8smTlSsIRTp6Arx+wGvk/H1fUivXrUB2LjxPi4uhZvAg4MhNjaMX34Zjo/PKSZO3EqrVqPyhEtLS+HYse+4f/84xsbWDBz4NXZ2siGy+PhIZs+uRpMmE+jR45s88RdEYfdZZmYad+9+hL19PypV6lRwQAXSkaTMfEVOdnI3QWpqFNHRm0hJicLCog5aWrqcPDkCR8dmJCW9IizMB4C+fRfQuvVY5sxxlV+7cWMaLi4575GMjAx27lzG5s2fMWPGWnr3ljldLKnoT0lJJiQkmNTUFM6fP0xExEv+/nsDiYlxmJhYUq2aB336/I9Wrfrl68G2OJTmwyQ9PR3tQp6XrHpPT0+nUaOa+PvLVq01btiQaq6u/LVnD3u2b6dfr15o/Odr58rt29hYWRXtYLCsOjJFnuE33AIi5oCoMfm5wi5vSjNfRBlzQvJz2R4erke9eg3w9X3G3LkzadLEk7YNa1CrRg327tjB8PHjGfzhh5zevLlox1759ZKOjnz56af07NaNfr16kaApW7WxffseOnduwcOHD/j99x9IS0tl4cJfGTu2A9OnzyYpKYmE2BB6DxnCq6go1nzxBTra2kz84gtquLgwv0+fQrPi7uLC3osXqWZvTz1XV8Kio+nt5MTd4GCMXVw4fesW/Vu1wsosr3t6/5AQXGxtc5Y3n7LlJz4A+ctmwoRlCokPgBs3/sHH5xTvv/87LVuOzBPu5ctH/PzzQEJCHtOgQS98fE4hSZlMnboLAGNjK1q2nMGZM1+hr29Gx455J5LmR2538dnR1NTBwyPvvIL8SEjwJzX1KMHBXmRkRKGhoY0kZSBJaWhr2/Dq1Q709KpTqdJEKlWahKamEaCRo47/82oPQHJyKMeOOSJJ6Whp6ZGRIfPeW7NmD0aM2Iu2ti4hIfd49eocHTt+gKamJrVrd+DBgzMAXL68AxeX0TnyuG/fT2zZ8jkTJnzC+PETKELDFomenj4uLrKVXW5u7gB06TKQW7e8SUtL5eLFYyxaNJhKlZwYMWI+bdsOxtTUslhplIVFtDDxkTvcmTNX+eijDwh7GcTQAQOY/rFs0vCAESOwMDfn4OrVtGzYkFYjRtDY3Z1LO3aUeOuGYiHmhQgLiCKUlwUE1NMKkpvS+topLfl1aK9e3eL990fh43MPgICAVzhbyDqt46dO0a1/f3Zu3szQgQOLX4ACrAUAvr7PaNHCAzMzSyIjQ0lLe23qXbr0O1q3bscnc/7HxcuX2bx2LVUMDOgyYQLfzJnDjE6Ff5GPWb6crSdO5DjmYmtLQOjr4Z0ODRpw+puc1oJrjx7RdMoUJvXqxdoZM2QvyPy8oJK/AJEkCXd32Zf+mjXXqFEj/3H37NcA+PtfZ+HCJsyefYy6dbvmCbt0aXvCw3358MNDODnVY8OGcbx8+ZDPP/fOFl8mBw5M48qVNcyYcR9b2zp50lGE7PdcQsIzYmLukJQUSEKCHxoamlhZtaVy5T5yi0ZqajSHD8ssZIaGTdHVrYwkZZCREUN8vBeamibY2X1McvIjoqL+RJIyAAld3Sq4uv6OiUkreXqvN5BL59SpOiQkPEFTU5f69Wfg4NCBFi26yf2eWFklsmPHTFxdm9C+/ftER4dw5MgKjh2TOb3bvTscMzOZy/jbt8/x+ed96N59EIsXb1S4Lgr6wFe0Tn18brJ58zccOrQDHR1dhgyZxLBhH2BgULvQ61S5sCO/MmbNv3rm68u5ixcZP2WK/Fz31q258/gxL8LCOLVpEwDpGRm0bdIEfT29nBGVdQdWWMW/4RYQMQfkLcOEOPmvrCjusGZZd0T59QeWlg3YsOH1yoGMjHT5/7t26sSAPn2YNmcO93x8ileAIsLp6lZj0qT5hIQE8fff1+jTZxQ1atTivfcmMWDAEDw8GrLwv7X94z74gA5jxwIwpHv3QmKVsWryZI4sWcKjLVvo0awZrnZ2NHZz4/CSJez98ktGde7M5QcPyMzM5I6vL/FJSYRGRbFw61YAfj14EO1u3XAaOZKgly+5cO0ay//+mwVffw0UbP1ITJRtT6+trVug+Mhvn6GEBNkQU6VKVfO9xtjYCm1tXSpXrokkSYSH+2JoaJ4jjKamJh07ypYy//vvuiLrqCCyz3/w8urA1asDuH9/LmFhxwgJOcDVq/25fn0MqanRPH++m7CwY/JrDQ2NcXXdga3th2hrW+PsvAYPj5dYWY3C2nos1artxsVlDS4ua9HRqcyTJ11JS8s7P0FTU5tOnXx4992HuLu/z61bK3n27K//xIuMY8e+49y59dy9exQAc3M73n13FV98IXOxfuPGKdLT07h0aT8ff9yZevWaMHfuKoXqoKjbXFEHhnXqNGTlyu0cOfKEDz74ggMHttG7dx2mTWvEgQNLiI29jbl5Qo7nXJ1WlVarWpX3Ro0iNTKSr6bLNvU76uXFi7AwOrdoQaPatfnql1/oNnEiV+/ezXmxMsaR3+I5IcICogDlaQGBsrGCFCU4ynrjO0Uoy2e5gJEShg/vz8GD+3j2LJRKlWzk9RAeEUHnPn146uvLTytXMm7kyJzDEwUVIldnkbveHj9OoG/fuhgZmbBr1w20tbXz9C/aSWF88+OPmJqYcP/6dUb27k3bJk1KXSHrDx3i/e++w6NaNW4/e4aOtjZampoY6unx66JFRMXGsuPQIc5evYqTnR1BIa9fkq1bt+Pw4bP5Fn/atP6cOrUPgJEjv2Ds2C9zpFtQVYWH+zNnjiu9e8/H1NSG1NQkOnb8HwYGsjrz87vGl182Ze7c0yQnx/HDD32ZOnU3TZq8XvXy4gW8fHmHn37yYODAzTRuPLbIdIti06ZK2Ng0pX79XWhry5bL+vtv4NatiTg7v0dg4CasrTsREXEKAA0NfQwMXEhMfALIvKLq6lYhNdVfHqeFxRCcnX8GNLh92xY7u9nY2y9GU1MnT/tn3auPH2/n9OkxdOmymHbtPiE5OZZFi2TDZytX+lGpUhVAdstlZKTz6ac95MtrAVq27MvatX+jo1P4Lr1l8X4rrK6z5oscOvQH588fJilJJljt7V3o2LEvM2Z8jZGRccERKIHCLCA5CA7m9sOHNBw4UL6UvnbVquz98Ud2HjnC3AkTclpAlOlXIL9KfsMtIGIOyFuAItaO7GFKK0YK2o49N2U5JyS/uSDBwbBjx14iIyOwspKZrbOcgVWytubSiRNMmzOH8VOmcOnKFdb/9NNrEZLfZJcixAfA1atneP7cn3/+uScfp84+DwDAwMCAz+fOzRk3lLpC0jNkX9JxiYkc+vpr/ENCSNTTY9yAAViZmwPw3oABjP7kEx74+jJp4kQiX73iu9Wr8fI6R0REONbWleRZSk5O4sCBbZw9+3o34W3bFuUQIIW1caVKVWjUqB8HDnyNtrYe6ekpxMaG8u67si92JycPNDQ0CQ19SmxsKBoampib51WSfn5nAahevUuJ6yY7tWu/x61b3+DgsBpr66loaRlgbS1bmp2SEkr79tdJSYmUCxBJSiYx8RGgRdWqf6GpaUBs7EkSE69jbT0OScokMHAa0dH7sLYej63th4SErMDAoD5WViMKzIeb23Du31/Jo0eHadfuEyTptSOx+/eP0779+/L7RktLm6VLj3L37gVevHiGkZEpAwb0KVB8FCU6cvcJRT3zhc390tXVo3Pn/nTu3J/k5CTu379OUNAzHj26zV9/rePMmf189dVGPD07Fp4pVfNfQTxq1SL0wgU+Wr6cbQcO8MDXl1q9ehHm5ZV3+EWZvIVzQoQAqQCUZjJqSYZasq4pCyGiDs9TlvjIIkuEGBkZsWnNGlq3aMH4KVPo3L49wwYNyhtBMT4hk5NlfgbS0lIUuyB3JRU2g7IIxnXvjmOlSrTu3BmLfCaiAmhpabH9jz9yHPtgxnxq1LDHy+sc/foNIjIyjB07VrNz5xqioyOxsLDl1SuZtWTmzF/k1ynStv/731+8eOFD5cq1WLSoOTExOZcj6+kZEhsbRqdOU7l37xgrVnRi6tTd1K//ekiqcuWGaGvr8euvrZg48RwWFi6KVkm+NGu2mLS0BC5fnoee3nL09asSE3MLPT07HBwGY27eiJSU8BzXmJrWw9S0IcbGrdHVrYy5ea8c5y0s+hMevp6QkBVIkqztNTVlX/25BWgWqakxvHx5m/bt5wNw6NAyLCwccHNrzZYtkzh7dh0DBkymTRvZ17kkZeLh0Q4Pj3Yl2cZHTn59QnGe+cLEiL6+AY0bt6Zx49YADB06mS+/nMyECV1o2bILmZmZ1K7dkJkzl6hmoqeCVLK05Pfly1m/aBH27doRFRtL5XbtuLFrF/Vr1lRdRtSl01QRYghGAcp7CEYeZTEFQVnO81D2Dr1lZQkpaCimMEyIY9CoUVy4dIl/z57F2cmpyHQKqo8XL55Tq5YjX321kYED3ysw/QIdkilCQZVVgrdSHCZkZGRgYaHNrFnzCA6OYt++LWhqatK//3t07z6To0c3s2PH1xgYGLN9ewCmppYl6iMPHlzK3r0LWLnSF0tLRwICbrJgQSPmzTtPzZptSE1NYs2aody+fYhGjfoxYsQPJCfL8v3qlS9r13qSkZFKmzZzuH9/D5UqtaNVK8XmP+RHTIwv9++vJSwsACurVri4TJQPyQC8fPkPmZnpWFo2x8BAlo+iyp2eHklIyDfExBylRo0T6OhYFzgEI0kSu3bVwdDQmvr1h3L06Me0bfseI0f+xJ49n3Phwmaio3O29ZYtj3B0rJEjnvwoawtIfih6D2RkZPDHH2vw9j6JJGVy9uxBOnTow9y5q3B2rlbsdBVBoSGYAgoQGR2NdUuZ+31DAwO2LV9O/86dSU9P5/utWxneqxf2Ntl2SVbmsEwRE9OzqKhDMEKAKEBFEyBlKTxKk4/slLcIgcI75bCwUDp18kRHS5PDu3bh9t8mc/lRWPm3bt3ItGkT8fIKw8Ii78snC0U7wxKjgNUmezkcHc2IjY3F0rISI0dOZ9iw/5GYKFte+e+/x9iwYS6zZ2/GwKBhQdEVSUREALNnV+HDDw/h4dGDBw/Osnx5B5Yteyz3/ZGRkc7p02vYvn0GrVp9SM+erwXGw4cH2bq1t/xvTU1tJk5MzNeleXFQ9r5i+TVF1j3q67uP48cHkZn5eiLq4sV3cXSsS0pKIg8enOb+/ROcOCFzAnfgQDwGBkYFxqdo+sWlLG/Pfft+46efviAhIY7ffjtLzZr1yy7ybCg6D+SPv/9m5+7duDs4kClJtG7UCG0tLd6ZNAlzU1OSkpM5/MsvtG/WjNq9evHJhAmMGzAgb+SKUNxO7g0XIGIIpgKhyFCMssVH9jSKI0QUsSyW1ZyQrDjymxNSUGdsY2PL/v2nGDSoB806duLv37bQuUOHPOGKKrO2tg6SJKGnV/iGWXk2piut6bWYgiM7wcHw3Xd7ePkykB49hvHqlQHZncU2bdqNpk27lfollPWS1dHRB8DAQNZRJifHysNoaWlTo0ZbAKpWldV/UlI0jx8fxd//9d46enqmNG26uNTio7zImrNUtWo/xo2LwMlJl2+/rU5c3EsOHVrGpEnb0NMzpEGDXjRo0Atzc3v27PmcsWPd6dTpf1hb62Fj44yLSx0cHNx48UK2oDE/IZK93RQRI8ragiErb/36jaFjx76MG9eRESNa4eHhyfTpX+Hh4Vk2Cf9Hfs97fhtCzvvyS56/eMGBjAwkSWI50LpRI7S0tPhq2jSWbdjA+l276OjpyZ/ffktdt8I3EiyU3A2kiu3D1RghQCoYhYkQVYiPgtJTdOxYlcObBU1MzcpLblxdq3Lq1GXGjBlCl759GTp0JN9+uxoHU9nEVEXKWK2azHKSluaLo2O9QsPmK0LKCEXFYVZ9tGgh+9LKrz8sqzYLD5d5o8xyyZ414TQyMpAqVV4v7w0MvAXIBMjz59fZsKEDKSlxmJq+rp+UlFhiYp6WTcbKGT09c8LCYN68FyQmvkJTUzvPvduz51waNx7Azp2z2L17Ppqa2qSlyfaMsbCwZfDg2XTsOBzIecMXdP8rg6Lepdk/DExNzdm48QRbt37P8eO7mTChK+vWHeHQoT8ID3/J99/vKtpJYD7pKvLRkfu5a+3pyb83bnDo778xMjKiWYcOxKakIEkSTyIjeR4aKlulBjSoXbivk2Kjiu3D1RghQCog+YkQVYuP3ChqFSlKhJS1t9T8RAgULETMzc3Zs+cI27dv4dNPP+LBg3ts2LCdWrWK3n0TwMRE9lUfHx+vUPj8vshKQnGsUfnVvzKFRxbXr++lUqWqcmGmqyuzEiUmxuQIl+UL5PDhj3j+/BqZmek0bDiKW7e25wh39+6PtGmTc5M2daMwTZnfvWloaJnjfHbs7d2YOVO2h40kScTGhhEcfJcrV/5k/fq5bNgwly5dxtC9+ziqV2+EgYFRoS/n0lCaZ/S1ELFi+vSvGD9+LpMmvcPEid3kPmcyMjIK9XZaUPoFfXQUJkKGDhzI9r/+Qltbm8p2dvTv1Yvd+/czsG9ffvxFNum617Bhpf9AUMQEnL0gbwFCgFRQsouQ8hYf2VHEKlIeIiQr3tzkJ0S0tLQYPXo8jRo1ZfTowbRs6cHkydOZP38RRkZ5x9+zk7XJla6ursL5K64IKa51oyhy17WyvpJDQ59gY1NN7vXz8uU/0NTUyuMl1c6uL507f8X165uJivKlZs1e3LmzE1fXdvj7XyAzU+ZUzt19snIyqiBlYbDK/sIsbIgwK2wW9vYamJnZYmZmi7t7ZwYPXsqlS9s4cmQlx45tRlNTEysrB7p2HcPo0QvR0tJSWIyo6t33Oh1jfv31MAMHNsLU1JyZM5cUKD4UyVtuEeLn94idO88wc+aEHPHeC4jkw+nvcfLMGbS0tAgJDeX7NWvYsHUrE0aP5stPP8U/IIDB/fvjVEDDSJLEjr/+opWnJ1VcilidVZx9LNTJc5sSEQKkAqNOwiM/ChsuUrUIgYKtIQBPnyahr2+Qo4+oW7c+3t53+PnnVaxY8RX3799lz54jhS4fTE+XvRyzXrKKUpAIKWuxkR1VWD2yePUqGB+fk4wZ83oZ78OHZ3F1bYqFxetGefECNDQ06NjxMzIyUjhzZjE1a/bg2bMT+PqeyRFngwazSUh4SWZmGiYmzsrJeC6U4bSyOCIk+zVZ2NuDiYk13brNpEuX6QQE3MDX9yrbt09n+/bFXLy4lwkTluPp2TPf69WBmBgTHBzqoKeXScuWOf29BAdncufOOUxNrahaVbEJq9nrtGfPWgA4O1dnyJDOADx/HkzHjs0xNDRk3ryFeHq2Yt32v9i8eR0jhgxh6cKFGBkZcfXs2ULTOXDkCCMnTuT9ceP49YdiWOMUdZb0hiNcsQuUSmEiqaiOVhkfAS9e5O18v/vuUxo1MuTrr6fj65uao0/Q09Nj1qx57Ny5n7NnT/L1118UGv/Ll7KdNe3tHYqdt9dO8l//CiPL/XlRfVhWmXP/8otLWdy9exRJkmjWbKj8mKNjXYKCbhMXFyHPZ3aeP78GwLFjc0lPz+tX5cKFaRw/PoR//ulARV7MFx19g99+cyIyUrZvUe628Pf3IizsQQFX52xTTU1NXF2b0KnT/9i0KZ0vvriCvn4lPvusFwsXjiMhIbbAeMqK7Pdlce6ryMgXxMWl8Py5lKNM3t77mT27I++/70Fysmx2dGZmpvy6lJQkMjLSyczMzLH3Uu5w9es348oVf6Kjo/n884/JyMjgzJmrzJu3gA4dOtOjR18AOnTtS6aRnULPobWVbD7Tus2b5ceK9Rwr4vv+DUZYQARKpzSWEGWR/QvJ3V02AXL79p8YP/5j7Owc8wzNdOjQmYULl7JgwSekp6fj4ODEmTMn+PTTL7Gzq8ySJQto27Yj4eFh6Ojo5HF+VlYoOn+jNPEpAzOzygCcPr0GN7fW/Pvv3wQG3iQ1NYnbtw9RtWpel9Nt2nzM48dHsbdvREJCuHyr+ixq1hyFjo4pfn77FJ6wqE5ER98gPT0OH5/5JCQEExfnh5VVXfn54GAID7/B33+3AeC9916hr29RjGEaqFq1GXPnnubQoWXs3j2f1NQk3n//d7S1ZauHSvreK+59U9jk7yz09Ay4fv0Egwfb0rBhJ7p0GUPTpt2oU6cFdnauaGhooK2tw61bZ1m+fBQeHu1p334YX345kPT0VLS0tElPT8PNrRHu7q14+PAqMTEv5fG3bGklt1ACfPPNzxgaGvHBB+N4/jxIPnyql4/304L6r+r1W2FiYkpcXCwN27ZnwYKldOqUd+PF7NcX+FFWmq3GKyjCD4gCqIsfEJWi4F4oxaGwL4HCnjdlm4vt7eHZswekpaVSq5ZHvmGyiv3zz9/x6acfyY9raGhgaGhIQoJs8pyBgQE2NrbcvetXZvkrqG6KqpeIiOcsXjyMkSM/p0mTroXGpWwkSWLPns85cEC28Z2VlQs2NtWIjQ2lc+cV1KzZI9/roqMDMTCwQE/PhEOHPuTixe/R1jZkxIinGBlVLpO8lddwxLlzLYiKuiz/u2fPGFxcXvcvt26t4tKlWfK/PT2X0ajR3ALjK+rR3LdvKFev/gXAr7/Go6dX+HwmZVFQPlNTU7h27RgPH17F23s/fn53qVatAcOHf0qLFn3Q0NBAR0cXL6+9LFwo88PRuHFXrl8/Tt26rWnSpBvm5pW4du0YwcGPcXSsgb19ddq3b0tISBChoc+pUqUGEREhdOkykJYtq/HLLz/x8cfT6dChC7q6ugwbNoqBA4fmn8ECWL58EV9/vYDmzVvi43OXGzceY2trV+R1Cg2hmyg2BCv8gAgqLsV5KxXXqUA2SmoJUcZ8kOy8eAEGBrWpVohTxqyx+alTPyQq6hUrVy4G4Mcf13H9+lXmzPmMNWu+Z/Xq72jZsi29enWkceNm1K3rQdWq1bG1tWP06MF4eDSkV6/++X4l5U6vsPwqEtbX9wX37nlx+bI3dnaFp6doWiUdFtPQ0GDgwMU0bjyA8HBfGjXqh5aWNmPHavDbbz1ZvDgdTc28c2vMzV/P7ejefSXVqnUmPb1GHvFx+/YP3L+/hsGDr6Ojo9qNz0qKuXlDuQBp2vQvdHRyvjgkSfa13rDhJ/j4rCM5OaLQ+Ip6NFu1WiQXIEFBd6levWz9bihKQdYQXV09WrbsQ8uWfRg37itu3z7Hjh1f89VXQ3BwqE6tWs0xN7dh4MAP6dx5JCdPbqNz51FER4dy754XAQE+/O9/37Ngwe48FrH27V//PyMjg7t3rzJt2mq2bv2ewYMnsnFjyXdaNjQ0wsDAgHXrfqdly/qMGDGAXbsOY/7f/ksFzetRx0UEqkZYQBTgjbKAKPMTWEFBUl6WEEW1kyJeJffu/Zv09HQGD343x3kfn/u0a9eYStayIZjg57I5IZqammRmZmJjY0tERDiLF6+kSZPm1KvXAENDmftvDQ2NYlk7imrKjIx0Xr58iL19nUInxZakXstifs6LF/Dpp7IXxeefv8LAwEKh6/Irt4/PBs6encioUf6YmBRvr5jysoDExNzlxo0xpKSE0K1bEBoarwVY5coSGzdakJoaw9Chdzh0qBfOzt1o3774L8rs9/qtWzv4668RTJ9+Bzu7nH5qymPhhSJdxsOHVzlwYC0vX/oSEOCDpqYWP/10GQMDE8zMZHMwbtzw5dixLzh1ajtmZtYkJcXTu/cHTJ78rVyMVK4scfbsQVavXoiPzw0MDY2ZPPkz3ntvjkKTxvPLa3AwhIQE07+/B9bWdnz00TLmzBlO27Y9mD//J6ysbIqMI4t8hcgbbgERAkQB3hgBoir7eym8ckLJhxwUiSM3BWW1qM64oOvWrv2Rzz+fw6uAAIyMjIiIjOTG42C8vb3o3bs/VatWZ9asKWzevO4/j6l66OnpUb16PdauPYSJSc5N5AoSHsnJ8bx6FYSdXU1CQspvLnlJX1pZ5coSIAVZQPKjoLZNT09CW7twD7RF5UddSEp6wbFjsonMxsa1iY9/jLGxG23beqGra1XgdUW1R+XKaXz9tQ2env+ja9evi52vklojS/o85SYqKoypU5thaGjKjz96ExmZcxjJz28PN2+ewsDAmD//XIGNjcyClpmZQVJSPAkJMdSr14yPPlqGh4cn+volu19y8+TJPUaObI2WljZdugzkn39+w8TEjK1bz+PqmnczO4WFiBAggjdGgIDyRUgpxQeUToCU1V4dWShiDfnjj9/x8blLp07d6NOnMy1btuHi0UPycPmVNyoqiuDgQA4ePEd4+Ev+/HMtdeo0YvPm00DhFo/IyCC+/LIJsbFh1KnTjxEj9iBJmQq/wMuSkgiQ7GX74gt90tNTWLJE8W6orG9hdRMfAImJARw/XkX+t4aGLpKUyjvvhKKnZ1PwhdkoqG28vD7Ex2ctw4fvolatXvkHUhJlsWfN6dNeLFnShlmzjlKvXrcC4/L2PsDduxfQ0dFDU1MTfX0jqlVrQJ8+JRuOLIoXLwLp3r0aY8fOYsyYjxgxohU6Orrs3XsbDQ0NgoKe4eRULccy/iI3DVTQv6AQIG8wQoAUQTHngqibAIHSiZD69avi7/960umlS7epW7dofwXZ83rkyJ/MmjWMH3/cg7NzdbS0qqKlpU1c3CusrCrnCPv33/M4c+YX+vf/ku3bZ2BtXZOoKF9cXNrQsuV0nJyaY2JS9CS4wkhPT0Vbu3BnaqW1fgC8euVHamp8nuGAoijL21gdBUho6DG8vbtjbd2RiAiZKHV2nkCjRuuLFU9+bZSenszx40MIDj7JrFmPMTNT7RLQ4lpDUlOTWb9+Ja9eBaGjo098fASXL//B5Ml/4Ok5TOF4ipuPkjBsmCfx8TGsXXsIb++TLFw4ie3bL3L37lWWLfsQN7e6rFy5gxo1ct7vBW5aKQSI4I0SILlRxhu7EEoqPkC5AgRKLkK++24q69evlv+tra1N/foN6d69FyNGjMXJKa+TrNz5TExMYMiQJvj6PgRk80H09AxITk7E2bkWVlY1SUqKwdbWjatX/6Jly1GMGvUThw9vx8/vPKam9ly7tpGYmCD09Eywt2+Mvr4pjRtP4M6dHURGPiE1NQFJyiQzMwNJkm0MN2bMYWxscu5vsWfPRK5d24CBgSWffPJcvnmcovVRFPm1Y2ZmRrEtOMraNE0dePlyP1euyPxS2Nr2JCLiNB063MHYuOBdmgsiv7Y6e3YSPj7rcHbuQa9eh1TuhqI498/WrVM4fXoNVao0Jj09BX19EypXrsXw4d/LNzQsDEXLVhaCxNf3IRMmdCUkJEh+7LffnhAaGsDHH3eWH+vZczhff705X4/J2fMrBIig5AKkrMcDVIkSluGC8gVIUXEURUlESEJCPI8eHScoKBA9PT0yMjLw9vbi8OF/SE5OZvv2PfTu3b/IvKWmphIQ8ISAgFgCAx8SExOOsbEFt27dICLCHwMDUwICblCpUjUmT96BsbFljjrJzMwkOjoAL69vSUyMxN//PKmpCSQnx+Dk1BwLC1cA7tzZKb+mWbNJ+PmdY8KEM3KryZYt7/D48VEqVarF5MneGBiYF1kHxSF3O5448Tlnzizmo48eY22t+E6jqhQg9+7NITMzjXr1vs0xWVQRUlLCefDgC+LifHBwGIyr65Qi/ZZIUiZPn35HWlokbm5z0dExKzR8UeRutwMHuhEUdJxKlRrTsuVK7Oxao6Wlo9LuR9F76Z9/FrFv35csW/YIW9viC7Asilu24tzr2e+hpKQE1qyZyZEjG2jevCdff30QAB+fy3z8cSe5M7UlS7bQr19e/zfZ8ysEiKBkjfugYM+FCqEuQqQMUcSteHkLECi5JST3tZs3r2PGjEns3XuMjh278Px50c6yirvapbA6efToML/91jPPcW1tfRwcGuPpOQV9fQv27HmP0aMP4uDQCOA/j5IJ6OnlbK+yMlnnzvOff47g6dMTTJ16o9jDAaVta0XuKUmSOHmyJgkJT+jR4xW6uoqt1pFdm4mXV3siIy/Ij3XseBdT07qFXKUcstovLS2eoKATHD06QH6uS5c/cHN7PZyhTkIkJSWBTz6pSd26XRk/flOp0ytN2RTdL87H5zKrVk1k+PBP6djx9Uq5ixf/YeHC/nLPvS1b9uXHH7djaJi/TxZFN98VAuQNplwECLxRIqQs9jRRlQCBshEhZ8+eom/fLkiShJaWFubmVlSqZE+9ek3p3HkAbdp0l19TUNkUcbNeEJIksXPnMO7d283YsUdITY1HU1MbB4cmmJq+9qOhzPkeBVGWwx4lbe/MzHQePXqAsbEbWlqyYaaEBD9iYm5ibz8gR9i0tDhSU8MwMirEWUw+XL06mBcvdgFgadmSKlUm4+Q0Ag0N1a9cSkkJ48mTGTx79rd8CA6gcuU29Ot3tsA8laYbunDhW86dW8rcucHo6MgmHL98eQs7O48cQ3tF3V8HDy5l794FTJz4G56e7xYeWEFU3b2+fOmHhYUt9+558f33kwgJ8QdgxYqTNGrUCXt72TN7+vR+KlWqTJ06jahXTzFXXRVVgAhHZOqMIv6LBUqhsE3BCtvULvu17dt34s4dX06c+Jfo6AiioiIICQni+vUL/P33elq37kaXLgOxtm6IJGVy9OhmAgN9sLFxRkdHn0qVHLG2bk7Vqs0wNrbMN63ClkVqaGjg4TGcu3f/4sCBqdSo8Q5GRpUIDPTm1StfAgK8sLGpQ+vWH+Hm1q1CujMvLlFRD7l48SOMjZ0IDj5FbOwzANq2vYS5eVNOnKgKQL9+Ob/LdHRM0NHJK6LT0xPQ0jLMt+5evvyHFy924eIynufP/8Lauj3OzqOUUKqiychI4sKFdqSlvaJVq1XY27fl+fOzXLz4IeHh1wsVRKXphpKSokhMjGTBAgPeeWclp08vIiUlDm1tfZydWzB+/Ck0NDSKfKa6d59FcPA9fvllOHFx4XTpMr34mcmFKrvXFy98GTu2BpmZGfz44yW2bfPjxQtfwsIC8fBo918YiI+PZdq0fgDUqdOIw4f34FLULrsVGGEBUYBys4BkpwKLkLLa0VUZfkCKojSWkMI4fnw3Gzeu4P79a/INs6ytHahXrw0vX/qSmZnJ8+e+JCS8AsDJyYOWLUfRvv3EPBPviqqXwEBvrl79FX9/L1JSYtHRMcTMzAlHxyb4+1/g+fPrjBr1D7Vr9ynzchZEWU/8VKS9MzPT+eUXXSBvl9eo0RacnccQELAFc/NGmJkVvYrp+fO/+PffYRgZVadDhxtoa+f0wHrz5gQCAjaiq2uKkZEjnp5nFF5CW9Y8eLCAx4+X0rHjbUxMZHZ9Tc0r7NnjiZVVfQYOvCz3oSJJEgEBh3Bw6ICOjmLu2gt6TuLjw1my5HWZrazcaNBgJM+f/8vDhwcxMLCkcuUGuLsPwMKiCi1atClwYqkkSfz111yOHFlJjx5zeeed2ZiYlN2eS8rsYiMiXjBsmMyvS4MGHdDU1OK9977GyMgMe/vqOZbm/vnnCtavl7ncNzU1Zf78+UyePLnQd09FtYAIAaIAaiFAsqhgQkRR8QHqKUBAecv5XryA5ORE/P3vExsbgbt7K4yMXt9fQUESoaFPefbsMrdvH+L69T3o6hrQrt37tGgxAmdnD/nXY0mRJIlFi8xxdW1Hp04LSE9Pwdv7Z+ztG9KgwUhMTSsXWb74+EiePLmIn981dHUNadFiBFZWTvLzgYG3sbR0ymHFKWmeX768w/37e2jefHKOpcaSJMnn2ERE3CI5+RX6+lbo6Jhgaur6nx+Gkxw4INvq3djYmcTEl5iZNaZFi0Po6ua0MIWHnyY6+hpmZg2pVKlzvhaOoKBtXL8us2h07RqAoeHr1U7p6QncutWP4OCT6OiYMHLkMwwMKpWozKUVa6mprzh2zImqVafh7r7sv2NRnD3blMREmQVIW9uI/v0v8OLFeW7cWEJSUhh9+57BwaF9kfEnJYWjpaWHrm7OvtHf/wCHD78WtXPm+GFm5iz3OurndwE/v3MEBFzg6dOTSFImenqmtG07jqFDV8o3zMuOJEkcPryCPXs+R1fXkPfe20jTpgNLWjX5oowuNjU1mR49DDA0NMXIyIzw8CDs7FwJCfGjRYvefPXVfnlYmdBaKRchAMbGxqxatYoJEybkey8KAfIGo1YCJIsKIkTeBAECZStCSrqcOCrqOSdO/ISX1xZiY0MxMDDDzq4GurqVsLPzwNjYFm1tPXR0DDAxqYy1dU3MzZ2Jjg7g3r3dxMeHUrNmT3R02qKhoYGjI8TGvmDZMocc6ZiaOpCYGImBgQWDBm2hXbuu3Lx5gEOHlpGWlkTjxgPp1esT0tJSiI0NZc6cqvJrtbX1sLGphrt7Z+LjIzEwMMXP7zpmZrbMnPm6kw0MTMHb+yeePTuNJGVStWp7HB2bUaVKW7S0Ch4ZXrjQhNTUeCwsXLG2diMhIYJXr56RnByDq2s/wsOvEx8flOOaGjVGUq3aYI4c6UvTpoto2HAO2tr6BAenAhpkZqYRGnoYI6PqmJrWRVNTmwsX2hEZeR4oeNKoJEn4+69DW9sIJ6eR8uM2NsmsW/faw2b//hepXLllgWUqDYrcS48fL+fBg/l06uSDkVE1oqNvculSF9LSovOE1dLSJyMjGYD33otEXz//ob8s4uOD2bpVJjbNzKqjq2tGjRojiYnxJSBgP3FxAVha1sXTcymtWxfs9Cw9PYXo6EBu3NjCuXPLaNVqJhMmfFtg+NjYMDZsGMvTp978+GNYvmKltJRlF5uRkU63bjq4utajW7dxrFs3h8zM1/NwJk9exaBBH+a45urVo+zYMYd79+7Jjw0cOJDNmzdj8t/ymFOnThETE0OnTp0wNzcXAuRNRC0FCKi1CCmO8ADFBENxvwTVUYSUxUTa1NRkHj8+j7//dcLCnhEaGsLLlzdJSoomPT0ZScqUh9XRMSAtLQkdHQMMDCyIjX2BlZUHdet+QNu2Q3j1ypfVq5vIw9va1mXSpIukpsazbJkDZmZ2jB+/ie++64mLSyMMDMx48OA07du/z/Xre0hKiiM9PUV+vYlJJeLiwuX/AmhqajN9+h4uXdpGvXrv8PLlQ86cWU9qahxVq3YkKSmK58+vIUmZWFlVx9NzKlWqtCEg4CJhYT7Y2dWnYcNRbN8+gKdPTyhWgdlwde1Hs2aL+PPP+jRsOE/+BRkdnUBqajhhYcdITY0EwMKiOe3aXSYxMRA/v7Xo6lpSvfpshefH2NtDYOAxDh7sjrl5TXr1OoqpaZVi57mk5Hd/eXl1ICLi7H9/aSAbgnr9b4cON8nMTCEjIwl39xZERT3gn386oq9vSY8eB7CwqFVgepmZGZw5M55Hj34rMEzfvudwcGgr/7uo5+jChW85cmQ2U6Zcx8GhUYHPla/vvyxa1Iz5871wc2tVeKS5uHv3GH/88RGzZh3Byiqvn57slFU36+9/H2NjC6yt7Tlw4Fd++GFyjvPjxq2nRYsR6Oq+Fq8jRqSzYcMGFixYQFhYGACzZ89m5cqVxMfHy4XIvHnzWLp0qRAgbyJqK0CyUCMhUlzhkUVFECBQOhGirFU8ueNNT08lLu4FoaH3iIh4grm5M25uXdHVNeby5ZPcufMjgYGHAdlus1FR/lhYVKFu3cF4e/+EhoYmWlp6JCdH07Xrh6SmJnD58g7WrInm8OEV7N49H0nKpEmTQTg7N+Du3aM8eeKVIw8jRvyIubk9d+4c5sKFTbRrN5Fz51578dTTM+GDD67InaBlZKTz4sV1Ll36kTt3/vhv5ZAORkaViI0tvOJMTOxo0mQCZ84sxsSkCo6OXTAwsMbMrDqSJHHv3moiIm7+l645urrm/11phI6OGQYGziQnvyAy8jyurlPx8PipeA1AznaXpExSUqLQ1y94zxZlkd89FhV1jejof9HVtSYtLRodHTNMTNyJjr6Onp4Ntrbd81xjZPSMw4f7kJAQTO/eJ7C1bVZounFxgWRmppKUFM69e2t4/Hib/FzPnodxcXknR/jCnqP09FTWrGlCSko8U6fewMDAPN/nKi0thSlTLLGzq8HMmQewtFSsH3zxAjZs6ISv72nGjz9FtWodFfp4UKSbVfTZ3b37cw4cWIyZWWViYl7Kj7dsOYr3398q/3vMf25Cjh8/Ts+ePUlPT2fOnDmsWLECAFdXV/z9/eXhhQB5A1F7AQLlKkJKKjqyowwBomi8xaUkIkTZw0fFHdZJSHiJv/8BEhKucu3aRgAmTDhLcPAVjh6di4mJHXFxIdSu3ZEHD2SuwMeP38TGje9hYGBGnTqdmDZtNyAbili1qgd37x4tMO1Gjfpz48ZeWrcei5fXFgB0dY0wN3chIyMVW9t61K07CEnK5PTpL4mMfEr16l2Ijg4gIuKxPB5390FYWDjj6TmV1NR4Xry4iZtbN0xMbImK8sfEpDIhIXoAJCdHsmtXM3R0jGnU6FPs7DwxNnZGQ0MDSZJ4/Pgh16+PITr6X7S0jHB3X46r6/+KtRqoPHaQVYSymORrbR3LgQPdiY5+xLvvPsDQUPEJtLdureLSpVkYGtrxzjv7sLVtnidMYc9RVJQ/P/5Yn0aNxtG79w/y47nr++lTb777rieeniMYNapw4Zi9Tg4cmIG394+MHXuUGjVe7yeTFb8kSaSlJaOtrafQTrnFJTIyiFmzXlteNDW1ycxMB+DHH8MwNZXNFxqTzU+ZJEm8evUKfX19jIxkk4OnT5/OTz+9LrcQIG8gai1Aykl4lIXoyELRF25JO1VVD8WA4g6LiqK01pDC4swqR1xcKKGhd6lWrRPBwf9y+PAsunVbTnj4fapWdeHbb3Nu+GVmVhk9PUNathyFr+9VwsN9eflS5kLeysqZypVrkZqaiIGBOTo6+nTtOoNq1VoQEvKQypVrsX//Rvz9z2NjU4e4uBC0tHQIDPQmMNAbkDlKs7OrT0xMIC4ubfD0/B/GxrYYG9tgaFi0VUGSJE6d+o3Ll+eRmZlG//4XsbCQ7UgaG+vP06d/cvv2dyQlhWJq6kqLFitwdOyCnl5eb6O561NdBUdhFPf+y17G+Phg9u5tjZaWAd2778HCoibp6cno6BgWeP3Llxe5eXM5/v4HGDjwSh7riaJd1tmzSzh1aiEtWkynWrWO1KzZI0/+ALZtm46393Z6956Pn9+/xMaGMWzYN7i4NJSHyc9KeOPGFjw83s3jcA/g0KGxXLwoG1aaOnU3TZoMyBOmtGRkpPPkyUXi4iKoWbMtd+4cJiLCn96956OlpU1mZibHj4/g5s2beHl5YW0tW/Hzxx9/MHz4cBYuXEjbtm3p2LEjenp6pKSkCAHyJqK2AkTF4qMsRUcWxXnBqvJFXhjF2VuirJabqqqecpPV2WdmZhATE4KBgRn37h1n165PiYjwo0aNNlhbV6Fx4wE4OLhjZeVcqAUhKCiNtLREXr3yxd6+YY5z0dGB6OgYoqtrnO/+M0URGHiZW7e24eOzj9jY57i5vYun53L09a24d+9nHj3axqtXd9HQ0KROnfdxcuqKk1NXhZeavgkUdG8UJqyiox9z+HBfYmN90dExIjU1FmvrBoDMypSUFIaNTTNq1RrHkyc7CAo6hpmZGw0bzqVOnfHyeIrbXaWnp3LgwDT+/Xcddnb1mT79dr55DQ/355tvuhIZGYCLSyMCAm7SvPkwJk7cAsiGarZtm4aJSX0aNRqLvr4xRXHt2kb27JkAgKamFps2pRcv82VAUlIsM2fakJKSwrNnz3j48CGxsbH4+/szb948AC5cuMC0adOIjo7G399fCJCScP78eVauXMn169d5+fIle/fupV+/fvLzkiTx5Zdfsm7dOqKiomjevDmrV6/G3d1dHubRo0e89957BAQE8P777/PFF1/Iz928eZPPP/+cq1evEhsbi52dnTyOLFVZGGopQFQoPpQhPED1L1VV+AbJTlkKkCxUXWeFvZgyMzOLNE8nJETz559zuHXrAImJMaSnJ6OpqUVmZgbdui2jdeuP0NIq3QqG9PRU/vnnA65f34SJSWU8PIZTu3YfXF3bcv36VU6ceJeEhOe4uvanWrXB2Ng0xcTEqeiI33CKcv6VnbS0RG7eXEFKyivMzKoTGXkHDQ1t9PQs0Ne35OnTPwkPv46ZWXU8PZdRtWp/nJzKZujijz+G4et7htGj9+Pk1LzIe/L99w3o3n0WgwYtAeDBgzMsX95RHsbBoQlt2syhfv0hhaYbHHyNe/d+wc2tFW3ajCuTshSXQYMSSE9PJzIykmrVZF54PTw8MDc3Jz09nS1btiBJEt27d8fX17fCCRC18ISakJCAh4cH48aNY+DAvGu6V6xYwapVq9iyZQs1atRg8eLFdOnShUePHslnAU+ZMoVRo0bRtGlTJk+eTKdOnWjVqhVhYWF07tyZ3r17c+zYMczNzfHz82P//v0kJiaquqhlg4rEhzoIj7Ikq9pUlb4ydlnN3vRFlSOroy5NPgp7SSkyNu7ltYXz5zfQuPE4KldugK6uMUlJUQQFXeHYsU94/PgoHTt+QbVqHUqUP0mS+PPPd3n48CD9+6+nceP35PkKDLzMvn1tsbZuRK9eRzE3V3yjO3WmqMdf0fu7OMNJOjqGNGu2sMB8ZGbOIjLyCRYWVdDW1lM8YgXo2fM7tm3ryy+/tKRTpy/p2PGzQu/JKlWacOjQcu7dO46ZmR329nWpUaMNjx/L9uN5/vwaO3cOpXbt3ujoGOQfEeDo2ARHxw3lOuyWNdfj1SuZQ8KhQ4cSGxuLtrY2N27cwMPDgx9++IHTp09TpUqV8stoCVELC0h2NDQ0clhAJEnC3t6emTNnMneuzDFLSkoKtra2LF++nEmTJgHQpEkTVq9eTaNGjRg0aBCTJk2iR48e7Nu3j8GDB5OUlIS2dsn0llpZQN5C8aGMF7mydswtD5Q1gTeL0jhai4x8ys8/NyIlJQ5jY1sMDCzo0mUxdesO5MyZr/HyWkVychQjRuyhTp1+JUjjFj//3JChQ3fg4fF6j5CwsIesW9cGIyNrpk27hba2nsqFb3nfJ+Ux7KgsMjLSOXNmMadPf8mQIdvo0WNEgWFTUhLx9t7Go0cX8PaWrcYZOnQlGhpa/PXXx/LJnrNn+2Ju7oymZtG7G5eXCMk+CbV///4cP36cLl26YGJigoWFBQ8ePODkyZOcPHmSzp07VzgLiOp3RComfn5+hISE0LVrV/kxPT092rVrx6VLl+THFi1aRJcuXTA0NERTU5Nu3WQT5+zs7EhPT2fv3r0oqrVSUlKIjY3N8VMLVNALxGGiVuJDWZR3h1qWODoqtjKnNEKiOGGzfgBWVtX58MNHDB78O82aTcLSsio7dgxiw4ZOtGo1k/nzw2nUaBzbtvXH39+r8Mjz4fHjIwC4ub2eKBsUdJUNG9pjbGzLpEle8i9yVbW5Iu2hynyUNC+KXJ+enkpCQkTJEigGWlradO68EHf3AezfPxVv7x1ERgYSGxueJ6yeniHt27/PiBHfy4+5ubWmW7eZbNqURpUqMp8k33xTlcWLrYiLCy0y/ZIK+OzPQ+5fcdm2bRszZswgJSWFwMBAtm7dysmTJwEID89bDxUBtRiCKYyQkBAAbG1tcxy3tbUlICBA/nePHj0IDw8nNjaWSpVeuzz29PTk008/Zfjw4UyePJlmzZrRsWNHRo8enSfOLJYuXcqXX36phNKUAiX3aMoSHVmUVHwow/qRhaqHZIqitCtnHB0VG5YpyzpVJC5T08o0bCjzFCpJEg8e7OfPP99l27Z+uLsPwshINg/r+fNrVKnSWuG0z51bzvHj8wG4dWsbqanxPHhwgBcvbuDg0ISRI/fmWTWjSB2VBHUQHIWhyNBdScqwaVMX/P3P07r1LHr0+KZkmSsG/fuvZ+fOYfz662sLiJOTB5qamlhYONK06SDMzOwwN7fH3r42Eydu5bffJrF4cQscHNxxcHDH0tIVf3+Zl9vk5Bj09IqelAoFD0eWRpwUByMjI5YsWSL/Oz4+nitXrlCpUqUKOfwCFWAI5tKlS7Rq1YoXL15QufLrLcQnTpxIUFAQR48W7HsgO5GRkZw+fZrLly+zb98+Xr16xfnz56lXr16esCkpKaSkvPbuGBsbi5OTU/kNwbyl4gOUK0Cyo2geC2uKsLAgbt48RYcOw9DVLd4qjrJwYJYdZQzLlMWckiwePz7KwYMziIh4jK6uEe7uA+nX75ccY/IxMc/x8dlL7dp9MTfPO2n0009zrrbR0tLB3X0g9vaN8PScgq5uwUtFVT0hWdmUpG0K2/FZUW7f/pO//x5JixbT6NlzVekiUxBJkjAweI6f3zWSk2O5c+cI2tp6BARcJzj4tdtyHR19LCwc6NHjYywtnVi1qof8nK1tPRo2HIWmphatW3+kknyXhP8WuxRJRd0LRu0tIHZ2sg2nQkJCcgiQsLCwAi0Y+WFlZcXgwYMZPHgwS5cupWHDhnzzzTf89lteF8J6enro6ZXtRKoSo8QeTp2FB6hOfEDZWEPWrJmBl9deDA1NadNGMb8BigyLlMQyokh5ivvSKsv2qFGjOx999Ij4+HB0dQ3R1c25FPbVKz+++Ua2x0xs7Au6dVuS4/yNGzJvkVWrdqBRozEkJIRTt+5gLCwU27q8NJYQdRAdBd03xWnTsiiHg0Mjpk69gYWFK5mZGQrNpygtGhoaJCc70rixrACtWo2Wn0tJSSQuLpyICH8CA2/x9OkltmyZRJs279G4cX+uX98LgJGRNS1aTC10EqpA+ai9AHF1dcXOzo4TJ07QsKHMb0Bqairnzp1j+fLlJYpTV1eXatWqkZCQUJZZLXuU1NOpu/AoT0rzYho/filOTrVo2LCTQuFLMiejuGJE0WEZReMra4yN898h1sDAHAeHJujrm+HpOUV+PCjoCn/8MZToaNnwa1zcSxo1GpNvHEWhDkJCUYp7r6iqTU+fXsStW9vQ0THCwMCMadNuy4fUsuelJNsolKR99PQM0dNzwdrahVq12tG16wycnDw4ceIHYmPDMDAwxcWlMf7+13LsmSQoH9RCgMTHx/P06VP5335+fty6dQtLS0ucnZ2ZOXMmS5Yswc3NDTc3N5YsWYKhoSHDhw8vMu6DBw+yc+dOhg0bRo0aNZAkiQMHDnD48GE2b96szGKVjjLuHYXoUJySWkOcnGoyfvySIsOV1Yx6RcWIouUpTyGSGwMDC6ZM+TfP8QcPDsjFR/XqnRk2bKeqs1YmJCa+4uzZr2nRYnqBVpuS3CeRkUH4+f0r99xZVh55C8pTy5Z98PHZTWpqAmlpCbx48Q/t2o3P97ryuq969/6UXr3mkZgYjYGBKZqaWkiSxMuXirvcFygHtRAg165do0OH134APvpINiY3ZswYtmzZwscff0xSUhL/+9//5I7Ijh8/LvcBUhh16tTB0NCQWbNmERQUhJ6eHm5ubmzYsIFRo0YprUylogzEh7IFByhXdKjDS1AZExaVtZxPEfGgaHnUSYjkpmXLGVhYVMHFpTU2NgXv0loeREcHcu3aRlq1+hADA3NsbNK4cmUnDg7uVKnSiJcvH+HtvR0np/r8++8url79E2trU/r1W1BmeZg714309BQ2bkxDSytn917cdlXkXn358gE6OvosWHCNf/5ZxPbt02jcuD/Gxpb5xlfcPYvKCg0NDYyMLHL8XZ6iSCBD7SahqiMq9QNSCvFR0UVHbtSlc8i9d0pJUYUvgbLu4FXdBiUxvauDYEpJiWfjxs4EB1/BzMwOBwd3AgNvER8fCcDs2cdYu3YYCQlROa5r0KAPdet2oUWLkRgZmRc73ex1dfz4VlaskA1HbdlSdLeeVV+luS83bZqAv/91Fi26yatXwXz0kROTJ+/A0/PdQq8rqq0UuQ/K4nlS5J6JiHjMrl1jqVGjB23azEJbW5+9e9/n2rUNjBr1D7Vr98n3utzPWUn6j/wmoaampqKrq5vjWEWdhKr2fkDeKkpwh2b57VDFEIuqh1myfFeUxodFWVCR5gpUZLLur5JswFfeYvXmzRUEB18BICYmhNTUJBo3HsBHH8n8lGzd+j/GjPklz3W3bu1n27ZprF07rNhpZt2XkiSxaNEQufjYts1P4Q0TS/tcPXhwBje3VgBYWjpiampDaOjTIq4qOt3C8q/q/iAzM5PAQG9OnvycBQsMuXPnT65d2wBARMSTfK/J7x4ui/7z0aNH6OnpUalSJS5fvlz6CMsZtRiCEag36jK/I3enU94vnbJG3fySqJKKWOas+zE1NYn9+7+SH9fQ0KRv3y9wcqrPxo3vAdCjx1yaNRtClSqNuXfvBHp6RqxfL1u9MWXKLlavHsSCBY1o0mQQTk71sbBwwNm5Qb4b++X06fGEp09vcv783wD8+ust7Oyq5AinrLp98eIh4eG+1K372kmklpYOGRlpCl1fEstVWQoPRdO1salF27Yfc/78CgBu3NjCV1+lIUkZZe52vijMzGQ7NkdERNCiRQv69evH7t27VZqHskQMwSiAyoZgivmprYohF6h4Lwd1FSbF+epTpuM2dRqCKSwv6mh5yq8NExKimTLFItsRDUBCR0cffX0Txo/fTIMGPfNc99VXLbCzq8HEib9x4cJm7tw5wvXre8jMzADAyak+vXvPp0aNNvj5/UuLFo2xtnYAIDU1hTVrZnDw4K+0atWPbt3e48mTazg61qRTp/wn55f1c7x4cSuePr3EunVJcr83y5d3JDDwFp6eIxg27Bt0dBR7QRd1n5W1xaMk97UkSSQkhGNkVKnQHZ+zUNYQTHp6OocPH6Zv376AzCWFnp5ehRyCEQJEAVQiQIT4UCmqFiklMTkra98cReMtT/GRhTqIEEVefgkJUWhr65KUFIeGhgYPHpzm6dPDREa+wMHBjZkzfyE5ORFJkrhx4zFPnlxk27Zp/znICpTHk5QUS3JyPM+f3+fAga959Oic/JyFhS0TJiwjMvIl+/evJiLiOQD167fD1NQKL689aGvrsHTpUerWbY2Ojm6efEJZDQWcZ+nSdkDO+SaRkYEsXNiYuLgIvvsuGAsLh2LFm989pw7ioyQoS4BkERcXR2pqKlZWVhV2DogYghG8lVSEGfDKchuuDqhruUr6sstaYaGnZ4S2tj9GRkmcPCnbCO3mzdN4ee0lISGa9PS0HHtSdegwKEc8BgamGBiYYmFhj7t7ZyTpEc+e3cbGxont2xezcuU4NDU1eeedCRw7tpn09DTu3JGJFAeH6mRkpDNnTifatBnIggW78s1rSYdmsr9Af/jhW8zN7fnkk7M5wlhZOdOkySAuXfodHZ3ieQOGnM+lMuZ5qNq5oTLvc0VWgao7QoCoA8L6US6oiwgpy698dSlTQRT3nioLd+EFUZYvuKw8vnjxjNGja8qHUbZsecT9+5cIDw/GyMgUDQ1NLCxsefUqhKZNu+HoWCNPXK/LrAHUwtlZttx4yZLDREeHk56eirW1A2PGfElIiB+ffNKNxMQ42rcfRrt2g3n/fQ9evXqpcJ5LwqNHZ6latT716zuTa0EGffuOxNt7Kzt3TmThwj05yqUIyppgqs7PxduKECAVDCE+3i7eJCuIOpWjrF5y2V/i/v73mTChLgA6Orp8+OE6HB1r5CsyFI0zN+bmrz3HWlraYWlpx/r19wgOfoyjYw1mzWqHg4Nbjhe/MujWbSx79/7Itm2LeO+9r3Ocq1u3FdOmrWblynHcvn0ODw/ZUE1ZzHEqKeUlPrKeX3UYSlRHxDLc8kbcmeVKeS7vBcWav6LfIqVdwq2OzuByb1MfFRXKDz98gLl5JT78cB0HDybStesYlSwZbdjQmd69O3PkyLeEhPizYsVJLCwU3yeruCQlJfDokcxLbXh4/o3TseNwjIzMuHz5QL7nc9ffm8zbUs6SICwgFQhh/VAOyh62KKsXXlm0i6rbVt3updK2RUEvk23bvsLHx5uvvjpAs2bd86SjDGdpWXEmJMTj5XWU58/9AahRwwKjbHv7lfW9/eDBZXx8vPn00x20aNE73zA6Orq0bt2fGzdOFRqXKpaei6EX9UUIkAqCEB/KpTzmTqjzl1FZ1EVZ3ktlYcYujfgoKu30dJnvixYt6lHYJt1lJUSy4jl79iCfffYer16FA/DOO0MxMjLJN2x2SpO+iYnFf/FWw8DAuMBwrq71OHfubyRJKnLZqrKEiBAf6o0QIOWJOr+B3kLUfQJnRZoPom75LKn4KOoRlSSJkye38fjxJTIy0omNjcbWtuilpyXdJC53ObZv/4lKlezZsuUsd+5coWvXgSWKpzh5efjwKpqamtjaVik0XJUqdUlOTuDp01u4uTVUKF9lKUTU+VkWyBACpAIgrB95KerFUNKyqEqE5Jd/E+KAwttb3UWIMvNWUitIUeIjOvoloaFPqF69JVpa2sVK49GjAyxfPpomTdqyZs0B3NzcS5y/wu67gsqgoaGJqakFmzd/w8SJn/Djj5/j6OjKoEETMTQ0yv8iBfJSEC9ewMmT22ja9B0sLGwKDWtmJpswq6hn1OyUVogo+gznF395fheq87OtDIQAEVQ4SjNxU9HdYMvz68mEOJWJzrJEHTvP/F6oycnxpKQkYGZmS2JiDPPnu5OQEEWNGq0ZN+4zHBy6KuTp0t4e1q7dj4uLG1u3nstzPvc9WFT95HffFSUIqld3Z/v2n/j337NcvXpGPg/kzp0rfPPNH0WUoPjY2KTz6NFV5sxZWaQVJzk5HoDS+Losj+0JsqelCjGijs+NqhACpDxR8JNOVS+kirAXSWk7BEWXApaVCCmO6T8OEyE+CqGku+Tm5uefB3Lv3nEAXF2bkpAQRadOU3j27Czz5nWnefOefPzxb5iZWRUa/6VLJ9m9eyPvv/+pQvlRxHpV3KGiFy8CcHauRtOm7di58xdcXNwICHhC69bdixeRgmhpaWFiYsaTJ/dyHM8v32lpzalUyYnDh9dTu3bzUqVbXMufos+vOoyCl5UX5IqIWIZb3ih4p2WZ51XB27JEThXbfRdEQc1elPgo6nYpC9FU3DjUUXzkJjMzg7//nse9eyeIjn7tpMvP718aN+7PiBE/smHDPRYt+gcfH28++KAREREFV0Rmph/TpvWjdetuTJgwV+F8lOVz5eV1jNOn99Gv31gcHasBEBAg2531p5++KLuEsqGhocHAgRM4frzoDdBcXHTp23cEly//Q2ZmJlevHuGbb8azfPkYUlNTip12WQnQisDb0gcLC4g6oGaWkCwqgkWktBRVxtJYQsq6AyxtOyijHdVVfGTV/cuXj/Dy2oyVVRUOHVrGoUPLAOjY8QMGDlxCfHwENjbVcHKSDbm0bNmHX365yfTpLVi5ciyLFx/Md0+VXbs2kJSUwMyZSzA2Lt7eG2UxjyckJJjZs4fRokUXRo2agZ/fIy5fPsWrV2H4+Nygd++RpUugEMLCnuPo6KpQ2A4derNhwzKmT2/Mw4e3qFTJkfDwYCwt7Zg4cXmx01aWJURQPojN6BRAHXfDLQ8zfXkLEWV/EZTEuqAsvxL5oUj9F9bZlvb6ksRXWkra5lntsnRp+xwbumUxe/Zx6tbtUmA6164d57PPelGjRhO++GIX1tY5Gzo29jYDBjQAYNWqv+jefXCJ8l2SOkxLS2P8+M4EBj5l3767mJtbFj+SUvDBB71IT09j/fpjCoXfv38bhw7toEuXAQwcOJ6ff17A2rVf0bnzKKZPX42hYfH7suLWW0UVIYVtRpediroZnRAgClCixj11qmRvJyFCCuRNnBBWli+qojrZshQgFUF8AOzaNZ+DB5fQo8dcevf+lLt3j6GlpUPjxv2KTMfH5zLTp7dAV1cfAwNjtLV1cHdvTZs2bdHR0eXZMx9+//0HAK5cicbExKxEeS9uXR458iezZg3jt9/O0rRpu+Jd/B+lsW7+9NMCdu5cg5dXmEKTdXMjSRL79//O4sVTMTe3ZdasjdSv37b4GeHNFyJvugARQzDK5MWL4ouQYqw1LI8Ji+W1DFRV46GqLp8iza0qD6hvmvgID/fDx+ckAF5emxkwYBHNmiluqchyZ56amoyHR3uqVWvA3bvn+frraTnCubs3LtGLOHseilOnjo5VAdi9eyPOztXlfkdKUmclud9r1qxPVFQE0dGRWFhYFztNDQ0N+vYdTf36zZkxYyCfftqd3bsj0dMzKHZcYkimYiMmoSqbktztxXiiTIhT6QRVqNiToxSpr7dlAlhJULb4KIu6Dwq6w6lTa5gzpyq+vlcB2ZLQjIz0YsWTtd8JyHainTBhKX//fZHq1WW+Pjw9OwHw4497c8wDKakQUJR69Zry888b8PI6TI8ebpw+vREHh9IvdVWUuLhoNDQ00NAo3evD1bUmgwdPJDk5CUdHbaU5i8tNRZ6c+qYhLCCqQMmWEFDMiVVZosoJqqV5IRUkNtTJ6VdhTa1o+qX9qlPkelWIj9KQ9YitWtWDqKjn8uP9+i2kfftJ6OkZlji97BaOrVvPERTkS61aDQgIeELlyk6lynfu/CjiHGv06PH06zeYefM+ZOrUCWzbtpndu4+gr6+Pjo5OidJWtH1PndpHo0aty2Tuib19FQCioyOpVMmuxK7q1cESokgXL6wvORECRFWUVISA2guR8p6cmp3iWoOKGsYqz/KVVbrq1D7KIuvRevr0MlFRz9HS0qZTp6kcP/49bm6tMDe3yxFekUeqVat+bNzog51dlRzHzc2tMDeX+QipXr1OWWS/2HkDMDU1ZfXqjQwa9C6DB/ekS5eWhIWFYWxshIWFFVu2/Imra9VipVvUvZKQEM+lSyf48MOlCsdbGJKUCUBKSlKO4yURImUhQpRtHSmpC/43FTEEo0pKeseV4A2iyqGZ8hyuyCpnacqrDkMyuZu4OE0urB+v8fOTDZu0bDmKPn0+Y8sWCXf3ziWKS0dHFxeX2vK5CYq8nMrjWejQoTNr1mwmODiQiIgwwsPDuXnzGqtXf1fsuIrK/717/5KamkLLll1LmNuceHp2QltbBy+vo/meL64gKMlwTPafKimPNNUNIUBUjQpFCKhOiCir4y0s3rIsV3Hmhrxt80PUXXxk78Tr1esGwIULm3n+3Ecp6akjQ4YMx9c3nE6dupGQIHOBfvr0cW7dulHsuAqrH1/fB2hpaVG1aq2SZjUHxsamVKtWmytXzhQYpiQipCK1cXkJIHVACJDyoDQiRI2FSEV66AtC0TpShhjJatqytH6ownNqaSht/eno+PHrryO5e/cYjx97ERkZKD9Xo0brUubuNRXh5aCrq8uePUe4fPkuW7f+jba2Nm3bNqZXr44cPXqoWHEV1C6JiQmlnnyam27dhnD+fOH5U7JHA7XhbRMiQoAICqQkQxsV8aEvLcoQIeqCMvNT0nrz8fkHHR0/7O3h0qVteHtv59tvu7NkSRtWrnztXGz9+jFllNOKg4aGBnXq1KVfv0FcvHiLjRt3kJKSwrBhfThy5GC+12RmZuLldY4//vidixfPy4/n1z4XLhymVauuaGlplVme09JSMTQ0LjLc2yJC4O0RIkKACAok++wKRVG3F6iqKI+OThVzP9SNJ09OsG1bP379dSTp6WkcOiSbDNms2RDGjdtAkyaD5GHz881R0naqiHWlo6PD4MHvcuzYBXr27MuYMYPZvfvPPLvTzpkznR492jNp0mjeeacdcXH5f3BERUVw48bFMt/oztjYlJiYKIKD/YoM+zaJkLcBIUAEZYaq9xoprjhShNLEp8qOThUTR9XN+mFq+orTp2Ubvz19eomoqGAaNeoPQIMGfWjXbjxTp/7Nli0SW7ZITJz4W1lmWS0m65YETU1NNm7cQY8efRk3bhitWjVg2rSJrFnzA0FBgaxfvxoAIyMj1q/fhrFx/taItWu/QktLi3feGVqs9Itq6yFDJmFr68C0af1JSkosVtxllQdB+SAESHlQGtuamj5Jyux4i5r6UlZCpCziUNPmyUNF+qK3t4fw8MMsWNCQsDBf5s49jbGxFX//PY/Bg2Wby61bN5KgoLtKz0tFFSH6+vps3vwHf/99CHf3+ly7doXPPpuNu7sLDRo0ZsGCJRw+fJbevfvnazny9j7Ftm0/8tFHy7G0rKRwulnPQ/Y5U7mfESMjY1av3s+zZz60bm3Dw4e3C41TVQ7LBMpHCJC3CGX5BlFVh1tUOqURImVZN8ru6FQhHtTB+pE1Dn7v3nG+/7431taufPnlDWrX7sCIET9y9eqf/PzzQHl4IyMLJeU4JxVVhGhoaNCtWw/Wr/8db+87PHwYzJIl33Lr1nW8vM7Rrl1TfvttQ77Xrlu3hAYNWjBixNQyyUtuMVKjRj1++eUwSUkJPH58p8jrhQh5MxACRFAqVN3RKpJecYVIeWzqV1LKYr+WimD9yP6C2b59BrVqtWPu3FPY2Mgca3l6vouTU325348hQ1ZgYeFQaJxl+fKpqCIkOzY2tnzwwQyqVHHl6dPH9OjRh379BuUJFx4ewrVr5+jTZxSammX/ysgSIkOGdKZlyzZs3/5znnkq+SFESMVHCBBV8wZNbVZ3D6GKCBFliQ9ldHKqEg7laf3IPfs/NTWJly8f0rr1WDQ1X6+80NDQYOTInwGwsnKmR485pdoQriS8CSJES0uL9eu34+JShcOH9zN6tGyiamZmJunp6Vy6dIIxY9phYGBE9+5lO/cjP6ZNm8Xdu1dJTHxY/IuLgRAh6oEQIBUJNXpqFN1dNftP1elnUdBqHmVbPtSouRRG3V6Y2tp6GBqaExHhn+dczZptmDJlF+PHb1J9xoqButVpbpo3b8HBg6c5ePA0mZmZjBs3jLp1q+Dqas2ECV0xM7Pkzz+vlsneL0XRoYNsGfXlyxcVen7ewOl0bxViL5i3hLJ82ZZ0a/eiRIiS9+sDKtZwS3bKSsCV5/CLItaP3GhqalKtmic3buyjd+/P8gwBNG06MO9FKkTRLZ5Kcq+qmrZtO3DqlDdeXuc4dOgfLCwsadeuI5UrexZ76KWkZY2MjADA1rayPJ6i+pvSbCynyk01BXkRFhBV8gYMv5RUfChCSSwlpXAOW+x0SkJZvHRKUicloTw74cIejSpVGhMQcBMvry0ljl+ZL/+ymJejTrRu3Y6lS1fx8cef0bx5S6XM+yiIO3duAlClyutN9JRtCclKQ90F4puIECAVBTV4OpQpPkobh7KXASs7DVWgztaPgggIuMX58xuxtHSkZs22ZZupMqQ4IkRd7iNlbc1Qmq7q8WPZ3I9mzerw5MmjMomzOLyt+z2VF0KAvAWUxbCDqsRH9rjUwRqS3y61xU2jNJ3ZmzDxtCgK+nrdu3chCxc2xty8MgsWXMPWtrpqM5YNRdq9OG2lLiJE3ejTZ6Dc4vL778Wb21PWBuayECKF+T8RCAGiOirw8IuqxUdp4y0rIVJYHKp4gaibJai04+z5UdBjERR0h/37F9G9+yzmz7+EmZltyRIvJbnvpTdFhKij9QOgWrXqbN36NwA6OrrFjlsZ3WxxxUNhgkOIkZwIASIoEEVf5Mr+Si+HzYMVuk4dX/YliU8d2jg3u3Z9iq2tGwMHLkZXV1+1iVP4vfOmiBB1pXNn2V4zlSuXTE2U57decYXK246GpIjHl7ec2NhYzMzMiImJwdTUtLyzIxC80dy4cYPGjRvz22+/MXr06PLOjqAc6N69O9evX2f9+vX07t27THffrciEhoZy5MgRxo4dm+N4RX1HCQuIQCBQGxISEhgzZgzu7u4MHz68vLMjKCe2b99OgwYN6N+/P3Z2dvTp04fg4GBevXpV3lkrVz799FPGjRtHbGxseWelTCh3AbJ06VKaNm2KiYkJNjY29OvXj0ePHuUII0kSCxcuxN7eHgMDA9q3b8/9+/dzhHn06BGtWrXC0dGRRYsW5Th38+ZNevXqhY2NDfr6+lSpUoWhQ4cSERGh9PIJBALFCAsLo1evXvj5+fHHH3+grS3cFL2tWFlZceLECS5fvszkyZO5fPkyTk5OWFlZsWPHjvLOXrnRvn17bGxsCtyxuKJR7gLk3LlzTJkyhcuXL3PixAnS09Pp2rUrCQkJ8jArVqxg1apV/Pzzz/z777/Y2dnRpUsX4uJeT6SaMmUKo0aN4p9//uHAgQNcvHgRkHVqnTt3xtrammPHjvHgwQM2bdpE5cqVSUxUztbPAoFAcYKCgli4cCG1a9fm/v37HD16lHr16pV3tgRqQPPmzfnqq6+4fv06mzdvplWrVsyaNYvHjx+Xd9bKhVGjRhEaGqpS3yxKRVIzwsLCJEA6d+6cJEmSlJmZKdnZ2UnLli2Th0lOTpbMzMykX375RX6scePG0uXLl6XU1FSpT58+0qFDhyRJkqS9e/dK2traUlpaWonzFBMTIwFSTExMieMQCASSlJGRId2+fVvav3+/tGrVKqlbt26SpqamZGRkJH3wwQdSSEhIeWdRoMYEBwdL1atXlzQ0NKT33ntP8vb2Lu8sqQUV9R2ldjbOmJgYACwtZfsO+Pn5ERISQteuXeVh9PT0aNeuHZcuXWLSpEkALFq0iC5dupCUlESvXr3o1q0bAHZ2dqSnp7N3714GDRqk0IZVKSkppKSkyP/OGm97U8bdBAJV4evry/vvv8+jR4+wtrYmLS2NoKAgAHR0dGjRogXffvstgwcPxsRE5q9GPGeCgjAxMeHkyZN8//33/PHHH2zatIn33nuP3r1706FDB5VvSKguVNhnprwVUHYyMzOl3r17S61bt5Yfu3jxogRIz58/zxF24sSJUteuXXMcS05OlsLCwvLE++mnn0ra2tqSpaWl1L17d2nFihWFfmktWLBAAnL8jI2N8xwTP/ETP/ETP/FTh5+dnZ2UlJRUyrewalGrZbhTpkzh0KFDeHl54fjfIulLly7RqlUrXrx4QeXKleVhJ06cSFBQEEePHlUo7sjISE6fPs3ly5fZt28fr1694vz58/mONee2gABIkpRHXcfGxuLk5ERQUFCFWvr0NiDaRr0R7aO+iLZRbwpqH11dXfT1Ve8zpzSozRDMtGnT2L9/P+fPn5eLD5ANoQCEhITkECBhYWHY2iruHdHKyorBgwczePBgli5dSsOGDfnmm2/47bff8oTV09NDT09P4bhNTU3Fg6qmiLZRb0T7qC+ibdSbN6F9yn0qrSRJTJ06lT179nD69GlcXV1znHd1dcXOzo4TJ07Ij6WmpnLu3DlatmxZojR1dXWpVq1ajpU2AoFAIBAIVEe5W0CmTJnCjh07+OeffzAxMSEkJAQAMzMzDAwM0NDQYObMmSxZsgQ3Nzfc3NxYsmQJhoaGCjkqOnjwIDt37mTYsGHUqFEDSZI4cOAAhw8fZvPmzcounkAgEAgEgnwodwGydu1aQOZgJTubN2+Wu5v9+OOPSUpK4n//+x9RUVE0b96c48ePy2fNF0adOnUwNDRk1qxZBAUFoaenh5ubGxs2bGDUqFGlyruenh4LFiwo1nCNQDWItlFvRPuoL6Jt1Js3qX3UahKqQCAQCASCt4NynwMi0gII9gAAFsNJREFUEAgEAoHg7UMIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKuetFyDp6el89tlnuLq6YmBgQNWqVVm0aBGZmZnyMJIksXDhQuzt7TEwMKB9+/bcv38/RzyPHj2iVatWODo6smjRohznqlSpgoaGRp7fsmXLVFLGisL58+fp3bs39vb2aGhosG/fvhznFWmHlJQUpk2bhrW1NUZGRvTp04fg4OAcYby9vWnQoAEuLi6sX78+x7n82klDQ4OdO3cqpcwVicLaJy0tjblz51KvXj2MjIywt7dn9OjRvHjxIkccon2UQ1HPTnYmTZqEhoYG33//fY7jom2UhyLt8+DBA/r06YOZmRkmJiZ4enoSGBgoP/9Gtk+5OYFXExYvXixZWVlJBw8elPz8/KS///5bMjY2lr7//nt5mGXLlkkmJibS7t27pbt370pDhw6VKleuLMXGxsrDdOrUSVq7dq107do1qUmTJpKXl5f8nIuLi7Ro0SLp5cuXOX7x8fEqLau6c/jwYWn+/PnS7t27JUDau3dvjvOKtMPkyZMlBwcH6cSJE9KNGzekDh06SB4eHlJ6ero8TK1ataRdu3ZJFy9elKpVqyYFBATIzwHS5s2b87RVRdtjQRkU1j7R0dFS586dpT///FN6+PCh5O3tLTVv3lxq3LhxjjhE+yiHop6dLPbu3St5eHhI9vb20nfffZfjnGgb5VFU+zx9+lSytLSU5syZI924cUN69uyZdPDgQSk0NFQe5k1sn7degPTs2VN67733chwbMGCANHLkSEmSZBvk2dnZScuWLZOfT05OlszMzKRffvlFfqxx48bS5cuXpdTUVKlPnz7SoUOH5OdcXFzyPOyCwsn9kCrSDtHR0ZKOjo60c+dOeZjnz59Lmpqa0tGjR+XHnJ2dJV9fXyk+Pl5q0qSJdP/+/QLTFeSPIvV09epVCZB3gqJ9VENBdRQcHCw5ODhI9+7dy9MnibZRHfnV09ChQ+XvnPx4U9vnrR+Cad26NadOneLx48cA3L59Gy8vL3r06AGAn58fISEhdO3aVX6Nnp4e7dq149KlS/JjixYtokuXLhgaGqKpqUm3bt1UW5A3HEXa4fr166SlpeUIY29vT926dXO01RdffEHt2rUxMzPD09OTOnXqqK4gbxExMTFoaGhgbm4OiPYpTzIzMxk1ahRz5szB3d09z3nRNuVHZmYmhw4dokaNGnTr1g0bGxuaN2+eY5jmTW2fcveEWt7MnTuXmJgYatWqhZaWFhkZGXz99de8++67AHLX8Lk3vrO1tSUgIED+d48ePQgPDyc2NpZKlSrlm85nn32W49jBgwfzeIAV5I8i7RASEoKuri4WFhZ5wmRdDzB+/HiGDRtGampqnrAA7777LlpaWjmO3blzh6pVq5ZJWd4GkpOT+eSTTxg+fLh8wyzRPuXH8uXL0dbWZvr06fmeF21TfoSFhREfH8+yZctYvHgxy5cv5+jRowwYMIAzZ87Qrl27N7Z93noB8ueff7Jt2zZ27NiBu7s7t27dYubMmdjb2zNmzBh5OA0NjRzXSZKU55ienl6+4gNgzpw5ctfyWTg4OJRNId4iFGmH3OQXxsjICCMjo3zDf/fdd3Tu3DnHMScnpxLk9u0kLS2NYcOGkZmZyZo1a4oML9pHuVy/fp0ffviBGzduFPms5Ea0jfLJWvDQt29fPvzwQwAaNGjApUuX+OWXX2jXrl2B11b09nnrBcicOXP45JNPGDZsGAD16tUjICCApUuXMmbMGOzs7ADZF0LlypXl14WFheX5Gi8Ma2trqlevXraZf4tQpB3s7OxITU0lKioqh/oPCwsr1s7JdnZ2oq1KSFpaGkOGDMHPz4/Tp0/n2C5ctE/5cOHCBcLCwnB2dpYfy8jIYNasWXz//ff4+/uLtilHrK2t0dbWzjNcUrt2bby8vIA399l56+eAJCYmoqmZsxq0tLTkqtTV1RU7OztOnDghP5+amsq5c+eK1fCC0qFIOzRu3BgdHZ0cYV6+fMm9e/dEW6mALPHx5MkTTp48iZWVVY7zon3Kh1GjRnHnzh1u3bol/9nb2zNnzhyOHTsGiLYpT3R1dWnatCmPHj3Kcfzx48e4uLgAb277vPUWkN69e/P111/j7OyMu7s7N2/eZNWqVbz33nuAzOQ/c+ZMlixZgpubG25ubixZsgRDQ0OGDx+ucDpxcXE5xuoADA0Nc3whvu3Ex8fz9OlT+d9+fn7cunULS0tLnJ2di2wHMzMzxo8fz6xZs7CyssLS0pLZs2dTr169PGbHwoiOjs7TViYmJgWaNd8WCmsfe3t7Bg0axI0bNzh48CAZGRnyOrS0tERXV1e0jxIp6tnJLQZ1dHSws7OjZs2agHh2lE1R7TNnzhyGDh1K27Zt6dChA0ePHuXAgQOcPXsWeIPbpzyX4KgDsbGx0owZMyRnZ2dJX19fqlq1qjR//nwpJSVFHiYzM1NasGCBZGdnJ+np6Ult27aV7t69q3AaLi4uEpDnN2nSJGUUqcJy5syZfOtpzJgxkiQp1g5JSUnS1KlTJUtLS8nAwEDq1auXFBgYqHAe8ksfkJYuXVqWRa2QFNY+fn5+BdbdmTNn5HGI9lEORT07ucnPNYBoG+WhSPts3LhRql69uqSvry95eHhI+/btyxHHm9g+Gv9lTCAQCAQCgUBlvPVzQAQCgUAgEKgeIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHO3yzkBhJCcnk5qaWt7ZEAgEAoFAUAx0dXXR19cvNIzaCpDk5GQMDFyBkPLOikAgEAgEgmJgZ2eHn59foSJEbQWIzPIRAgQBpkpJw85OKdHmoHJl5adhb6/8NN6EcrwJZYA3pxwmxCk3gRcvlBs/wMuXyk9DlEMx3oQygGrKEaLcD/tYwCkkhNTU1IopQF5jirIEiKYKZsBoaSk/DR0d5aehq6v8NIqw1pUaAwPlxg9gZKT8NIyNlZ+GqXIeuRyYoKHcBGJjlRs/qKbBVXHjKvvhA+V3IqroCFXRoavixaQmvD0lFQgEAoFAoDYIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOVUgN1wlbejZWam0qKWk5Gh/DTS0pSfRmqq8tNITlZu/ElJyo0fICFB+WnExys/DVVsJCsRp9wEVFFRqmhwVdy4yn74QPmdiCo6QlV06Kp4MSkZRbsPDUmSJKXmpIQkJydja2tLrCp6QoFAIBAIBGWGqakpoaGh6OvrFxhGbS0g+vr6VK5cmaCgIKXEHxsbi5OTE0FBQZiamiolDYCmTZvy77//Ki1+VaTxptSVqCf1SUMVdSXqSXEqel2JelIcVdVVs2bNChUfoMYCBEBTU1OpFQQylabMNLS0tJReBlWkARW/rkQ9qVcaoNy6EvWkOG9KXYl6Uhxl15WmZtFTTNV6EuqUKVPKOwulRhVleBPqCZRfDlFP6pWGshH1pDiirhRD1JPiKFIOtZ0DomxiY2MxMzMjJiZGJWqzIiPqSjFEPSmOqCvFEPWkGKKeFEed6kqtLSDKRE9PjwULFqCnp1feWVF7RF0phqgnxRF1pRiinhRD1JPiqFNdvbUWEIFAIBAIBOXHW2sBEQgEAoFAUH4IASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOW8VQIkKiqKUaNGYWZmhpmZGaNGjSI6OrrQa0JDQxk7diz29vYYGhrSvXt3njx5opoMlxMlqSeABw8e0KdPH8zMzDAxMcHT05PAwEDlZ7gcKUldLVy4kFq1amFkZISFhQWdO3fmypUrqsmwilizZg2urq7o6+vTuHFjLly4UGj4c+fO0bhxY/T19alatSq//PKLinJa/hSnrry8vGjVqhVWVlYYGBhQq1YtvvvuOxXmtvwo7j2VkpLC/PnzcXFxQU9Pj2rVqrFp0yYV5bZ8KW5drV69mtq1a2NgYEDNmjXZunWrajIqvUV0795dqlu3rnTp0iXp0qVLUt26daVevXoVGD4zM1Py9PSU2rRpI129elV6+PCh9P7770vOzs5SfHy8CnOuWopbT5IkSU+fPpUsLS2lOXPmSDdu3JCePXsmHTx4UAoNDVVRrsuHktTV9u3bpRMnTkjPnj2T7t27J40fP14yNTWVwsLCVJRr5bJz505JR0dHWr9+veTj4yPNmDFDMjIykgICAvIN7+vrKxkaGkozZsyQfHx8pPXr10s6OjrSrl27VJxz1VPcurpx44a0Y8cO6d69e5Kfn5/0+++/S4aGhtKvv/6q4pyrluLWkyRJUp8+faTmzZtLJ06ckPz8/KQrV65IFy9eVGGuy4fi1tWaNWskExMTaefOndKzZ8+kP/74QzI2Npb279+v9Ly+NQLEx8dHAqTLly/Lj3l7e0uA9PDhw3yvefTokQRI9+7dkx9LT0+XLC0tpfXr1ys9z+VBSepJkiRp6NCh0siRI1WRRbWhpHWVm5iYGAmQTp48qYxsqpxmzZpJkydPznGsVq1a0ieffJJv+I8//liqVatWjmOTJk2SPD09lZZHdaG4dZUf/fv3f+OfveLW05EjRyQzMzMpMjJSFdlTK4pbVy1atJBmz56d49iMGTOkVq1aKS2PWbw1QzDe3t6YmZnRvHlz+TFPT0/MzMy4dOlSvtekpKQA5NhQR0tLC11dXby8vJSb4XKiJPWUmZnJoUOHqFGjBt26dcPGxobmzZuzb98+FeW6fChJXeUmNTWVdevWYWZmhoeHh7KyqjJSU1O5fv06Xbt2zXG8a9euBdaJt7d3nvDdunXj2rVrpKlii/VyoiR1lZubN29y6dIl2rVrp4wsqgUlqaf9+/fTpEkTVqxYgYODAzVq1GD27NkkJSWpIsvlRknqKiUlJc+mcQYGBly9elXpz99bI0BCQkKwsbHJc9zGxoaQkJB8r6lVqxYuLi7MmzePqKgoUlNTWbZsGSEhIbx8+VLZWS4XSlJPYWFhxMfHs2zZMrp3787x48fp378/AwYM4Ny5c8rOcrlRkrrK4uDBgxgbG6Ovr893333HiRMnsLa2VlZWVUZERAQZGRnY2trmOG5ra1tgnYSEhOQbPj09nYiICKXltbwpSV1l4ejoiJ6eHk2aNGHKlClMmDBBmVktV0pST76+vnh5eXHv3j327t3L999/z65du96YfVYKoiR11a1bNzZs2MD169eRJIlr166xadMm0tLSlP78VXgBsnDhQjQ0NAr9Xbt2DQANDY0810uSlO9xAB0dHXbv3s3jx4+xtLTE0NCQs2fP8s4776ClpaXUcpU1yqynzMxMAPr27cuHH35IgwYN+OSTT+jVq1eFnEyozLrKokOHDty6dYtLly7RvXt3hgwZQlhYmFLKUx7kLn9RdZJf+PyOv4kUt64ALly4wLVr1/jll1/4/vvv+eOPP5SZRbWgOPWUmZmJhoYG27dvp1mzZvTo0YNVq1axZcuWN94KAsWrq88//5x33nkHT09PdHR06Nu3L2PHjgVQ+ntOW6mxq4CpU6cybNiwQsNUqVKFO3fuEBoamudceHh4HrWYncaNG3Pr1i1iYmJITU2lUqVKNG/enCZNmpQ676pEmfVkbW2NtrY2derUyXG8du3aFXKoStn3FICRkRHVq1enevXqeHp64ubmxsaNG5k3b16p8l7eWFtbo6WlledrKywsrMA6sbOzyze8trY2VlZWSstreVOSusrC1dUVgHr16hEaGsrChQt59913lZbX8qQk9VS5cmUcHBwwMzOTH6tduzaSJBEcHIybm5tS81xelKSuDAwM2LRpE7/++iuhoaFUrlyZdevWYWJionSrbIUXINbW1gpVUosWLYiJieHq1as0a9YMgCtXrhATE0PLli2LvD7rRn7y5AnXrl3jq6++Kl3GVYwy60lXV5emTZvy6NGjHMcfP36Mi4tL6TOvYlR1T2VHkiT5nKOKjK6uLo0bN+bEiRP0799ffvzEiRP07ds332tatGjBgQMHchw7fvw4TZo0QUdHR6n5LU9KUlf58abcOwVRknpq1aoVf//9N/Hx8RgbGwOy/khTUxNHR0eV5Ls8KM09paOjI6+bnTt30qtXLzQ1lTxIovRprmpE9+7dpfr160ve3t6St7e3VK9evTxLJmvWrCnt2bNH/vdff/0lnTlzRnr27Jm0b98+ycXFRRowYICqs65SSlJPe/bskXR0dKR169ZJT548kX766SdJS0tLunDhgqqzr1KKW1fx8fHSvHnzJG9vb8nf31+6fv26NH78eElPTy/HaquKTNYywI0bN0o+Pj7SzJkzJSMjI8nf31+SJEn65JNPpFGjRsnDZy3D/fDDDyUfHx9p48aNb90yXEXr6ueff5b2798vPX78WHr8+LG0adMmydTUVJo/f355FUElFLee4uLiJEdHR2nQoEHS/fv3pXPnzklubm7ShAkTyqsIKqO4dfXo0SPp999/lx4/fixduXJFGjp0qGRpaSn5+fkpPa9vlQCJjIyURowYIZmYmEgmJibSiBEjpKioqBxhAGnz5s3yv3/44QfJ0dFR0tHRkZydnaXPPvtMSklJUW3GVUxJ6kmSJGnjxo1S9erVJX19fcnDw0Pat2+f6jJdThS3rpKSkqT+/ftL9vb2kq6urlS5cmWpT58+0tWrV1WfeSWyevVqycXFRdLV1ZUaNWoknTt3Tn5uzJgxUrt27XKEP3v2rNSwYUNJV1dXqlKlirR27VoV57j8KE5d/fjjj5K7u7tkaGgomZqaSg0bNpTWrFkjZWRklEPOVUtx76kHDx5InTt3lgwMDCRHR0fpo48+khITE1Wc6/KhOHXl4+MjNWjQQDIwMJBMTU2lvn37FsuNQGnQkKT/ZnsJBAKBQCAQqIgKvwpGIBAIBAJBxUMIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCpHCBCBQCAQCAQqRwgQgUAgEAgEKuf/8i8WFbrbZJ0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from cartopy import crs as ccrs \n", "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", "import matplotlib as mpl\n", "from matplotlib import pyplot as plt\n", "mpl.rcParams['figure.dpi'] = 100\n", "\n", "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "clevs = np.arange(170,350,20)\n", "\n", "# 繪圖\n", "plt.title(\"Correlation map (Dec precip. and DJF ONI)\", loc='left') # 設定圖片標題,並且置於圖的左側。\n", "olrPlot = (corr.plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(-1,1.1,0.1), \n", " cmap='bwr', \n", " add_colorbar=True, \n", " extend='neither', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': ' '}) #設定color bar\n", " )\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(-20,40,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines() \n", "ax.set_ylabel(' ') # 設定坐標軸名稱。\n", "ax.set_xlabel(' ')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "52219561", "metadata": {}, "source": [ "## `where`條件控制\n", "\n", "`where`是一個很好用的方法,可以針對資料設定條件進行篩選和過濾。我們直接看以下例子:\n", "\n", "**Example 4:** 繪製2021年12月平均之Mean Sea Level Pressure,但海拔3000公尺以上的區域不畫。\n", "\n", "Step 1: 讀MSLP、地形資料。\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "30792b76", "metadata": {}, "outputs": [], "source": [ "lats=0\n", "latn=60\n", "\n", "topo_ds = xr.open_dataset('data/etopo5.nc')\n", "mslp_ds = xr.open_dataset('data/mslp.2021.nc')\n", "topo = topo_ds.sel(Y=slice(lats,latn),\n", " X=slice(lon1,lon2)).bath\n", "mslp = mslp_ds.sel(time=slice('2021-12-01','2021-12-31'),\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).mslp\n", "mslp = mslp/100." ] }, { "attachments": {}, "cell_type": "markdown", "id": "f3eff5b9", "metadata": {}, "source": [ "`where`的原理是搜尋兩者相對應的網格是否滿足給定的控制條件 (以這個範例來說是搜尋topo >= 3000的網格點),但兩者網格解析度不同時,沒有辦法比較。因此必須先進行網格內插,讓`topo`和`mslp`的解析度相同。" ] }, { "cell_type": "code", "execution_count": 10, "id": "56af5de1", "metadata": {}, "outputs": [], "source": [ "topo_rmp = topo.interp(X=mslp.lon, Y=mslp.lat)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "adadd077", "metadata": {}, "source": [ "接著用`where`設定條件:" ] }, { "cell_type": "code", "execution_count": 11, "id": "7f57103f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'mslp' (time: 31, lat: 25, lon: 33)>\n",
       "array([[[1013.425, 1015.375, 1017.25 , ..., 1015.8  , 1015.5  ,\n",
       "         1015.45 ],\n",
       "        [1019.35 , 1020.625, 1021.65 , ..., 1009.975, 1012.825,\n",
       "         1015.25 ],\n",
       "        [1023.575, 1024.4  , 1025.175, ..., 1008.025, 1013.475,\n",
       "         1017.35 ],\n",
       "        ...,\n",
       "        [1010.3  , 1009.675, 1008.85 , ..., 1006.8  , 1007.1  ,\n",
       "         1007.05 ],\n",
       "        [1010.15 , 1009.875, 1009.05 , ..., 1006.775, 1007.25 ,\n",
       "         1007.125],\n",
       "        [1010.075, 1009.9  , 1009.175, ..., 1007.15 , 1007.35 ,\n",
       "         1007.275]],\n",
       "\n",
       "       [[1003.85 , 1006.025, 1008.05 , ...,  983.225,  983.4  ,\n",
       "          984.375],\n",
       "        [1010.625, 1012.975, 1015.025, ...,  974.25 ,  978.325,\n",
       "          981.95 ],\n",
       "        [1015.5  , 1017.675, 1019.55 , ...,  976.95 ,  981.475,\n",
       "          985.325],\n",
       "...\n",
       "        [1011.025, 1010.875, 1010.8  , ..., 1008.775, 1008.8  ,\n",
       "         1008.825],\n",
       "        [1010.625, 1010.525, 1010.65 , ..., 1009.075, 1008.9  ,\n",
       "         1008.65 ],\n",
       "        [1011.025, 1010.85 , 1010.825, ..., 1008.475, 1008.325,\n",
       "         1008.75 ]],\n",
       "\n",
       "       [[1024.175, 1025.275, 1026.675, ..., 1019.775, 1019.725,\n",
       "         1019.45 ],\n",
       "        [1029.125, 1029.8  , 1030.6  , ..., 1006.275, 1007.75 ,\n",
       "         1010.   ],\n",
       "        [1034.4  , 1034.875, 1035.45 , ...,  995.475,  997.3  ,\n",
       "         1000.925],\n",
       "        ...,\n",
       "        [1011.825, 1011.275, 1010.975, ..., 1009.225, 1009.4  ,\n",
       "         1009.475],\n",
       "        [1011.55 , 1011.   , 1010.475, ..., 1008.975, 1009.125,\n",
       "         1008.975],\n",
       "        [1011.575, 1011.275, 1010.925, ..., 1008.9  , 1009.2  ,\n",
       "         1009.025]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 60.0 57.5 55.0 52.5 50.0 ... 10.0 7.5 5.0 2.5 0.0\n",
       "  * lon      (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n",
       "  * time     (time) datetime64[ns] 2021-12-01 2021-12-02 ... 2021-12-31\n",
       "    X        (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n",
       "    Y        (lat) float32 60.0 57.5 55.0 52.5 50.0 ... 10.0 7.5 5.0 2.5 0.0
" ], "text/plain": [ "\n", "array([[[1013.425, 1015.375, 1017.25 , ..., 1015.8 , 1015.5 ,\n", " 1015.45 ],\n", " [1019.35 , 1020.625, 1021.65 , ..., 1009.975, 1012.825,\n", " 1015.25 ],\n", " [1023.575, 1024.4 , 1025.175, ..., 1008.025, 1013.475,\n", " 1017.35 ],\n", " ...,\n", " [1010.3 , 1009.675, 1008.85 , ..., 1006.8 , 1007.1 ,\n", " 1007.05 ],\n", " [1010.15 , 1009.875, 1009.05 , ..., 1006.775, 1007.25 ,\n", " 1007.125],\n", " [1010.075, 1009.9 , 1009.175, ..., 1007.15 , 1007.35 ,\n", " 1007.275]],\n", "\n", " [[1003.85 , 1006.025, 1008.05 , ..., 983.225, 983.4 ,\n", " 984.375],\n", " [1010.625, 1012.975, 1015.025, ..., 974.25 , 978.325,\n", " 981.95 ],\n", " [1015.5 , 1017.675, 1019.55 , ..., 976.95 , 981.475,\n", " 985.325],\n", "...\n", " [1011.025, 1010.875, 1010.8 , ..., 1008.775, 1008.8 ,\n", " 1008.825],\n", " [1010.625, 1010.525, 1010.65 , ..., 1009.075, 1008.9 ,\n", " 1008.65 ],\n", " [1011.025, 1010.85 , 1010.825, ..., 1008.475, 1008.325,\n", " 1008.75 ]],\n", "\n", " [[1024.175, 1025.275, 1026.675, ..., 1019.775, 1019.725,\n", " 1019.45 ],\n", " [1029.125, 1029.8 , 1030.6 , ..., 1006.275, 1007.75 ,\n", " 1010. ],\n", " [1034.4 , 1034.875, 1035.45 , ..., 995.475, 997.3 ,\n", " 1000.925],\n", " ...,\n", " [1011.825, 1011.275, 1010.975, ..., 1009.225, 1009.4 ,\n", " 1009.475],\n", " [1011.55 , 1011. , 1010.475, ..., 1008.975, 1009.125,\n", " 1008.975],\n", " [1011.575, 1011.275, 1010.925, ..., 1008.9 , 1009.2 ,\n", " 1009.025]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 60.0 57.5 55.0 52.5 50.0 ... 10.0 7.5 5.0 2.5 0.0\n", " * lon (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n", " * time (time) datetime64[ns] 2021-12-01 2021-12-02 ... 2021-12-31\n", " X (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n", " Y (lat) float32 60.0 57.5 55.0 52.5 50.0 ... 10.0 7.5 5.0 2.5 0.0" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mslp_mask = mslp.where(topo_rmp<=3000)\n", "mslp_mask" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4a48000d", "metadata": {}, "source": [ "我們設定的條件就是`topo<=3000`,不滿足的會直接被設定為缺失值。也可以在`where`的引數`other`中,設定當不滿足條件時要代入的值。" ] }, { "cell_type": "code", "execution_count": 12, "id": "4d11fd7f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/waynetsai/micromamba/envs/p3/lib/python3.10/site-packages/shapely/predicates.py:798: RuntimeWarning: invalid value encountered in intersects\n", " return lib.intersects(a, b, **kwargs)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGeCAYAAADrFxkuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkkUlEQVR4nOzddVwVWR/H8c+lGxERRFGwu5tVMTBw7Q4UXTtZG1tUrLW7W9fE7k7sQtdGxUAMSjrm+cP1PouExA3ivF+v+3rWmXNnfvfqw3w5c+YcmSRJEoIgCIIgZGsa6i5AEARBEAT1E4FAEARBEAQRCARBEARBEIFAEARBEAREIBAEQRAEAREIBEEQBEFABAJBEARBEBCBQBAEQRAERCAQBEEQBAERCBRmw4YNyGQyZDIZ586dS7BfkiQKFy6MTCbDwcEh3r4vX77g5uZGyZIlMTQ0xNTUlOLFi+Ps7Mz9+/cTnOPmzZtJ1vHq1St5HTKZDA0NDczNzXFycuLq1avp/mwymQw9PT2srKyoW7cuM2bMwN/fP03HVYY1a9bQsmVLbG1t0dfXp3DhwvTv358PHz4k2v7vv/+mfPny6OnpYW1tjaurK9++fYvX5syZM/Ts2ZPixYtjaGhI3rx5adGiBbdu3UpwvEuXLtGrVy8qVaqErq4uMpmMV69eKeOjCoIgKJQIBApmbGzM2rVrE2w/f/48L168wNjYON72b9++Ub16dTZs2ECvXr04cOAAW7dupU+fPvj4+HD37t001TF48GCuXr3KxYsXmTFjBvfu3aNu3brcuXMnTccDWL9+PVevXuXkyZMsXbqU8uXLM2vWLEqUKMGpU6fSfFxFmjRpEkZGRnh4eHDs2DFGjRrFoUOHqFSpEh8/fozXduvWrXTq1IkqVapw9OhRJk2axIYNG2jdunW8dsuXL+fVq1cMHTqUI0eOsHDhQvz9/alevTpnzpyJ1/b06dOcOnWK/PnzU7NmTaV/XkEQBIWRBIVYv369BEi9evWS9PX1paCgoHj7u3btKtWoUUMqVaqUVKdOHfn2devWSYB05syZRI8bGxub4Bw3btxIsg4fHx8JkObMmRNv++nTp+X1pfWzJXbe169fSzY2NpKxsbHk5+eX6mMr2sePHxNsu3HjhgRIU6dOlW+LiYmR8uTJIzVs2DBe261bt0qAdOTIkWSPGRISIllaWkr169ePt/2/f19z5syRAMnHxyetH0cQBEFlRA+BgnXq1AmA7du3y7cFBQWxZ88eevbsmaD9ly9fAMiTJ0+ix9PQUMxfUfXq1QF4/fq1Qo73Q/78+Zk7dy4hISGsXLky3r6bN2/SvHlzcubMiZ6eHhUqVGDnzp0JjvHu3Tv69OmDjY0NOjo6WFtb07Zt2wS/0adE7ty5E2yrVKkSmpqa+Pr6yrd5eXnx4cMHevToEa9tu3btMDIywtPTM9ljGhkZUbJkyXjHBMX9fQmCIKia+OmlYCYmJrRt25Z169bJt23fvh0NDQ06dOiQoH2NGjUA6NatG/v27ZMHBEV7/vw5ABYWFgo/tpOTE5qamly4cEG+7ezZs9jb2xMYGMiKFSvYv38/5cuXp0OHDmzYsEHe7t27d1SpUgVPT0+GDRvG0aNHWbBgAaampgQEBCikvvPnzxMbG0upUqXk27y9vQEoW7ZsvLba2toUL15cvj8pQUFB3L59O94xBUEQMjMtdReQFfXs2ZO6devy8OFDSpUqxbp162jXrl2C8QMA9vb2uLu7M23aNFq1agWAnZ0djRo1on///gkuWCkVFxdHTEwMsbGxPHz4kH79+gHQpUuXtH+wJBgaGpIrVy7ev38v3zZgwABKlSrFmTNn0NL6/s+sUaNGfP78mbFjx9KtWzc0NDSYOHEinz9/5t69e5QoUUL+/vbt2yuktpCQEAYMGICNjU28HpofwStnzpwJ3pMzZ85fDgQcOHAgoaGhjBs3TiF1CoIgqJvoIVCCOnXqUKhQIdatW8eDBw+4ceNGorcLfpgwYQJv3rxh3bp19O3bFyMjI1asWEGlSpXi3XpIjdGjR6OtrY2enh6VKlXizZs3rFy5Eicnp7R+rGRJkiT/7+fPn/P48WN5+IiJiZG/nJyc+PDhA0+ePAHg6NGj1K1bN14YUJSIiAhat27N69ev2bVrF0ZGRgnayGSyRN+b1Hb4/ve1detW5s+fT6VKlRRWryAIgjqJHgIlkMlk9OjRg0WLFhEREUHRokWpVatWsu+xtLSkR48e8nvaFy5coEmTJgwdOlQ+LiE1hg4dSteuXdHQ0CBHjhzY2dkle5FLj9DQUL58+UKZMmUA5Pf+R4wYwYgRIxJ9z+fPnwH49OkT+fLlU3hNkZGRtGrVikuXLnHo0CGqVasWb7+5uTnwvafA0tIy3r6vX78m2nMAMGXKFKZNm8b06dMZNGiQwusWBEFQFxEIlMTFxYWJEyeyYsUKpk+fnur3165dm4YNG7Jv3z78/f0THdiWnHz58lG5cuVUnzctDh8+TGxsrHx+hVy5cgHg5uaW4BG+H4oVKwZ8H9Pw9u1bhdYTGRlJy5YtOXv2LPv376d+/foJ2vwILw8ePKBkyZLy7TExMTx+/DjREDZlyhQmT57M5MmTGTt2rEJrFgRBUDcRCJQkb968jBw5ksePH9O9e/ck2338+BELC4sEo9NjY2N59uwZBgYG5MiRQ8nVpt2bN28YMWIEpqam9O3bF/h+sS9SpAj37t3Dw8Mj2fc3adKEzZs38+TJE3lISI8fPQNnzpxh7969NGrUKNF21apVI0+ePGzYsCHeYM/du3fz7du3BEFm6tSpTJ48mfHjxzNp0qR01ykIgpDRiECgRDNnzvxlm82bN7Ny5Uo6d+5MlSpVMDU15e3bt6xZs4aHDx8yceJEdHR04r3nzJkziQ56S+34ABcXFzZu3IiPjw+2tra/bO/t7S0fC+Dv78/FixdZv349mpqaeHp6xnuCYeXKlTRp0oRGjRrh4uJC3rx5+fr1K//88w+3b99m165dALi7u3P06FFq167N2LFjKVOmDIGBgRw7doxhw4ZRvHhxALS0tKhTpw6nT59Otsa2bdty9OhRxo0bh7m5OV5eXvJ9JiYm8t4ATU1NZs+ejbOzM3379qVTp048e/aMUaNG4ejoSOPGjeXvmzt3LhMnTqRx48Y0bdo03jHh/490wvdbIOfPnwe+9z7A93ESFhYWWFhYUKdOnV9+z4IgCGqh7okQsoqUTBokSVKCiYkePXokDR8+XKpcubJkYWEhaWlpSWZmZlKdOnWkzZs3J3qOpF4+Pj5JTkyUmDZt2kj6+vpSQEBAij7bj5eOjo6UO3duqU6dOpKHh4fk7++f6Pvu3bsntW/fXsqdO7ekra0tWVlZSfXq1ZNWrFgRr52vr6/Us2dPycrKStLW1pasra2l9u3bx5sQCIj3vSUlue8nsfdv27ZNKlu2rKSjoyNZWVlJQ4YMkUJCQuK1qVOnTrLH/a+zZ8+m6vyCIAgZhUyS/jM8XMhWrKyscHZ2Zs6cOeouRRAEQVAzEQiyqYcPH1KjRg1evnwpHwQoCIIgZF8iEAiCIAiCICYmEgRBEAQhAweCd+/e0bVrV8zNzTEwMKB8+fLx1p+XJInJkydjbW2Nvr4+Dg4OPHz4MN4xnjx5gr29Pfny5cPd3T3ePltbW2QyWYIR466urvLn6QVBEAQhu8iQgSAgIAB7e3u0tbU5evQojx49Yu7cufGex589ezbz5s1jyZIl3LhxAysrKxwdHQkJCZG3GThwIM7Ozuzfv5+DBw9y+fLleOfR09Nj9OjRqvpYgiAIgpBhZchAMGvWLGxsbFi/fj1Vq1bF1taW+vXrU6hQIeB778CCBQsYN24crVu3pnTp0mzcuJGwsDC2bdsmP05gYCAVKlSgbNmyWFtbExQUFO88ffv2xcvLiyNHjqj08wmCIAhCRpMhJyY6cOAAjRo1ol27dpw/f568efMyYMAAevfuDYCPjw9+fn40bNhQ/h5dXV3q1KnDlStX5DPmubu74+joSHh4OL///nuCWetsbW3p168fbm5uNG7cOEVr2UdGRhIZGRlvmyRJSlsnQBAEQfg1HR0d9PT01F1G5qa2GRCSoaurK+nq6kpubm7S7du3pRUrVkh6enrSxo0bJUmSpMuXL0uA9O7du3jv6927t9SwYcN42yIiIhKdOKdAgQLS/PnzJX9/f8nY2FjatGmTJEmSNHTo0GQnkJk0aVKCCWeMjIySnbhGvMRLvMRLvJT7srKyksLDw9N59cneMmQPQVxcHJUrV5bPg1+hQgUePnzI8uXL6datm7zdz7+VS4n8pq6rqxtvSt2fWVhYMGLECCZOnBhvTvukuLm5MWzYMPmfg4ODsbGxwdfXFxMTEwDCvPb/+kNmY9Kje+ouQWFkJcupuwRBTT7mLqPuEtLkZej31UW/fvbj7NG/OXVwCx/fvwZAQ1OTHGa5MTO3xCxXbsxyWVGpRgOq/tYkRceOjozgzx4OfP74joFjFlLLMfHFzRShZK4vjB8/nt27d1OxYkVu375NVFSU6CVIhwwZCPLkyRNvBTqAEiVKsGfPHuD7DHsAfn5+5MmTR97G398/wVK2KTFs2DCWLVvGsmXLftlWV1cXXV3dBNtNTEzkgUDL0CDVNWQXkvdt0E/4/WVaPo/l/ykrXVGNhQiq5GdVHmMlHl+SJL59+8bnL1/48vkzn//7+vJF/t9IEhoGFhgYmmBoZIqBkTGGhiYYGJlgaGSCgZEpBobG8fa9fHaVo3vWcvX8IbS0tKnt2JZBbguJjo7i66cPfP3s9/316QPXzh/mzYt/qNv4178sAWBkwtLt11g4dSDzp/Tl8YNr9B81D109fYV+Nwd2LKfbkgno6+uzfv16WrZsiZmZmcLOkV1lyEBgb2/PkydP4m17+vQpBQoUAMDOzg4rKytOnjxJhQoVAIiKiuL8+fPMmjUr1eczMjJiwoQJTJ48mWbNmqX/AwjZkuR9O96fRUDImvysyivsWOHh4Wzfvp3nL17w5fNnPv3nwv/zWCUtLS1MzXJjZp6bHOa5yZWvNDINDUK/BfEtOAD/D28I/RZEWGgIoSFBREaEJXleu6Jl6DfyL+o5dcLYJOkL6YTBLdHQ1Exyf1xcHAFfPvLJz5dPfm/x93uD/wdfoiLD0dHV4+jedYSFhjB21pbUfzmJ+PLpA3Mn9ebWlZP0798fDw8PcuTIQXBwsEKOn91lyEDw559/UrNmTTw8PGjfvj3Xr19n1apVrFq1Cvh+q8DV1RUPDw+KFClCkSJF8PDwwMDAgM6dO6fpnH369GH+/Pls376datWqKfLjCP/6+YKZ1Unet0UoEBIlSRKnTp1i6rRpfPL3p2ixYuTKlYsiRYpQo3p1cllYkCtXLiINS2CW0xIz89wYmZilaODzD7ExMYSFfQ8HYaEhhIUGExoSRM5cVhQuUSFFA6G/fvoAMhnrFo0nJDiAb8GBfPv3f4ODvvD54ztiYqLl7XX1DLC0zo+FlQ31m3Ymd578VKzeIE3f0c+unNnPfPf+aGlpM23pAcYNEL+8KVqGDARVqlTB09MTNzc33N3dsbOzY8GCBXTp0kXeZtSoUYSHhzNgwAACAgKoVq0aJ06cwNg4bR152traTJ06Nc2BQkhedgsDP4hQkLUoonfg9evXuE+dyrlz56hduzabNm6Mt/z482826T4HgKaWFsYmZsn2APxKTos8PLxzhXNBOzE2McPIJAdGJmbkzlMAY1MzLKzykdvKhtxW+bHIY4OxiZnCn7gKD/vGijkjOea5jhoOzXCduJwcOZMeFyaknVjLIJ2Cg4MxNTUlKCjo/4MKL+9Rc1UZS3YNAz8TwSBzS28YiIiIYOXKlaxYuZJcuXIxYcIEHBs0kF9AFRUEspLHD64za6wLXz59oP+ouTRu1UP+fTUspyNvl9jPYSH1MmQPgZB1iDDwf6K3IPs6c+YM7lOn4ufnR69evRjQvz8GBt8HH4sgEF9UVCR+73w4f2wX29bMoEiJikxbsp+8BYqou7QsTwQCQWlEGEhIhILMKa29A76+vkydOpXTZ87wm70969etw87OTr4/u4eBxw9u8OjeVd6/ec67f1+f/HyJi4tDQ0ODTr3c6NzbDS1tbXWXmi2IQCAIKiZCQeaSljAQGRnJqtWrWb58OWZmZixdsoRGjRrFu7+e3cNAbGwsI3t9H3BobVOIvPkLU7thW/LmL4y1TSEKFCpBjpy51Vxl9iICgaBwomfg10QoyLrOnT/PlClTeP/+PX/07MnAgQMxNDSU78/qQcD7Vcp+mw/6+omoyAj+GHeAklV+T7D/bfD3V1IaijnBFE4EAkEhRAgQsqLU9A68e/eOqdOmcfLkSWrUqMHqVasoXLhwvDaZPQyk9GL/KwGf3rB9QXdkGhpY2pT89RsElRCBQEgTEQAE4buoqCjWr1/PosWLMTU1ZeHChTR1cspSC54pKggA3Lm0g93L+qGrb0y/KScxtyqosGML6SMCgZAiIgAI2U1KegeuX7/OxIkTeenjQ/du3Rg6dChGRkbKL04FFBkCfjiwbjjnD8yn/G8daNNvGQZGYrrhjEQEAiFJIgQIQuK+fPnCrNmz2bNnDxXKl2f/vn2UKFFC3WUphDKCAMC3oE9cPLSIhh0m0rDjpCzVg5JViEAgxCNCgCAk3TsQFxfHrl27mD1nDpIkMW3aNDq0b5+iKYUz+vgBZQWBH+5f/T5hm73TQBEGMigRCAQRAgQhBZ48ecL4CRO4ffs2rVq1YsyYMeQyN1d3WQqh7DAAcOfi3xQp1wAjUzHtcEYlAkE2JUKAICTu596B0NBQFi1ezPr167G1tWXrli1Ur15dPcUpgSrCQODnt/g8ukiHweuUfi4h7UQgyGZEEBCElDt58iRT3N35+vUrrkOH0qtXL3R0dH79xkxAFUHgh7uXdqCppUPpai1Vdk4h9UQgyCZEEBCEX/vRO/Du3TumTJnC6TNncHBwYNLEieTPn1+9xSmQKsMAwL0ruylesQn6hqYqPa+QOiIQZGEiBAhC6kRHR7Nu3ToWL1mCqakpy5YupWHDhukeBJdRBhSqOgjISRLaugbqObeQYiIQZDEiBAhC2ly+94iBC9x4+fIlLt27M2TIkCwzpwCoMQwAhUrX4da5LUiSJJ4wyMBEIMjkRAAQhPQ7cukm7cbMBMDK0pI3vr5M9/DAPGdOzMzMqF27NkWKpH353cJGvhmml0AdCpV24KznHD6/f4ZF3qIKP/63b98UfszsSASCTEYEAEFQvIolCjFyxAi+fv3Kl69fCQgI4PHjx3z9+pXPnz+zdNky9u/bh41N2i/qyYWC0JAgHty5RPkqddHTV07XemnbaLX1EtiVsEdDQ5Pn3ucUFggCAgLYuHEjR44c4dy5cwo5ZnYnkyRJUncRmVlwcDCmpqYEBQVhYmICQNjlPek+rrjwZ31itcOMJanJiIKDg2nRsiVGhobs3LkTfX39ePsjIiKYNn06ly5dwsjICGMjI4yNjTE2MaF1q1bY29vL2yYWCJbMGMrRPWuJiYmma9/xOPefoNDP9TN1hYKFI6tjblWIrsO3KuR4V7e058CBA9StW5d69eoxevToeD+HhdT79fRaglJI3reTfQmCoDrJrVtgYmLC8mXLeOnjwx+9erFt2zaePHlCXFwcb968oV27dnh6elK/fn0qVaxInjx5iJMkHj16RHcXF+YvWEBsbCzwvZfgZ9FRkcTERGOV15bj+zfK2ypLadtopR4/KYXKOPDc+yyK+B00OjKcI0eO4O7uzrFjx+jXr58CKhTELQMlERd1Qcg6ihcvzqKFC1m8ZAmTp0whNjYWY2NjpLg4cpqbs2f3booXLx7vPXFxcSxfsYIFCxZw+/Zt5s+fTy5z8wS3DvqPmsutq6fwe/cKgNtXT1Llt8ZK/TzquH1QuLQDZ/fO5tP7p+TOWyxdx3r24AxhYWE0b95cQdUJIHoIlEKEAUHIeurXr88+T0/u3rnD1i1b6NO7N506d2b/vn0JwgCAhoYGAwcMYOPGjTx9+pRmzZpx48YN+f7YmBhOHtzCgA5V+eTni339luTNX5gTBzar8mOpjO2/4wheeJ9L97Ee3ThI4cKFE/3ehbQTgUAQ1EQEx8zJwMCA6tWrM2DAAMaMHv3Le9Y1a9Tg4IED2BYoQJeuXVm5ahUWsd70bVeRvyb8Qf6CJViy3YuJc3fQpHVPvM4fIjQkSOmfQ9W3DvT0jbEpUoXn3ufTfIyoyDDevrzDw+sHadasmXiEUcHELQNBELK15MYPKEru3LnZvHkz8+fPZ/bs2Tx6+BBfnydMX3aQyjUbyts5NOnA2oXjuHR6H41adld6Xaq+dVCodB2un1pPXFzcL1eIDAv5ysMbB/no+4iPvv/w0fcRX/19kCQJLR09unTpoqKqsw8RCARBEFRAS0uLkSNH8vbdOx7/8w8AhYqVi9fGwjIf5arU4cyRbSoJBKDaUFC8QmPO7JnF2xe3yF+kSrJtD20azbWTa8mZ2xZLm5KUqdEKS5uS31/5SlCpkpgGWdFEIBAEQVAhExMTwiMiACiX5xtvoizj7a9Wy4k1C8eqtCZVhQLb4jXRMzDln5uHkw0EcXFxPLp5GIeWw2nmMkfpdQnfiTEEgiAIKqSvp0dERAT6+vqJrpyooamJpqbqf1dTxZgCTS1tilVoxD+3jiTb7t3L24QE+FGy8u9Kr0n4PxEIBEGNxMDC7CUuLo6nT58iSVKSgxGjo6PQ1tZVcWXflbaNVnowKFnZCd/nNwkO8EuyzaMbh9AzMMW2eE2l1iLEJwJBFmTYdzqGfaeruwxByBSs/O6q7FzLV6zg0uXLVKpYES0tLSRJSjBZUXRUFNo66gkEPygzGBSv2ASZTMbj20cT3e/7/BY3zmygWIVGaGqpb0Gm7EgEgizmv0FAhILMQfQSZA8XLlxg/vz5DBk8mE6dOvHu3TuOHEm86zw6KpKYaPXMKPhfyggGRqYW2BSpygOvffG2R0WGcXDDKBaOqoa+oRlNOrsr9LzCr4lAkIUkFgBEKMgcRCjI2t6+fcufw4ZRp04dBg0aRJ06dWjQoAEeHh6EhobGa1utthOh34LwunBYTdUm9CMYKCocVG/Ym0c3DuL7/CYAzx+cY65reS4dXkyTzlNx/eu6UlZFFJInAkEWkdyFX4SCzEGEAvVR9m2D0WPGYGJszLy5c+XP348fN46AwECWLl0ar22hYmUpUbYah3etUmpNaaWIcFC5bjcsbUpycP1Idi3ry/IJ9TDOYcXwBXep39ZN3CpQExEIsoCUXPBVGQo+Xr3Hx6v3VHa+rESEgqzpn3/+oWPHjpia/v/ZeRsbG/r17cu69et57/siXvum7fpw2+s0714/U3WpqfLfcJCaoKCpqYVT1+m8eHieOxe206bvUgZMP5fuNQ6E9MmQgWDy5MnIZLJ4LysrK/l+SZKYPHky1tbW6Ovr4+DgwMOHD+Md48mTJ9jb25MvXz7c3ePfi7K1tUUmk+Hl5RVvu6urKw4ODkr7XMqQmgu9IkPBj4t+Yq9ftRGEjEhZvQSxsbEEBweTI0eOBPs6d+5MdHQ0L57cj7e9TsO2GJvm5ODOlUqpSdmSCgr/DQulqjan85+bGbn4ITWb9P/lzIWC8mXYiYlKlSrFqVOn5H/W1NSU//fs2bOZN28eGzZsoGjRokybNg1HR0eePHmCsbExAAMHDsTZ2ZkqVarQr18/6tevH29dcj09PUaPHs3582mfV1vd0nKBN+w7ndCV41LUVlkX78SOa1mjXCItsyfJ+zay0hXVXYagICEhIUiSlGggiImJAcA2x7d423V09WjRcQA71s2mZeeBWOW1U0WpKvHfUFDGrv2//6X61ReFhDJsINDS0orXK/CDJEksWLCAcePG0bp1awA2btyIpaUl27Zto2/fvgAEBgZSoUIFypYti7W1NUFB8RcL6du3L8uXL+fIkSM4OTkp/wMpWHp+2/9vKMgov7F/vHpPhIL/EKEg6wgMDASId7vgh4h/ZyzU0034mGE7l2Ec3buONQvGMX7ONqXWmBGkfkxCwkmdhPTJsH00z549w9raGjs7Ozp27MjLly8B8PHxwc/Pj4YN/78giK6uLnXq1OHKlSvybe7u7jg6OmJgYICGhgaNGjWKd3xbW1v69euHm5sbcXFxKa4rMjKS4ODgeC9VU0TXv2Hf6RkmDPyQ0epRNzGeQPWUcdvgRyBIrIcgMioK+P4z7Gd6+ob0GOzOxZN78L5zWeF1CcLPMmQgqFatGps2beL48eOsXr0aPz8/atasyZcvX/Dz+z67laVl/Pm/LS0t5fsAnJyc+PTpE+/fv8fT0zPeLYcfxo8fj4+PD1u3bk1xbTNmzMDU1FT+srGxSeOnTJus/sSACAXxSd63RTDI5O7dv4+OtnaiPysif/QQ6Okl+t76v3ehSMmKrJgzIlW/uAhCWmTIQNCkSRPatGlDmTJlaNCgAYcPf38ed+PGjfI2P6+DLUlSgm26urpYWFgkeR4LCwtGjBjBxIkTifo3qf+Km5sbQUFB8pevr++v36RAKb3//ysvXcQc4ZmJCAWZ14ULF6hcpQqGhoYJ9v2YgyCxHgIADQ0N+o6Yw7NHtzl9OOvfNhDUK0MGgp8ZGhpSpkwZnj17Jh9X8N/eAAB/f/8EvQYpMWzYMMLDw1m2bFmK2uvq6mJiYhLvpWrpDQUZOQyIcQRJE70FmU9kZCReXl7Url070f03b97EyMiIqJz/n7P/6rmD7Nm8gId3rxIVGUGZir9Ry7EN6xdNICI8NNHjCIIiZIpAEBkZyT///EOePHmws7PDysqKkydPyvdHRUVx/vx5atZM/UIYRkZGTJgwgenTp6tlPEBapTUUZOQwIKSMCAaZx/Xr14mIiEgyEJw6fZo6deqgrf19gFx42Ddmj+/J6nljGObiQOvfLBjqXIu42Bi+fHrPzvVzVVm+kM1kyEAwYsQIzp8/j4+PD9euXaNt27YEBwfTvXt3ZDIZrq6ueHh44Onpibe3Ny4uLhgYGNC5c+c0na9Pnz6Ympqyfft2BX8S5UptKBBhIGsRwSDju3DhAlaWlhQtUiTBPj8/P7y9vWlQv75826mDW4gI+8b6g49Ysu0qvYfNxCqvHc8f3wXg8O7VqipdyIYy5GOHb9++pVOnTnz+/BkLCwuqV6+Ol5cXBQoUAGDUqFGEh4czYMAAAgICqFatGidOnJDPQZBa2traTJ06Nc2BQp1CV45L0UBDEQayLvGIYsZ14cIFateunWB8E8Cnz58BsCtYEPg+DurAjuXUqNucPPm+bytSsiItOg0E4MunD4SHhaiociE7ypCB4O+//052v0wmY/LkyUyePDlNx3/16lWCbZ06daJTp05pOp66/SoUiDCQ9f3oKRDBIOO4ffs2z1+84M8//0x0v2Xu3ADcex1LdVu4c+0Mb14+ZpDbokTbm1vkAfIoqVpByKC3DITU+Xj1XpIXfREGshdxGyFjuHHjBj169KBChQpJTodubm6OpqYmn/3fA7D/72XYFi5F2cqJjzcQBGUTgSAL+fniL8JA9iWCgfpcvnyZHj17UrpMGTZu2JDkHAOamppYWFjwxf89fu98uHb+MC06Dkj09oIgqIIIBFnMjxAgwoAAYv4CVTt79iy9evematWqrF2zJtG5B/4rd+7cfP3sx7NHd77PpSIW+BHUSPzry4IyaxgQcxAohwgFqnH06FH69e+Pg4MDy5ctS7Jn4L++BoVjYGTCbw1a0bhVDxZNG8jFU54qqFYQEhKBQMgwxLTFyiNCgXLt27ePIUOH4uTkxOJFi5KcefC/JEni80dfLCzzIZPJGDJ+KbUbtmXmGGduXDqmgqoFIT4RCJQgq683kBIFNxxSdwnCT0QoUA5PT09GjBxJ2zZt+GvOHLS0UvbwVmBgIBEREVhYfV/jQFNTk5FT11HZviHuwztw70bmXZpdyJxEIFASVYaCjNbV/iMMiFCQ8YhQoFihoaFM9/CgWbNmTJ8+PdFF1JLy4cMHACraaQPw4vE9bnudYtzsbZQsX4NJQ1sTHPRVKXULQmJEIFCi7NhT8HMIEKEg4xGhQHG2b99OSEgII0eMQCOVAwJNTU0B+Pz5M29fP2VUn0ZMGNyStQvH0d5lBOFh3wgJ/KKMsgUhUSIQKJmqQkFG6CVI6uKfmlAgxhEImcXXr19Zs3YtrVu1wtraOtXvt7a2xsLCgrPnzjFhUEvMzHPTe9hMDu5cwdyJvQHQ00/+KQVBUCQRCFQgO/QU/OqiL3oKMhbRS5A+L1++pE3btsTGxjJgwIA0HUMmk1G+fHm2b99OxLevTF28j7bd/mTWquPExcUCoGdgpMiyBSFZIhCoiCpCgbp6CVJ6sRehIGMRoSBtvLy8aNuuHTra2uzdswcbG5s0H6tGjRroaGuzfPly+foFZSr+xpJtV5k4byeGRqpfXl3IvkQgUKGs2FOQ2ot8StqL2waqI0JBfH5W5ZPdv9fTE5cePShZsiS7du1KVxgAqFC+PEePHqVy5coUNvKVb89lmRf7ei3SdWxBSC0RCFRM2aFAlb0Eaf2NX/QUZCwiFPyaJEnMX7CAkSNH0rJFC9atXYuJSfp+e//48SNt27WjT9++vH37FiBeKBAEVROBQA2yQihI70VdhIKMRYSCpEVGRjJs+HCWLFnCyBEjmDFjBjo6Ouk+7r59+9DS0iIqKoq27drx8OFD4HsoEMFAUAcRCNREFaFAWcFAURdzEQoyFhEKEvr69SvO3bpx7NgxFi1cSL9+/RSy+JAkSezes4dGjRqxe9curKys6NS5MxcvXpS3EaFAUDURCNRIVQMNM8IjiYnJrGsuZGUiFPzfjycJfHx82LplC02bNlXYsR94e/Py5UvatmlDrly52LZ1K1WqVKFX797s3rNH3k70FgiqJAJBNqHIYKCIC7kIAxmXCAVw7do12rZrh7a2Nnt276ZixYoKPf6tW7fQ0dGhatWqABgYGLByxQpat27N6NGjGT58ON7e3vL2PweDgC8f8X31RKE1CYIIBNmMooJBei7ov3pvRu3RyE6ycyjY6+lJdxcXSpYsye5du8ifP7/Cz3H//n1KlSyJtra2fJuWlhYe06czZfJkrt+4QYuWLenUqRMHDx0iJCQEgAK6L7mwcwo9m5diVK+GSJKk8NqE7EsEgmxKEcEgLaFAhIHMI7uFgg+W5Vi4cKFCnyRIyv379ylbLuG/dZlMRteuXTl75gxLFi8mNi4OV1dXKlepQqvWrSlbrhwzZs6kTOmSfP3sxyc/cTtBUJyULcslZFmJXYBTMw/AS5ffUzw4UNwmyHwk79vISiu2uzwjio2NZcLEiWzfvp3hw4bRv39/hQweTExgYCCvXr1iyODBSbbR0tKiSZMmNGnShHfv3nHmzBnOnD1Lp06daNO6Nbly5aKmvT3fXp2iZhFHnn9L33wIggAiEAiJ+Dkk/CogpCQUpCQMiN6BjCmrh4LIqGj+cF/I/gvXmTljBu3atVPq+R48eACQaA9BYvLmzYuzszPOzs7ybZIkkStXLry9vWno6BhvfIEIB0JaiUAg/FJKAkJyoUCEgcwvM4WCiMgoNhw6jXWunDSvUy3JdsGhYWw+fJblu4/w/vNXli1diqOjo0Jr+fr1K8OGD+ft27d8+/aN0NBQwsLCyJEjB7YFCqTpmBERETx99oycOXPGG3j4w49wIIKBkFoiEAipllRASCwUhK4cl+7bEkLGkNFDQVxcHDtPXWLKqu288fsEQP+2TngMdEbnP4P3Xr3/yPI9R9l06AxhEZG0rleDYV1aYvGbYsMAwHQPD+7du0f79u0xMjTE8N9XiZIlU3xL4v79+1y9epVH//zD43/+4aWPD3FxcchkMsqVLZvk+0QwEFJLJolhqukSHByMqakpQUFBaRqAFLpynBKqUq8f8ytkxc8m/F9GCgdnbtxn/PLN3HvqQ/PaVZnctwvnbz1g1KINVChWkLqVyxAVHcNz3w8cvnwTU0MDerZwpG/rxuTNbf7LNQzS4sKFC/To2ZNZM2fStm3bNB3j1KlT9B8wAAN9fYoVL06J4sUpXqIEJUuUoGjRoujr66f6mFklIDQs9//ZItP7c1j4TgSCdBKBQBASp4rA8Or9R4b+tZpT1+9SrXRRpg/oRo2yxeX7bzx8yuA5qwgM+YaOthY5jI3o1rQunRrVwVBfT95O0YEgPDycRo0bU6BAATZt3JigN2DDxo1s3LCBDh060KFDB8zMzBIc4+7du3Tp2pU6deqweNEiNDU1FVrjD5k1IIhAoHgiEKRTev4hijAgZAfKCAa+fp8ICYtg1KL1PH3zjr+G9qRZ7appfjJA0YHA29ubFi1bsnXLFqpXrx5vX0hICHUcHMhtYcHrN2/Q0NCgRYsWuHTvTtGiRQF49eoV7dq3x9bWls2bNqGnp5fYaRQuM4UDEQgUT4whUBMRBoTsQNFhQJIkNhw8xbD5a4mKjgFgw2TXZAcPqkPevHmB74MKf7Z582bCw8JYv349Ojo6/L1jB1u3bmXHjh3Y29vTsUMH/po7F1NTU1atXKmyMACIpxWyOREI1ECEAUFIPUmSGLlwHct3H6VXy4a0rW/Pl6AQmteuqu7SEsiRIwcmJia8efMm3vZv376xdt062rdvT548eQAYOGAAvXv14tjx42zYsIHBQ4Zgbm7Ont27E72VoCoZdVDi/0NLIbXWkRWJQKBiIgwI2YWiewf+2ryX5buPsnBEb3q1bKTQY1v53VXobQOZTEb+/Pm5d/8+d+7cITYujtiYGE6ePElYaCh9+/aN115HR4fmzZrRvFkz7j94gKmJCTY2GeNCnFF6DcQiT8onAoEKiTAgZBfKuFXgsX4XA9o1VXgYUJaiRYuyd+9eTpw4EW9740aNCAgIwNraOtH3lS1TRhXlpYmqew1ECFAtsZaBiogwIGQXyhhEKJPJ0NbSIr9VLoUfW1mmTJ7Mnt27adu2LWVKl8bY2BiAY8eP49ytG5GRkWquMO1+rL6orAu2WPZZPUQPgQqIMCBkRlExsRy+9xQDHW0alSmcovco81FDIwM9voVFKO34imZgYMCx48c5sH8/jg0b0sDRkaJFi2JoaEi3bt04fvw4zZs3V3eZ6abIWwoiBKhXpughmDFjBjKZDFdXV/k2SZKYPHky1tbW6Ovr4+DgwMOHD+O978mTJ9jb25MvXz7c3d3j7bO1tUUmk+Hl5RVvu6urKw4ODgqrXYQBIbN59TmQyfvOUcxtMc6rPWm7bCebLv96ZkllhYFT1+/SYtg0Pn4JRENJCw7B93EEinTnzh3Wrl3L0KFDWbRwIYMGDqShoyP2NWtSrWpVduzcqdDzZQSp/c3+vz0NIgyoX4YPBDdu3GDVqlWU/WmKztmzZzNv3jyWLFnCjRs3sLKywtHRUb5uOMDAgQNxdnZm//79HDx4kMuXL8c7hp6eHqNHj1Za7SIMCJnJl29hDNx8mDITlrHq3C1aVyqB14Re/FGrIgM2H2bDpbuJvk9WuqJSwoAkSczZtIcWw6bxNTiEVeMG8WeXFgo/j7JMmjSJMmXK0KtXrwT72rdvj5eXF69evVJ9YSrw80X+5wu/CAAZU4YOBN++faNLly6sXr063uM3kiSxYMECxo0bR+vWrSldujQbN24kLCyMbdu2ydsFBgZSoUIFypYti7W1NUFBQfGO37dvX7y8vDhy5IjCaxdhQMgsJEliy5X7VJi0kn23HzO7vSPPZg1mbsdGlM6bm0kt6pDbxJAJe88QFxd/HjNl9Qr4fQnAZfICJq/ajluPdlxYPZMuTRzirUmQ0QWHhFClShW0tBLemW3cuDEmJibszIK9BD8TF/7MI0MHgoEDB9K0aVMaNGgQb7uPjw9+fn40bNhQvk1XV5c6depw5coV+TZ3d3ccHR0xMDBAQ0ODRo3ij062tbWlX79+uLm5ERcXl6KaIiMjCQ4Ojvf6mQgDQmbx6P0nGs3dQr9Nh3AsVZDbk/vSv24VDHW/zwLn8ymABnM2ER0Ty5a+rdHQ+H+X/c9hIC4ujuDQsDTX8uT1O4bMWUmFzkMo1KI3R6/cYtOUYYz/o0OaZyBMLUXeNrCzs8Pn5ctE9+np6dGyZUv27N1LdHS0ws4pCOmRYQcV/v3339y+fZsbN24k2Ofn5weApaVlvO2Wlpa8fv1a/mcnJyc+ffpEcHAwFhYWiZ5n/PjxrF+/nq1bt8ZbbzwpM2bMYMqUKan5KIKQIXne+ocea/djZ5GDg66dqFvcLt7+6y/f0W7ZTnLo63FmdHeKWJr/f2epCvj6feLW4xfc+uc5N/95zt0nL/kWHoHL7/WZ0Lsjuc1MU1SHJElMW7uDuVv2YZkzB41qVGBsz/bUqVQmxcfIiAoWLMj58+eT3N+4USM2bdrESx8fiv07ZbEgqFOGDAS+vr4MHTqUEydOJDtt58+/NUiSlGCbrq5ukmEAwMLCghEjRjBx4kQ6dOjwy9rc3NwYNmyY/M/BwcEZZgKR//qx4mBKqLtHIzPVmlUcvf+MHmv306pScVZ0+x1d7YQ/ChadukZEdAynJ3cnl5EBADGxcSw/e4MF45bx8UsgAHlzm1OpeCGGd22FTAbztuxj27HzlC1iS9kitvRu1YjShQokWcvtxy+YuWE3rp1bMOGPDujp6iTZVhUUNUlRQTs7tmzZQnR0NNrJ3OrQ0VHv5xWEHzJkILh16xb+/v5UqlRJvi02NpYLFy6wZMkSnjx5AnzvKfgx/SeAv79/gl6DlBg2bBjLli1j2bJlv2yrq6uLrq5uqs+hSqm5wP5or64LbWaqNbOSJImwqGi+RUTxLTKK+74f6bX+AE3KFma1S3O0NBO/c9inTiX23X7MxSevaVWpBPfe+DFoyxHu+vrh8lt5nJo2pmKJQliZx59e16VZA7YePcfdpy/ZcuQcd5+85PzqmUnW9/qDPwCDO/yu9jDwgyJCQS4LC2JiYvj48SP58uVLsD884vsjlPoqXKtAEJKTIQNB/fr1efDgQbxtPXr0oHjx4owePZqCBQtiZWXFyZMnqVChAgBRUVGcP3+eWbNmpfp8RkZGTJgwgcmTJ9OsWTOFfAZ1Se0F9r/vU/WFNjPVmlkdvf+MXusPEBQefxKcBiULsuGPlkmGgZCISOYdvwrA5iv32eb1gBMPX1A8Ty7OjnKhsp11kgMKzU2NGdKxGZIk4f1iOOY5kl99btPhMwDsPXOFXi0bZpiBg+kNBdu3baNI4cLxfmn5r6tXr6Krq4uBgUGazyEIipQhA4GxsTGlS5eOt83Q0BBzc3P5dldXVzw8PChSpAhFihTBw8MDAwMDOnfunKZz9unTh/nz57N9+3aqVctYK6elVFovsP99v6outJmp1sxqm9cD+m86RKPShWlbuSRGejoY6epgrKdDmXyWSYaB6NhYGs/dwj3fjwBcePqaagXzMqNtA3rXqYi2piYAkvftZJ8yOH71Ng9fvGHenwkfu/uvib07oq2lxZglG9lz5gqb3YdhbWGe7HtUJa2h4MaNG1y8dImlS5ag+e/39V9Xr15l08aNtGnbVizXK2QYGTIQpMSoUaMIDw9nwIABBAQEUK1aNU6cOCGfHjS1tLW1mTp1apoDhbql9wL73+Mo+0KbmWrNrG69ek+fDQdpW7kka3okfVsgMbFxEmXyWdK0XFFqFytAFVvrRMcY/Mr6g6cAkh0/AFCxeGF2zRrDde+ndJ04lxo9RrJt+gjsy5VM9TmVIbWhQJIk5s2bR6mSJeM9CfWDt7c3/fr1o2rVqkycMEGBlQpC+sgkSZJ+3UxISnBwMKampgQFBcmTfmbpek+Osj5DZqo1MwsOj6T2jPXoamtydrQLBjrK6YZPqofgyKWbtBszkwrFCnJ44SRMjQxTdLxPAUF0nTCXhy/ecHX9HGyskh4QrGopDQWXL1+mW/furF61inr16sXb5+PjQ/sOHbCxsWHzpk0YGqbsexESKljo/8sfJ/ZzWEi9DD0PgfBryrjAKuu4manWzM5EX5ctfVvj8ymQIVuPoqzcL3nfTrDtW1g4f85bQ8PqFbi4ZlaKwwCAhZkp2z1GYqivR0/3hcTExCqy3HRJyRwFnz59YubMmZQvV466devG2/f161e6u7hgZmbGmtWrRRgQMhwRCDIxZV8IFXn8zFRrVlE6b26WODvx9zVvCo5aSJslO5h64Dy3Xr1P8j2SJPH841diYlM2UVdirj98xlv/z0THxHLhzkMiIqOYv20/172fpiiY5DQxZv2koXh5P2XGhl1prkPVDh8+TOMmTfD/9IlJkyYleAT61q1bvHv3jmVLl5IzZ041VSkISROBIJNS1QVQEefJTLVmNe2rlOKQa2d61qqAJMGqc7fosXZ/om19vwbRdulOyk9aQZkJy1h4wovAFKwu+HMvQd3KZdg45U/e+PnjNGQy+X/vyfhlm6nbbyxVuw/H+8XrJI70fzXLlWB8z/bM2riHC7e9U/ZhVSCxXoKAgACGuroyZOhQalSvztEjRxKsvQLIBxeammbeyZaErE2MIUgndYwhUMeFL62fKTPVmh0sPOGFx+GLPJkxmBwG359/j42LY8XZm7gfOI+pvh5jf6/Flee+7LrxEB0tTVpVLIGVqREGOtpUss1D/ZIFExw3sbEEkiRRtftwIqOiGN29Lblz5mDs0k2EhUdwYc0szE2THwAcGxvL767uPPP9gNeGv8j1i8cXVenHeIKzZ8/iNnYskZGRTPn3seWkplk+f/48Pf/4g0sXLyb5KKKQcmIMgeKJQJBOqg4E6vwtOLWfKzPVml2ceeRDy8V/o62pQdNyRXEqW4QVZ29y6/V7eteuxOSWDpjof59462PQN9ZcuM3Bu08JiYgkMCyC2DiJ13+5JnjqIKWLHL3+4E+tXqMpV9QOzznj0NJK+Ejef334/JVKXV35o0VDpvbvmrYPnU5bjp7j4p2HTB/gLA8lzwwL4eHhwc5du6hTpw4zPDx+OSnaj8GG58+dS3SiIiF1RCBQPBEI0kn8Q8y4RChInF/QN3Zc82ar1wMevf9E8Ty5WNLVieqFkr9Ieb/zp/rUNewd1IGGpQsl2J/SUHD25n2aD5vGkI7NmD7g1+uHDJu3hv3nr/Fkz4pfBghFe//pC+U7DyUsIhLLnDlYPX4wWpoa9Jq1msDAQMa6udGhQ8oWXzp27BgDBw3iwvnz5M2bVwXVZ20iEChepp2HQBB+RcxTkDgrUyOGNqzOEMdqvP4ShHUOY3R+utDGxUm8+PSVu2/85K8fExXd8/VLNBD8SmxsLJ7nvLh89xGmhgYs2LYfl9/rUyS/dbLvc25aj5V7j3Hq+l0a16yUbFtFG7dsM/q6OpxfNYMRC9bR7E93AKpVrcrWLVtStY7Jpk2b5EuxC0JGJAKBkKWJUJA0mUyGba4cCbZ/CAyh8dwtvPgUAED+nKaUL2DFkAbVqFDAitpFk59oKCk3Hj2j+6T52Fjm4vdaVfitQikK5bP65fvKF7UjVw4T7j59qdJAcOXeP+w8eYllY/pTws6Gg/MnsHLvMTQ1NPi93yg0NFI+Jvv27dtcu36dZcuWqWwpZ0FILREIhCxPhIKU+xYRRdulOwmPjmHf4I5UKGCFuVHK5tr/1VTGlUoUxtoiJ/WrlmPp6P4prkkmk6GjrUVcnOrubsbGxjJ8wVoqlSiMs9P3+QQ0NDTo39YJAL9UhAGANWvXUrhQIRwbNFB4rYKgKOKxQyFbEI8k/tqrz4F0WrGbF/4B7BnUngalCqY4DKSEtpYWvVo0ZMeJi3wNDknVe2UyGXEqHO607sAp7j97xVzXnqnqCUhKSEgIVlZWCjmWICiL+NcpZBsiFCTuXUAwQ7cdpfzEFTx8/4ltfdtQJl/qlxFPiR4tHImNi2PToTOpep+GTEZcXNonS0qKJEkJJkv6EhSC++rtODvVpUqpogo5T5MmTbjq5cXnz58VcjxBUAZxy0DIVsTtg/+Ljo1loudZVp27haGuDpNbOtDHoVK61j341W2D3GamtKlXk/UHTuHauUWKjyuTydJ1yyDoWyjPfT/w9M17nvt+fz19854Xb/3Q1tSkbBFbyhSxpVwRO87evE9MbBxT+nVJ8/l+9uHDBwAiIn490ZMgqIsIBEK2I0LBd1MPXGD5mZuMbmrPwHpV5fMPKJuhvh4aGikfWHfsyi3e+H2ihF3KR/QD3Hn8grHLNvOPjy+fAoLk263MzSia35rKJYrQwbEWUdEx3Hvmw5FLN1m68zAAs4a4YJkzR5LHTs0KiJcvX2b58uUM+/NPMf+AkKGJQCBkS9k9FJx+9JJ5x68yrXU9XBtWV+m5L919xG/lS6Wo7Ru/TwyYtZyG1SvQ3vG3FJ/jwm1v2o+ZhV1eS/q0akRhG2uK5LemsE0ejA30k3xf0LdQXr77SPmidik+V1IkSeL+/fsMGz4c+5o16devX7qPKQjKJAKBkG1l11DwKSSU3hsOUr+kHUMaVFP48ZO7beAfEMTjV28Z3b1tovvff/rCzpOXuPnoGTf/eY7vx8+YmxqzbEz/FD+ud+TSTbpOnIt9uRL87TEKQ329FNduamRIhWIJp2ZOjQ8fPrB//348PT15/uIF+W1smDt3rhhQKGR4IhAI2Vp2DAUfAr8RGBbBndd+LDzpRR+HShjq6qjk3CGhYQCYmRjF2/4pIIi/tniy2vM4mhoaVCxeiNb1alK5RGF+q1CK3Ga/XhAoODSMJTsOMXPjbn7/rQrrJ7mim4LxEJIkERgSipGBHtpaSf9IjI2N5fHrd4SFRxAeGcV7wyAiIyKI+PcVGhrKufPnuXLlCrq6ujRs2JBx48ZRs2ZNtJI5riBkFOJfqSBkM2VtLHkwtT+zj17G/cB5Fp26xvBGNfmjdgX00zGg8IfkBhXaWVtiamTA7tOXef/pC36fA3jz8RO7Tl1GQyZjRNdWDOrwOyaGKX/cMTQ8ghV7jrJg235CIyIZ2rE5k3p3ijfNsSRJPH71lpfv/Hj57iM+7/145/+FV+/9eeP3ieDQMNrWt2fjlD8TPYd/QBDOE+Zy6e6jJOvQ0dGhfLlyzPDwoHHjxhgbJ794kyBkNCIQCEI2lNfMhIWdmzCsYQ1mH73MuL2n8Xr5li19Wiv1vBoaGtQoW5wtR86y5chZcuUwwdI8B31aNeLPLi1/uQLiz7YePce4ZZsJDAnF5ff6jOreGmsLc/n+gOBv/H3iAusOnOLRyzcAyABkMsxNjSlaIC/92zpx6e5D3von/kjg7cfP6Th2DtExseycOZoCeXLzLW859PT00NXVlf+vuCUgZHYiEAhCNlYgVw6WOjelfH4rhv99gvcBIVibKfc32y1ThxMQ/A0LM9Nku+h/5eCF6/T1WEqjGhUY26M91hbmxMbG8ur9R3w/fmbT4TPsOX2FqJgYrMxz0KVxHa4+eEJkVDR9Wjfm9PW7XLn/mC+BwdStXJYLdx4mrPXoOYbMWUnZwrZsmz5CHjb8rGzTXLcgZFQiEAiCQIeqpRm/9wwbr9zFrWmtNB8nJSse6uvqom+Rvkcc7z97xR9TF1HAyoJjV25z7MrtBG0KWOXGyjwHASGhFLGx5sCF65iZGHF08WQK5cvDCOdWnLx2l5bDp1GtdDF8/T5x+sY96lcpR3RMDG5LNrJ891G6Na3HguG9UzQeQRAyMxEIBEHARF+XdpVLsfHSPUY1sUczA3Z/S5LE/eev2H/Oi/UHT1PExpojiyYxeeU2VnkeJ0+unMwY1A0LM1MMdHWYuXEPF+885NCCiVQrXYy4uDhevvvIpbuPsMyZAy1NTeZv24eJoQEuv9fnue97mv85lSY1K/EtLJyrD54wf1gverdqJBYkErIFEQgEQQCgR63ybLh8l4N3n9KyYnF1lyMXGxvLrI172H78Ai/f+ZHDyJDfa1dlcp9OmBoZMn94b+pVKceAmcsYt2wzaycMQUNDg+NXb7NnthvVShfjw+evjFywjv0XrhMXF8eivw+S38qCaw+ecmD+eKqVKcaJpVPxPHuVccs2Ex4ZxZFFk7AvV1LdH18QVEYEAkEQAKhYIA8NSxVi5I4TOBS3JYdByp/fV6bomFgWbj+AhZkp++aOp07FUuhox+++b1a7KhWLF+IP94U4DZ3C4A6/A1C/ajkAJizfwsW7j5g/7A8qlyxCzykLOXPjPjtmjJJf9GUyGa3r1eT3WlWIio7BKJkJjAQhK8p4/YKCIKiFTCZjcdcmhEZG47b7VOrfn4LxA2mhp6vDmB7teO33CSvzHAnCwA95c5szrGsr4uLi5I8tNh82jc1HzrLr1GVGdmtNr5aNKF+0IBfXzOLm5vk0rlkpwXF0tLVFGBCyJREIBEGQy2tmwsx2Ddh85T4nvF+ouxy5ge2cKJzPiiFzVvH2Y9IrBm46dJqSBfMz0rkVGya7EhEZRT+PpRjq69L99/rydob6ehTJb62K0gUh0xCBQMjWstsshSnhXLMsDUoWZODmw3wIDFF3OcD339oXj+rH09fvKNV+IL2nLebF2w/x2vgHBHHo0k16NKuPpqYm7Rr8xtmVHpxfNYP9c8cnu4aBIAgiEAjZmAgDiZPJZCzv1hQNDRmtl+wgODzy1+9R0u2C//qtfEke713BtAFdOXjhOuOXbY63f+vRc2hoyOjYqHa87ZVLFqFKqaIKrcXK765CjycIGYEIBEK2FHZ5j7pLyNDy5DBm76AOvPkSRJeVe4iKiVV3SQAYG+jTt3Vj4iSJyiWLyLdLksTGg6dpUacaOU3ElMGCkBYiEAjZzo8woIrfajOzUnlzs61fGy4/92X4juNJtlP193jN+ymh4RHyJwgALt/7h2e+73Fp1kBldYheAiGrEYFAyFZEz0Dq1Clmy8B6VTh096m6S5E7ff0euXKYULawLQAxMbEs3XmIQvmsqF2hlHqLE4RMTAQCIdsQYSBt9LS10NbUTHSfOnpZvoWHExgSyroDJ3nw/BV1+43l0KWbjOzWRuUzCopeAiErERMTCdlCUmFAVroiknfCefCF/wuJiEJHK/FAoA4zBnVHkmDoX6vR0NCgWH5rziyfpvCBgyll5XcXP6vyajm3IChShuwhWL58OWXLlsXExAQTExNq1KjB0aNH5fslSWLy5MlYW1ujr6+Pg4MDDx/GX6nsyZMn2Nvbky9fPtzd3ePts7W1RSaT4eXlFW+7q6srDg4OSvtcgnr8qmdAjCVI3NH7z3Cav5Ulp69jlytHgv3q+t60tbSY++cfrJs4lMl9OnF53Ry1hQFByEoyZCDIly8fM2fO5ObNm9y8eZN69erRokUL+UV/9uzZzJs3jyVLlnDjxg2srKxwdHQkJOT/z0wPHDgQZ2dn9u/fz8GDB7l8+XK8c+jp6TF69GiVfi5B9VJ6m0CEgvie+H2m3bJdBISGs7FXS/YO7qDukhLo0LAWw7u2yhCrEIpbB0JWkCEDQbNmzXBycqJo0aIULVqU6dOnY2RkhJeXF5IksWDBAsaNG0fr1q0pXbo0GzduJCwsjG3btsmPERgYSIUKFShbtizW1tYEBQXFO0ffvn3x8vLiyJEjqv54goqkdsyACAX/VyS3OUUsc1LQwow2lUsmGEMgvitByHoyZCD4r9jYWP7++29CQ0OpUaMGPj4++Pn50bBhQ3kbXV1d6tSpw5UrV+Tb3N3dcXR0xMDAAA0NDRo1ahTvuLa2tvTr1w83Nzfi4uJSXE9kZCTBwcHxXkLGk9YBhOJC952GhoyB9aty8O5TZh+5zLeIKHWXlOGJXgIhs8uwgeDBgwcYGRmhq6tLv3798PT0pGTJkvj5+QFgaWkZr72lpaV8H4CTkxOfPn3i/fv3eHp6opnIKOnx48fj4+PD1q1bU1zXjBkzMDU1lb9sbGwStAm7vEeMaM/ERCj4rlvNcvSvW5mZRy5RZsIyDtx5AojvRxCyqgwbCIoVK8bdu3fx8vKif//+dO/enUePHsn3//x4kSRJCbbp6upiYWGR5DksLCwYMWIEEydOJCoqZb8Bubm5ERQUJH/5+vom2VaEgsxLVrpitr/w6WhpMqu9I3en9ENHS5N9tx9n++9EELKyDBsIdHR0KFy4MJUrV2bGjBmUK1eOhQsXYmVlBRCvNwDA398/Qa9BSgwbNozw8HCWLVuWova6urrypx9+vJIjQkHmJi6AkM/MhKCIaEpXKq/uUgRBUKIMGwh+JkkSkZGR2NnZYWVlxcmTJ+X7oqKiOH/+PDVr1kz1cY2MjJgwYQLTp09X2ngAEQoyt+wcCmSlK/IqpzXfwiMoV9RO3eVkeGIcgZCZZchAMHbsWC5evMirV6948OAB48aN49y5c3Tp0gWZTIarqyseHh54enri7e2Ni4sLBgYGdO7cOU3n69OnD6ampmzfvl3Bn+T/RCjI3LJbKPjvLZNb/7wAoGwREQgEISvLkDMVfvz4EWdnZz58+ICpqSlly5bl2LFjODo6AjBq1CjCw8MZMGAAAQEBVKtWjRMnTmBsnLZVzrS1tZk6dWqaA0VKhV3eg4F9G6WeQ1Ce7DCrYWLB5/Cl65QrakduM1M1VCQIgqrIJEmS1F1EZhYcHIypqSlBQUHy8QS/6g0QoUD5VNEjkxXCwa96PiIioyjwe0+GdWnJaJe2KqoqcxPTGKtGwUKF5P+d2M9hIfUyZA9BVid6CrKGHxfTzBAMUnvL4/UHf87desCV+4/5Fh5B8zrVlFSZIAgZhQgEaiJCQdahqmCgqnEM7z99oWaPkQSFhlHAyoL+bZ0obptPJecWBEF9RCBQIxEKshZFBgN1DWKUJImBs1agp6vD3e2LsBDjBgQh2xCBQM1evngR716YkPll5icSNh0+wwmvO+yeNUaEAUHIZkQgUILUDip6+eJFittm1eecFdlTIh7xTBtfv0+MXrSBrk51aWJfWd3lCIKgYiIQZDK/ChuZNTAo6vaJCANpI0kS/Wcux8TIgNlDXNRdTqYlnjAQMjMRCLIYRfxAUleoSG8oEGEg7bYfv8DZm/fx/GscpkaG6i5HEAQ1EIFASCAloUJZoSGtoUCEgbT7GhyC25KNtK1vT8PqFdRdTqYlegeEzE4EAiFNfv7hp8iAkNpQIMJA+kxasY2o6BhmDnZRdymZlggDQlYgAoGgEIn9QExPSEhpKBBhIH28Hjxm3YGTzPvzD/LkMlN3OZmSCANCVpEhFzcSsgY/q/LyV1r86mIvwkD6RMfEMOSvVVQsXoheLRuqu5xMSYQBISsRPQSCSqT1FkNSPQUiDKTf/K37+cfnLRdWzUBTU1Pd5WQ6IgwIWY3oIRDUIjW9Bz9f/EUYSL+zN+8zde0ORjq3okLxpCfGEmufJU6EASErEoFAULuUhIMfIUCEgfR7+/EzLpMXULdyGcb1bJ9kuw0HT2Hj1IO/NnsSExOrwgozNhEGhKxKBAIhQ0kuHIgwkH6RUdF0nTAXfV0d1k0cmuStgkV/H2TgrBWULGjDlNXbqd9/HFHR0SquNuMRYUDIysQYAiHDUuajjdnVmMUbuPfMh1PLppErR8J14yVJYsb6XUxft5PhXVsxpW9nJq3cxvLdR9RQbcYiwoCQ1YlAIAjZQExMLHO3eLLK8ziLRvShUonCibb7EQYm9+3MSOfWAFzzfkLdymXQ0dZWZckZhggCQnYhAoGQafhZlRe9BGnw5PU7+k5fwq3HLxjj0paeLRwTbef94jUzN+7GrUc7eRj4HBjMpbuPWDq6nypLzhBEEBCyGxEIBCGLio2NZcnOw0xZvZ38lhacWjaVaqWLJdpWkiSGz19LQWsrRnVrLd++8+RFtLW0+L1WVVWVrVYiBAjZmQgEQqYieglS5tmb9/SbsZRr3k8Z1P53JvXpiL6ubpLtd568xKW7j9g/b3y8WwObj5ylSc2KiY43yEpEEBAEEQgEIUuJio5m8Y5DeKzbRd7cOTmxxJ2a5Uok+55vYeGMXbqJlg7VaVC1vHz7vWc+3H/2igl/dFRy1eojgoAg/J8IBEKmI3oJEnf+tjfD5q3hme97+rd1YmKvjhjq6/3yfS/ffcTvSwB9WzeOt33r0XNYmJniWL28kipWHxEEBCEhEQgEIZP78DkAtyUb2XXqEjXLFufy2tmUKWyb4vcXzGsJwFv/L/JtUdHR7DhxkU6N6qCtlTV+TIgQIAjJyxr/TxfSzefVK/w+fMDAwAB9fX2MjIywtrZWd1lCEqJjYvD/GoTnuatMW7MDXR1tVo4bRJfGdZDJZKk6lpGBPtYWOXn25r182wmvO3wODKZLkzqKLl3lRBAQhJQRgUAAoG/fvrx48SLetn59+zJy5Eg1VZS8rH7bIC4ujoCQUMxNjQG4+egZczbvxffjZz58DuBTQBCSJKGhoUHvlg2Z0KsjZiZGaT5fuSJ2HLxwDbcebdHR1mb57qNUKFYwVT0NGYkIAYKQeiIQCADYFiiAkZER06dNIyw8nLNnzrB8xQpq1KjBb7/9pu7yspXQ8AhcJi/g1PW7rJ/kyst3fkxZtZ1itnmpUaY4eXKZkSdXTqzMzShWIC+21pbpPueE3h2p1Ws0i/4+RJVSRTh36wHbp2fMMJgUEQIEIX1EIMhm4uLi0NDQSLDto78/xsbGlCjxfUR6hfLlefDgASNGjuTY0aPkyJFDDdUmLyv2Enz8Gki70TN58uotv5UvSZfxfwEwrEtLJvbuqLT7+eWK2DGo/e/MWL+LgvmsqFi8EM1qZ/y5B0QIEATFEYEgG7n/4AHt27fHtkABatrb4/vmDZ8+f6Z8+fJ4e3uz4++/5W01NDSYPXs2DnXrsmPnTvr26aPGyrO2uLg4vB48YcfJi+w5fQUdHS2OL3WnTKECLPz7IBWLF8KhUhml1zGuZ3v2nrnCo5dvODB/QqrHIqiCCACCoDwySSx4ni7BwcGYmpoSFBSEicn3yVte/nQvXtXi4uLw9fXl2bNnPH/+nG/fvqGlpYXXtWv4+vri4ODA6dOn+fr1KxUqVODmzZs4NWnC4sWLExzrz2HDuH//PqdOnsyQFwhQz6JHMTGxnLv9gAu3H1KsQF7sy5WgQJ7cqfqOHr96y44TF9lx8iKvP/hjY5mL9o616NemMdYW5kqsPmnXvJ9w+vo93Hq0U+vft7jwC79SsFAh+X8n9nNYSD3RQ5BFxMXF4e7uzu07d3jx4gUREREAGBsbY2pqSkxMDLGxsQwZPJjOnTszZfJkPn/+jJWVFc+ePUvyiQKnJk04cOAAfn5+5MmTR5UfKUOSJImNh04zedV2PgUEkSuHCZ8DgwGwtshJzbIlsC9XgobVK8jv7UuSxOV7//D09Tue+b7nxdsPPH39nme+78lhZEirujXo2Kg2NcsWT3A7R9l+vvAWsCpPzwYd+KjSKgRByAhEIMgiQkJC2LxlC/b29gz780+KFi1KkSJFsLS0TPQ3PS0tLaysrAAoUqRIkse1sbEB4MOHDxk2EKhqLMFz3w8Mnr2CC3ce0qlRbQa2/53yRe0ICPmG1/0nXL7/D1fu/cPes1fJa5GTx3tWALBk5yHGLN6IhoYGBawsKJQvD/WrlmNKv840rlEJXR3VrSIofvMWBCEpIhBkEcbGxmhqatK4USM6d+6ssOPmy5cPHW1tLl++TMWKFRV2XEVTZiiIjolh4faDeKzfSR5zMw7On0i9KmXl+3OaGOP0W2WcfqvM0zfvqOI8jO6/15fv3378As1rV2XjlD9VuoSwuPgLgpAaqu2fTKEZM2ZQpUoVjI2NyZ07Ny1btuTJkyfx2kiSxOTJk7G2tkZfXx8HBwcePnwYr82TJ0+wt7cnX758uLu7x9tna2uLTCbDy8sr3nZXV1ccHByU8rmUSUNDA1NTUwICAxV6XCMjI7p27crqNWv4/OXLr9+Qxdx5/IJavcYwZfV2+rd14sbm+fHCwM+evn5HTGwsLR2qA/DynR/3nvrQ3rGW0sOAn1X5eC9BEITUyJCB4Pz58wwcOBAvLy9OnjxJTEwMDRs2JDQ0VN5m9uzZzJs3jyVLlnDjxg2srKxwdHQkJCRE3mbgwIE4Ozuzf/9+Dh48yOXLl+OdR09Pj9GjR6vscynT2XPnCAoKwtDQUOHHHjhwIJqamkycOJG4uDiFH19RFH0RvHT3EfX6j0MmgwurZjB9gDMGekmvGAhQr0o5jA308Tx7FYC9Z65ioKdLoxqK710RAUAQBEXKkLcMjh07Fu/P69evJ3fu3Ny6dYvatWsjSRILFixg3LhxtG79fe32jRs3YmlpybZt2+jbty8AgYGBVKhQgbJly2JtbU1QUFC84/bt25fly5dz5MgRnJycVPPhlODu3bsMHjyYug4OdO3SReHHz5EjB7NnzaL/gAHMmj0btzFjFH6OjOYfH186jJlFjbLF8ZwzLsX3+Q30dGnhUJ2Nh84QERXNrlOXcKxW/pdBIiXERV8QBGXKkD0EP/txIc+ZMycAPj4++Pn50bBhQ3kbXV1d6tSpw5UrV+Tb3N3dcXR0xMDAAA0NDRo1ahTvuLa2tvTr1w83N7cM/ZtvUsLDw9m4aRN/9OpFyZIlWbhwIVpKmrjG0dGR8ePHs2bNGrZs2aKUcyiCIi6aHz5/pdWI6eS1NGf79JGpHvTXroE9X4KCWeV5jIioaDQ0NNh69Fyq6xA9AIIgqFKG7CH4L0mSGDZsGL/99hulS5cGwM/PDwBLy/hTtlpaWvL69Wv5n52cnPj06RPBwcFYWFgkevzx48ezfv16tm7dirOz8y/riYyMJDIyUv7n4ODgVH+m9AoMDGTz5s1s2rSJoOBgfm/alIkTJ6Kn9+ulbtPDpXt3fH19meLuTkBgIDVq1KB0qVJKP29qpWeAYUhYOK1HehAbF4fnnHGYGqXsFszjV2/ZdPgM5295c++ZD5IkYZszNzlNjXnw7BWeZ69ilcuM+lXKJVmzIAiCOmX4QDBo0CDu37/PpUuXEuz7+XE6SZISbNPV1U0yDABYWFgwYsQIJk6cSIcOHX5Zz4wZM5gyZUoKq1esDx8+sG7dOv7esYPY2Fjat29Prz/+IF++fCqrYaybG2FhYaxYsYIFCxZgYmLCpYsXlTJ2IT3SGgqmrNrOq/f+nFw2lby5UzY50MU7D2k/Zhb6ejrUq1yWfm2bUKdiafJbff93J0kSVbsPZ9KKrfECgQgBgiBkJBn6lsHgwYM5cOAAZ8+ejXfR+/H8/I+egh/8/f0T9BqkxLBhwwgPD2fZsmW/bOvm5kZQUJD85evrm+rzpcXu3bupW68eu/fsoUePHly4cIHJkyapNAwAaGpqMsPDg7t37uDk5CRfLjkjSm1Xe1xcHJ5nr9Lt93qULlQgRe85fvU2LYZPo2LxQtzbvpg1E4bg7FRXHgYAlu8+wqOXb3CsVkHcAhAEIcPKkIFAkiQGDRrE3r17OXPmDHZ2dvH229nZYWVlxcmTJ+XboqKiOH/+PDVr1kz1+YyMjJgwYQLTp0//5S0AXV1dTExM4r2U7eChQ4xxc6NVy5ZcvHCBYX/+SS5z9Uxt+4O2tjaamprIZDLCwsLUWsuvpPQCfPPRc/y+BNCsVsoX9Vm26wilCuZn75yxGBskDEbHrt5m5ML19O7dmz4TZqambEEQBJXKkIFg4MCBbNmyhW3btmFsbIyfnx9+fn6Eh4cD328VuLq64uHhgaenJ97e3ri4uGBgYJDmSXn69OmDqakp27dvV+RHSbfTp08zYsQIWrRowfTp0zEySvua94o2fNgwgoOD8ZgxQ92lpMivfju//ugpAIVtUj4jo7aWJnlymcUbePjf88zfd57y5coxetSoDLsWhCAIAmTQQLB8+XKCgoJwcHAgT5488teOHTvkbUaNGoWrqysDBgygcuXKvHv3jhMnTmBsbJymc2prazN16lT5GgAZweUrVxg0eDD169dn1syZKp/n/ldsbGwY6+bGjh07OHf+vLrLSZXEgkGbevbkymHCwFnLSemaX/q6OgRJuomGjUePHnHp8mU6de4swoAgCBmeWO0wnZS12uHNW7dwcXGhatWqrFi+HB0dnXQfUxkkSaLnH3/w+PFjjh45Qo4cOdRdUrqcPXeOXr16MWHCBFy6d5dv/+8Axf9e9IePGMGNGzeY4eFBjRo10NDQ4OvXryxZupStW7eSN29eDh86lGHHWfzs8OHDbP93GWxNDQ0cHBxo3749MpmMNWvW0LZt2yQXwhIEVRKrHSqeCATppIxA4OXlRb/+/SlZogTr1q3LcI/1/czPz48mTk44ODgwf948dZeTbtOmTWPr1q3s2bOHkiVLJtv2woULTJ02jZcvX5InTx4sLCzw8fFBioujf//+uLi4ZPi/vx8kSaKBoyPa2toUL16cb9++cfHfJ0hy5crFixcv6Nqli9qeshGE/xKBQPEyVh+0wI4dO+ju4kKZMmVYtWpVpriYWFlZMezPPzlw4ACBCl5LQR1GjhxJ4cKFGerq+ssBk7Vr1+bE8ePs2rmT2rVrY2BgQIvmzTl95gz9+vXLFH9/P9y/f59Xr14xYfx4Fsyfz5rVqzl75gytW7WSP1aaw8xMzVUKgqAsGX4eguwiNjaWWbNmsXbdOrp07syECRPQVuHKeOlVq1YtAO7eu4dDnTpqriZ9dHV1WbhwIc1btGC6hwfTp01Ltr1MJqNixYoZejXIlNi3fz+5c+emevXq8m3W1taMHz+eJ0+e4NS0KWXLlFFjhYIgKJPoIcgAXrx4QcdOnVi/YQMTJ05kypQpmSoMABQoUICcZmbcuXNH3aUoRMGCBZkwfjx///03x0+cUHc5ShcXF8ehQ4do1qwZmpqaCfbr6+ujoaHBx48f1VCdIAiqIAKBGsXExLBy5Up+b9aML1++sG3rVrp365YpR6TLZDIqVKjA7du31V2KwrRv355GjRoxduzYBJNgZTWhoaF8/fqVcmUTX9o5f/78NG7cmFWrVxMTE6Pi6gRBUAURCNTk5cuXtG3Xjr/mzqVbt24cPnSIKlWqqLusdDHLmZOvX7+quwyFkclkeEyfjp6uLiNGjsyUC2Cl1I8FxExNTZNs079fP3x9fTn602qkgiBkDSIQqMnsOXP4/Pkzu3buxG3MmEzzWFpSJEni8uXL8e4/J+fQ4cM0atSIx48fK7my9MmRIwd//fUXXl5erF6zRt3lKM2PQGCSTCCwsbFBS0uLwIAAVZUlCIIKiUCgJmFhYVQoX57y5curuxSFeP78OR8+fJAPLkxKZGQkkydPZujQobzx9WXOX3+pqMK0q1GjBn379GHevHls2bIlxZMWZSZB/07ZbZrMI1tnz50jJiaG+vXrq6osQRBUSAQCFZIkibt379KnTx8uX75MXhUvTKRMFy9eREdHh2pVk14H4PHjx7Tv0IEdO3bgPmUKc+bM4dy5c9y8eVOFlaaNq6srHdq3Z9Lkybi4uPD+/Xt1l6QQ0dHRbNu2jffv3gHJ3zI4eeIEpUuXFhMTCUIWJQKBCoSEhLBt2zZatGhBm7Zteenjw19z5jBi+HB1l6YwFy5epGqVKone+ggPD2f27Nm0aNmSiPBwduzcSZcuXXBq0oQSJUrw19y5Gf63bm1tbdzd3dmwfj3Pnz+niZMTez091V1Wur148YIJEycyYcIEgESn/g4LC2Px4sWcOnWKRg0bqrpEQRBURMxDoCTXr1/nyJEjvH//nitXrxIVFUVdBwf+/PNPateuneijXZnZgwcP0NPVZfny5bRo0UL+W+T58+eZOGkS/v7+DBkyhN69esmnYdbQ0KB/v34MGTqU9+/fkzdvXnV+hBSpVasWR48exX3qVEaOHImGTEbLli3VXVaa6erqAqCto4NpjhwJ/l3eu3ePAQMG8PXrV7q7uNCzZ091lCkIggqIQKAEkZGR9B8wAAMDA4oUKUK/fv1o26YNVlZW6i5NaVavWsXWrVtZsnQpf82di5mZGZaWljx+/JgaNWqwYcMG7GxtE7yvVKlSALx69SpTBAIAExMT5syejSRJjJ8wgdKlS1O4cGF1l5UmP2ZSnDVzJqVLl06wf8vWrejo6nL8+HHy58+v6vIEQVAhEQiU4MTJkwQGBrJzxw4K/We+7azsx0x9kydP5vLlyzx7/pzXr1/Tu1cvWrRokeTcCvny5UNLS4tXr15hb2+v4qrTTiaTMdXdnYfe3gwaPJi9e/ZgYGCg7rJS7cctHg0NDWxsbBLs9/b2xt7eXoQBQcgGRCBQgh07dlClSpVsEwb+y9jYmMaNG9M4he21tLTIly8fr169UmZZSmFgYMDixYtp1bo1s+fMYfKkSeouKdUMDQ3R1dXl1evXCfaFh4fz/PlzunXrpobKBEFQNTGoUMEiIyO5evUqTk2aqLuUTKNAgQK8TuSClBkUKVIEZ2dnjh49muEHRiZGW1ubug4OHD50KEH9b9++JS4uTvQOCEI2IQKBgunq6pLTzCxLrPqnKra2trx4+VLdZaRZjerV+fz5Mz4+PuouJU06duzIw0ePWLZ8OZcvX5av3WBra4uRoSF3795Vb4GCIKiECARKUKhw4Ux9gVO1ChUq8OrVK/z9/dVdSppUrFgRTU1NvK5dU3cpaVKrVi1chw5l3rx5DBgwgAEDBjBj5ky0tbWpaW/PhQsX1F2iIAgqIAKBEhQqVIgXL16ou4xMo2aNGgBcunxZzZWkjZGREWVKl+b69evqLiXNBg0aRMuWLfkWGgrAw4cPAahduzZ37txh9uzZHDp8mCVLl9Krd29Wr1lD8L+zGwqCkDWIQKAEhQsX5uXLl8TGxqq7lEzB3NycUqVKceniRXWXkmZVq1Xj2rVrmXIcAXx/amKGhwcA1atXZ83q1QD83rQpTk5O7N+/n6FDh7J69WrCQkOZO3cuv9WqxdRp03jz5o06SxcEQUHEUwZKULhQISIjI3n37p0YkJVCtX77jd179hAXF4eGRubLqVWrVmXVqlW8ev060fkWMgMdHR1MTEywsLCQr+yora1Nn969adyoEYULF8bW1hYtLS38/f3ZsnUr27ZtY9OmTTg6OjJ0yBCKFSum5k+Rds+/JXzsMiUKG/kquBJBUA8RCJQg379rFLx//14EghT67bffWLFyJXfv3qVixYrqLifVKleqhIaGBte8vDJtIJAkiSZNmrBr1y4uXLiAqYkJvm/fyns98tvYsGnTJvLly8fLly8ZOGAAA/r3x3PfPv766y8WLlrEsqVL1fwpUi6tAUBZxwERLgT1EoFACUz+XTEuOCREzZVkHpUrV6Z48eKMHDWKfZ6eic6pf/nKFRYvXkxsbCySJCHFxdG5SxfatG6thorjMzY2plSpUty4eZOOHTuqu5xU83n1imbNmhEbG4uRkRExMTHo6Ooy1d2d4sWLY2BoSP/+/enQsSMdO3Rg4aJFtG/XjhkzZtCpY0eWLl1KgQIF1P0xfkmRF29l+FV9IjAIyiQCgRLIA4EYdJVi2traLF2yhJatWjF6zJhEf9M8e+YMT548wdHREZlMxqFDh3jw4EGGCATwPRRERUWpu4w0sbK0JHfu3Hz+/JnevXoR8u0bG9av5+KlS7Rr1w4tLS12/P033bp3Z+GiRRQuVIidu3bhULcu9erW5dOnT3z48IGoqCj5WhUZQUYPAKmV2T6PCDCZiwgEShAXF4eWlhah/47YFlLG1taWgQMHMmvWrETHEgQGBVGkSBFmz5pFWFgYe/bsoWSJEmqqNqGAgAAK2tmpu4w00dfXZ/asWXTs1AkdHR1GjxqFbYECjB03jmfPnlGiRAksLCzYvm0b27dvp2vXrowaPZrhw4fzp6srY8aMYdasWRgYGOAxfbraPkdmu2BmdWn5+xAhQn1EIFCCgwcPEhMTQ63fflN3KZlOXGwsJiYmiQ4sDAoMxCxHDgCePn2KJEk8efqUdevWER0dTaFChahXr57aBiUGfP1KDjMztZxbESpXrkwPFxdmz5lDzZo1+fT5M0aGhhQsWFDeJkeOHPTv3x+Av+bMYe68ecyYOZOSJUtiZmaGpoYGgYGBaGlpoa2tjba2ttL/PkQIyFpS+vdZ8NdNhFQSgUDBJEli7bp11K9XL94PUiFlvgYEkOPfi/7PAgID432nurq6bNu2DR1tbTS1tAgKCqJkiRK4urpSr169JBdUUgZJkggIDMQsEwcCgGHDhnHr9m369uuHoYEBtWvXli+R/DNDQ0MmTphAi+bNGTd+PP7+/mzbvp1t27fHa7N82TKFLlwlAoAgKEfme74rgzt58iRPnz4V68anUeB/egH+S5IkPn78KA8L5cuX59HDh/zz6BH37t3j9q1bbN+2DSMjI/r07UvrNm3kk+uoQnh4OJGRkYnWnpno6+uzdMkSYmJiePb8OfXr1//le8qVK4fn3r2sXrWKypUrI5PJGOvmxl9z5lC6VCmGDR/Oly9f0lXX82828pcgCMohAoGCrVixglIlS1KtWjV1l5IpBQUFYWBomGD7A29v3r9/z2/J/KZZtWpV+XPxYaGhjBg5Uv48vbL9WLsis/cQAOTJk4c1q1fj5ORE/fr1CQ8P59OnT8m+R1tbm3r16rF0yRIsLS05cuQITk5OLFq0iM+fP3Pw0KE01SJCgCCojggECvbx40dKlCyp0u7qrKRypUpcu3aNZ8+exdu+d+9ecufO/cuuZ5lMhn3NmkyfPp2nT59y8tQpZZYr9/XrVwDMcuZUyfmUrVSpUixetAhjY2PWrFnDb7VqMW78eN6/f5/s+3LlysXy5ct59M8/zJs/n1y5ctGgfn1O/LtgUkqJICAIqicCgYJl1qlrMwpnZ2fyWlszY+ZM+baoqCgOHTpEixYt0NTUTNFxKleuTLVq1Vi6ZInS/06CgoKYv2ABmpqa5MmTR6nnUody5coRExPDzp07qVe/Pvb29tS0t6dx48aE/GeuDUmS2LRpE48ePqRs2bI8uH8f+D4V8p07d4iMjPzluUQQEAT1EYMKFUySJETfQNrp6urSqXNnZv37aKGBgQHnzp8nICCAVq1apepYgwcNoquzM2fPnqVevXpKqffJkyf069+foKAgVq1aRS5zc6WcR9EkSaJPnz5Uq1aNXr16Jdu2xr+LT02bOpWoqCgCAgJ49eoV+w8cICQkBGNjYyRJ4tTp00xxd4/33lWrV1PQzo6oqCju3r2b5K00EQIEQf1ED4GCSZIkbhek05kzZ6hWrRoGBgbA99sFpUqVoljRoqk6TvXq1alcuTJz/vqL8PBwhdYoSRJ7PT1p07YthoaG7PP0xKFOHYWeQ5lOnz7NmbNnOZ6Crvwfv9nr6+vj7OzMoEGDMDIyQkNDg7i4OKKjo9mwYQP9+vUjX758tGzZEk9PTwBmzZpF3379APDy8kpwbNEjIAgZR4YNBBcuXKBZs2ZYW1sjk8nYt29fvP2SJDF58mSsra3R19fHwcEhwajyJ0+eYG9vT758+XD/6TcXW1tbZDJZgh9Srq6uODg4KOMjCSnw/Plzbty4QadOnYDvk/2cO3eO1mmYjVAmkzFl8mTevHnDhIkTFXbr4N69e7Tv0IGRI0fSqGFDdu3cmanWrIiNjWXuvHnoaGvj7e39y9kV3759C3xfoyMyMpLRo0ezdds2NDU1qePgQO06dZg5axbwfQzIiRMnWLFiBQC9evVi3ty5NGzYkMKFC8c7rggCgpCxZNhAEBoaSrly5ViyZEmi+2fPns28efNYsmQJN27cwMrKCkdHx3j3NAcOHIizszP79+/n4MGDXL58Od4x9PT0GD16tELrliQJRA9Bmh04eBBTU1MaOjoCcOjQISRJotnvv6fpeMWLF2f6tGl4enrSo2dP/po7l4OHDuHz6lWqj/X+/Xv+HDaM1m3aEBYWxqaNG5k7dy76+vppqk1dDh48yNOnTxnj5kZUVBSPHz9Otr2W1vc7izt27qSOgwP7DxwAkIc2f39/+diOPn360LJlS44fP06+fPk4duwYzZo1Y/myZTRt2hQQvQKCkFFl2EDQpEkTpk2bluhvhpIksWDBAsaNG0fr1q0pXbo0GzduJCwsjG3btsnbBQYGUqFCBcqWLYu1tTVBQUHxjtO3b1+8vLw4cuRIuus9efIk06dP582bN+KWQTpoaWqipaUlnwxn779d8ebpuDffsmVL3KdMAUli7969uLq60qBBA2bOmkVMTMwv3y9JEitWrKCBoyNXrlxhhocHB/bvV+hkO6oSGhrKgoULsbe358rly2hoaMgv+En58d3v378fhzp1mDJ5MgDNmzWTt+nWrRt6enoULVqUoUOHAlCtWjXevn3LlStXABEEBCGjy5SDCn18fPDz86Nhw4bybbq6utSpU4crV67Qt29fANzd3XF0dCQ8PJzff/+dRo0axTuOra0t/fr1w83NjcaNG6dritW2bdtibm6OlZUVNWvWTPNxsjsbGxu+fPlCWFgY79+/5/79+yxNopcoNbp06UKXLl2A77chdu/Zw5w5c7h79y4LFyzA0tIyyffOX7CApUuX0rt3bwYNHIiRkVG661GHmJgYhrq64uvry8ePH9HR1mbVqlWULFky2feZmZmxbu1aihQpQu7cuenfvz85zcyI/XeOh9GjR7Nn927s7OyQyWQY//v97Nmzhxw5cvBVZieCgCBkApkyEPj5+QEk+CFuaWnJ69ev5X92cnLi06dPBAcHY2Fhkeixxo8fz/r169m6dSvOzs6/PHdkZGS8x6d+rGhYrVo1rl69ikwm497du7x69QpbW9vUfrRsL1++fMD3+9ZHjx7FxMSEunXrKvQcZmZm9O7ViwrlyzNk6FCaNW/Orp07E12+d/GSJSxdupTRo0fTp3dvhdahSpIk4e7uztmzZ4Hv/19ZtXIlRVM4ULPOvwMmPWbM4Oy5c6xevZrKlSpx8cIFOnbq9P2Rw3/HDejq6tKzRw+0c5agSZs/0DfInAFKELKbDHvLICV+7ppPbIS/rq5ukmEAwMLCghEjRjBx4sQULV07Y8YMTE1N5S8bm++/+cydO1d+7jlz5tCwUSM2bdok5iVIpVevXqGhoYG5uTnR0dEYGxsnOZd+elWuXJlRI0fy5csXIiIiEuxfsWIFCxYsYPiwYZk+DCxZupSt/95OMzc35+/t21McBn64fOUKa9euZdSoUdT9d+Ct5759fPL3Z9vWrcRa1JbfFugwdAWtnYfi88ybDvVs2LH+L6Kifj0PgSAI6pMpA4GVlRXw/56CH/z9/ZPt+k3KsGHDCA8PZ9myZb9s6+bmRlBQkPzl6/t9qc7SpUsD33/4nj13DisrK6a4uzPGzS1FE7II3506dYqKFStibm5OLgsLPn36pNRQtWfvXipVqkSxYsXk26Kiopg2bRpz/vqLoUOGMGDAAKWdX9mio6MZO3YsC/6dOEkmkzF//nz5/4dSw9raGhMTEy5cuEBUVBTfvn1j3bp1NGr9B5Fmid8mCw76QuBXf9YtHEffNhW4diH943UEQVCOTBkI7OzssLKy4uTJk/JtUVFRnD9/Pk33742MjJgwYQLTp0+X3wJIiq6uLiYmJvFeACtXrgS+P+r4/v17pkyZwl9z5nDgwAF6/vEHsbGxqa4ruwkPD+fS5cvyBXVyW1gQFRVFV2dn+vbrx9q1axV6vnfv3nHlyhU6dewo3+br60uHjh3ZunUrkyZOZPDgwQo9pyoFBwfT848/2LlrF7lz5yY2NhZXV1fs0zjGxc7WlhXLl3Pr5k1GjR7NkNHTCQ0No0PPkUm+x8T0+4BEt1lbyG2dn4lDWnF49+o0nV8QBOXKsIHg27dv3L17l7t37wLfBxLevXtXPorf1dUVDw8PPD098fb2xsXFBQMDAzp37pym8/Xp0wdTU1O2/2fp1tT4sajNsWPH0NHRoVrVqrRq1Yp1a9dy7do1Nm7cmKbjZieXL18mIiICxwYNgO8z5HXt0gVzc3OCgoLwmDGDf/75R2HnMzQ0xMjIiPsPHgBw/PhxmjVvTmBAADt37aJbt26Z9omR6Ohouru4yEf4f/36FbcxYxg0cGC6jlutWjVGTNvAoUOHuHx6H6NnbMLCMl+8NlFRkaxdOI6/JvZm66rpAJjlzM3MFUcpXfE37nidSVcNgiAoR4YdVHjz5s14g8mGDRsGQPfu3dmwYQOjRo0iPDycAQMGEBAQQLVq1Thx4gTGxsZpOp+2tjZTp05Nc6Do0KED8P2iUqVKFfksezVq1KBbt27MnTePevXqiYGGybh9+zZ58uTBzs4O+B6ypkyZAny/wDnUrcv6DRuY/e8kOOmVI0cOBgwYwNy5cwkODmbfvn04NWmCh4dHmv8dZRQLFy3i/r9rCdjZ2TF//nzK/HtbKz2ef7OhTiMbtHV0MMlhjq6eAc8e3aZIyYryNlfPHmTn+r8oUbY6evoG1HJsQ/6CxZHJZBQsWoa718+muw5BEBRPJolRb+kSHByMqakpQUFBaGtrY25ujuvQofHmhw8LC6Np06bkzZePLZs3q7HajO2PXr2QyWSsXLEi0UWMVq1ezbx587hw/jy5c+dWyDkjIyNp1LgxH/38GD9+PJ07d860vQI/nDp1Sj5dcPv27Zkwfrw8oKbVz48NRkdHsWXFNHaun4OungGLtl7GxrYY/9y/xvJZw9DU0mLBpgsJjnNkz1oWewxm3+Uv6OplrgmdhIylYTkd+X//9+fwj9u4Qupl2FsGmdHFixcJDw+nVu3a8bYbGBjgNnYsV69e5dbt22qqLuN7+eIFL54/p3KVKly7di3B/o4dOqCtrS0fLa8Iurq6bN60iSNHjtClS5dMHwYABvx7W2DxokXM8PBQaBiIiY7m3LGdDO5cg10b59Kl73gsrGwYP7A5PZqX5M/udfj62Q/n/hMTPVbBomWIi43lzUvF3foRBEExRCBQoHv37mFgYEDRIkUS7GtQvz6FCxVi1b+DD4WEihQpwhtfX/lguMv/3v/+wcTEhAYNGnDp4kWFntfGxkZ+myIrOHjgAFevXMHJySndx/pvGLh4yhOXZiWYMcYZ05wWLNx8ia59xzFx3g70DYwoU7EWs1YfZ9PRZ1Sq0SDR49nYFQfgjU/y0yULgqB6IhAoUJ48eQgLC0t0ZT0NDQ169+7NqdOnefbsmRqqy/h+/3e9gj59+lClShV69+6dYPGpsmXL8uiff1I0Z0R2VaxYsXTfUvl5muHQb8EsmNKP/HbFWLbjBrNWHqNIiQoEB35hx7q/GDphGcOnrKJ8FYdEb/f8YGhkQk6LPLx99TRd9QmCoHgiECjQj5nu3r17l+j+5s2bY2Vpyeo1a1RZVqZRv3596tSpQ/t27Vi5YgWVK1emT9++8sFx8D0QREVF8fSpuKAoS2LTDB/Zs4aI8FD+nLySgkXLEBz0ldiYGOaM78nJA5sY8Ud9dm2YS9y/0xknJ2/+wrz3faGM0gVBSIcM+5RBZvTjCYJ3799TJJHbBjo6OpQtV45XaVhpLzswNDRk3X/mGli+bBndXVzo0bMne3bvxtbWllIlS6KlpcX+/fvlk0FlZsnN8V/YyFeFlXyXWD1RUZF4bllMXadOaMg0GNWrIfdvXUAmkyFJElMW7sH7zhXWLBjLk4e3GD8n4RiPL/7vCQz4TKFiZcmVOy+f/RMPzYIgqI8IBApkbW2NlpYW7/5dPz4xurq66VpEKTsxNDRk7Zo1NGrcmE2bNzNxwgT09PQYPnw4s2bNwszMLNPOIpiSxX7+20YV4SCpmm5fPcmXT++xsStG/w5V0dLSZtjkVcTGxmCZJz+VajpSqWZDLp/ex+ePCf/t+/v5MsylLuFh39h+6jWmOcx59uiWsj+OIAipJAKBAmlqamJjY8PbJG4ZwPe5+ov/Z5pcIXmmpqb83rQphw4fxm3MGLS1tenTuzeRERHMnTePr1+/4uDgQMmSJcmZM6e6y/2ltK769/ybTbKhQJIkPDw8uOrlhZaWFiOGD+e3335TSF12RcqgraPLuoXjqFSjAaOmrydHzvhjFDy3LMLv/SvGz4k/sVdQwGfG9m9KTHQU34IDuHHpGLevnaZwiYoIgpCxiF9VFaxQoULcuXMn0fn3JUkSqyCmQdu2bQkMDGTQ4MHydSEGDRqEq6srO3ftoruLC1WqVsVjxowMu5jUz4P0FO3Q4cOsW7+eYsWKoaurS+8+fTh//nyKa0uOpXUBho5fSt/hs5m29GCCMADw2f8dOXLmxrZI/Ns4B3euxNfnCbNXH6dw8fKsXzyBNy8f49i8a8o/nCAIKiECgYK5urpy48YNjh07lmDfiRMnCAkJyVKPuKlC8eLFWb58ORcuXGDEiBHA95UuBw8axN07dzh18iTDhw1j7dq1eHh4ZLhQoKggkNRxvn79iru7O00aN2buX3+xaeNGav32G/369eP69esKqc2xuTOtnYcmeburftMufP30gdtXT8bbXr1OUwBev3xMXaeO+Po8wdzCmgrV6qfovIIgqI4IBArWtGlT6terx7Tp0wkLC8Pf3599+/YxYOBABgwcSP169eRrywspV9fBgVkzZ3Lk6FFu3Lgh366hoYGdnR0DBgxg8qRJrFu/niFDhvD8+XM1VvudsnsF4Huv09Rp04iNjWXSpEnA93EqS5YswSpPHg4fPpxsfYpStFQl7IqUxnPrYiLCw+TbCxcvT+mKv7Fv2xLqNu6AhoYG9Zp2SvbRREEQ1EMEAiUYP37893vbdetSo2ZNho8YwevXr5k9ezYrV65ET09P3SVmSr///jvFixdn7bp1ie53dnZmzpw53Lt/n3bt2+Pt7a3iCv9P2UEAIDY2lgkTJ3LgwAEmTpiAhYWFfJ+Ojg62trZcu3493mObyqpPJpPR8Y/R3L1xju5Ni7Frw1zCw74BUM+pI963LwEwe81JOvd2U+i5BUFQDLGWQTolNof2yxcv2L1nD3fu3KFGjRpUr16dXObmaq40a+j87+qHixctSrJNSEgI3V1ceP36NVs2b6ZEiRIqq08VQaCwkS+RkZG4/vknp0+fxmP6dNq2bZug3aVLlxg3fjxv376lXLlydOzQgSZNmmBsbKy0Ov3e+bBj3RxO7N+EgZEJbZxduXBiNxqamizcfEn0DAgKI9YyUDwRCNIpqUCQ3YWHh7Ns+XIATE1MyGFmRr68ecmXLx9WVlZoaaXtAZea9va0bduWYX/+mWy74OBgujo78+H9ezw9PcmXL1+y7RVBFWEAwCzyLgMHDeLBgwcsXrSIevXqJdk2NjaWs2fPsnnzZi5fufJ9ae46zWjYohtV7BsprUb/D2/YsW4Ox/dtICYmmoWbL1GsdGWlnU/IfkQgUDwRCNJJBILEPX36lCZOTuTIkYOYmBi+ffsm36epqYmVlRX58uYlb758tG3ThmrVqv3ymBEREZQqXZqp7u4pWqY6ICCAZs2bU7RoUdauWaO0hYtUFQQkSeL04W2smTscgFUrV1KxYsof3/vw4QMb9lzk+P6N+Po8YcvxF1hYKjcoffr4lo/vX1O6gr1SzyNkPyIQKJ4YQyAoRYECBdDU1GT4sGHcu3uXRw8fcurkSTasX8+UKVNo3qwZuS0tuX/vHj169kzRKpC6urqUL1eOdevXExER8cv2ZmZmTJ40ifPnz3PkyBFFfKwEVBUGPr5/zfhBzZkzvie//fYbx44dS1UYCAsLY9/ZJwDkyVcQbR1dcppbKatcOQvLfCIMCEImIXoI0kn0ECStXfv2+Pv78/f27eTJkyfRNpGRkbi4uPDk6VP+3r6dokWLJnvM58+f06x5c1xcXBg9alSK6ug/YAB37tzh8iXF3sNWVRjwvnOZiYNbYWykz1R392RvESRl3d7rTB/VGQNDY0zNclHZvhGD3BYqoVpBUA3RQ6B4oodAUJqFCxYQFxdHdxcXPn/5kmgbXV1dVq5ciZWVFT169uT9+/fJHrNw4cJ069aN3bt2pbiOtm3a8OnTJ75+/Zqq+pOjyjAwtn9TypQuwbGjR9MUBgDKV6uLtrYOzv0nsuHQYxEGBEFIQAQCQWmsra3ZtGkTQUFB9HBxITg4ONF2JiYmrF+3Dk1NTXr27ElAQECyx61QvjxfAwL4kkTI+Jn5v094pLR9RvHu9TMmDWlNuTKlWbtmDcbGxmk6zvPnz1kz343YuFiePfr1rRlBELInEQgEpbKztWXTxo28//CBnn/8QWhoaKLtLC0t2bB+PV++fKFjx468TWaBqMKFCwPw7NmzFNVgamoK8MugkVKq6B2ICA9l6oiOWOQyY9WqVWmau0KSJMZPmECjxo25efkEPYdMY9DYpB/XFAQhexOBQFC6YsWKsX7dOp4+fUrffv0ICgpKtF3BggXZuXMnUVFRtG3XjgdJTCxUoEABdLS1uXTpUorO/2PWwgIFCqTtA6hYXFwc86f0x+/tC5YtXZrmnoFjx46xfft23MaMYcPhx7TrPgxDI3F/VRCExIlAIKhE2bJlWbN6NQ8fPqR5ixbcvXs30XZ2dnbs2r0ba2trOnfuzJkzZxK00dbWplfv3qxYuTLRNSN+9sDbG3Nzc6ytrdP7MVRi3cJxnDu2g1kzZ/5ykGVSQkJCcJ86FUdHR3r16oWOjq6CqxQEIasRgUBQmapVq3Lo4EEscuWiQ8eOrFmzJtGFiHKZm7N1yxbs7e3p3acPf82dS0xMTLw2f7q64uTkxLDhw5MMFz/Y2dry5csXPn/+nO7PoOzbBef+nsSujfOYMGECTZs2TfNx5syZQ1hoKJMmTlRgdYIgZGUiEAgqlTdvXrZv307Pnj2ZMXMm27ZtS7Sdvr4+y5YuZdTIkaxatYpu3boREhIi36+hocGc2bMpVaoUAwcNIi4uLslzVq1aFSDJWxDqJkkSX/zfc3nvdGbMnEn/fv1w6d49zcd78eIFW7dto3///kk+7ikIgvCztM0fKwjpoK2tzehRowgMDGTOX3/RqFEjcuXKlaCdhoYGffv2pUKFCvTp25eBgwaxZvVqdHS+P3+sq6vL0CFD6O7iwsuXL+WDDX/2Y6rk9+/eKfVzpVREeBhXzuznycOb+DzzxufZA4IDvz8B0aFDB4YPH56u4+fOnZv8NjYcOXIEFxcXsZiWIAgpInoIBLUZNXIkWlpazJg5M9l2VatWZcXy5dy4fh23sWPj3WYoX748GhoabN68mejo6ETfr6mpibW1NceOH483hXJqKeJ2wf6/l+HcpDCzx/fgxqVj5MmpS08XZ1YsX865s2eZPm1auqdYNjY2ZunSpTx/8YLJkyenu2ZBELIHEQgEtTEzM2PUyJHs27ePs2fPJtu2evXqzJo9m3379jFv/nz5diMjI0aMGMH2v/+mTZs2PHnyJNH3Txg/nvv37tG2XTvCw8MV+jlSKiI8lJV/jaR81bqcOX2aC2eOsXTpUgYPGoSjoyM2NjYKW2+hZMmSTJ06lV27d7Njxw6FHFMQhKxNBAJBrdq2bUvt2rXp07cvf82dS1RUVJJtmzdrxujRo1m2bBnb//5bvr1vnz7s2bOHqOhoWrRsydJlyxIMQqxXrx47duzgxYsXeHp6Ku3zJOfxg+vExsQwxrUn+fPnV/r52rRuTceOHZk8ZQqfPiY9r0NGERsbq+4SBCFbE4FAUCsNDQ1Wr1qFq6srq1evpm27dvJ5AxLTu1cvnLt2Zfz48RQtVowSJUtSpmxZnJ2dKVmyJC4uLixYsIA2bdsmOE7x4sVp6OjI+g0bkh2EmB5fPn1g/eKJ+DxLOIDR+/ZlTE1NKZLEWAdlKFumDDExMchQzkqPihL6LRinSgY0q2aq7lIEIdsSixulk1jcSHEeeHszfPhw3r59y5o1a6hZo0ai7WJjYzl+/DiBQUHExsQQExtLcFAQq9esoWDBggwZPJjZc+bw4cMHZs6YEe/xvVu3b9O+fXvWrF5N3bp1U11jcuMIQkOCGP5HfXyePgCgaq0mtOg0gMCvn/C+fYkrZw9QqXwZVq9enerzplWXrl0JDAxkwfa7Slv+OSmSJKX4nBMGteD6pe9zSuy99ElMoCT8kljcSPFEIEgnEQgUKzw8HOdu3YiLi2PP7t2puog9evSIvv36ERkZybx589i1axeHDh3ij549GTVqFFpaWkiSROs2bchtYcHKlStTXV9SgSAqKpIJg5rz/J+7zFp9HJ9n3uzaMJfXLx4BYFu4FPZVy/HHH3+odMbEtWvX4jFjBrUbtmX4lNXo6Ruo5LwP71xh9vgeVK3VhIFjFiTbNuDLRzrWz8/v7fpwaNcq8tkWJb9dceo5daKWY2uV1CtkPiIQKJ4IBOkkAoHiXbhwgR49e7J58+YkewmS8vnLFwYNGsTdu3fZtHEjDx8+ZMbMmVSuVImePXvy9etXNm/eTM6cOdm4cWOqa0sqECycOoCTB7cwY/lhylSqBXyfgvjF47tYWhegYr6wVJ9LUTbsv8XscT2wsSvG5AW7sbDMl2TbuLg4ju5di5aWNrUc22BgmLppk2NjY9mxbg6bV7ijpaVNVGQES/++RuHi5ZN8z/nju/EY3YWtx19y/eJRfJ57c+faGWKio9hw6HGqzi9kHyIQKJ4IBOkkAoHiSZJEixYtyGFmxqY0XLSjoqLo6uyMv78/hw4e5J9//mHQ4MHymQpz5szJHz170q9fvzTVl1go6Fg/Pw1bdKPnkGkJ9hU28k3TeRTl+TcbXjy+x+Q/2xITHcXEeTspUbZagnZRkRHMHt+TS6f2AqCjq0+tBq2xr98Cq7x25LLMi7GJWZK9Nl8+fWD2+B7cu36Ohi2643X+EPlsizFr1TG0tXUSfQ/A4umDuXvjHGv3PZBv+xES/j79BjNzy3R+A0JWJAKB4omJiYQMRyaT0at3b/78809evXqFra1tqt6vo6PDnNmz+b1ZM6ZPn86MGTM4d/YsQUFBmJubo62tna76/nuBf/7NhsiIcAK+fMTGtliybdVh99kXvH5+gC+fPlCgYAluXD7OyF6OLNx0kULFy8nbBQd+YbJrW579c5sJc3dQpGRFTh3cyokDGzl1aIu8na6eARaWeTE0zoGOrh6R4WFERoYTFRlOwBd/DIxMmLp4H5uWT0VbR48Jf21PNgwAvH39lPx2xeNtMzL+PrgwKjJCgd+GIAjJyTaBYNmyZcz5d6BZqVKlWLBgAbVqfe/a9fPzo0ePHty7d4+WLVuyZMkSNDTEAxjq5NigAQYGBhw+coSBAwak+v0FChRg3NixjBs/HgcHBxo1aoS+vr7C6yxs5MuLj997hCoW0k+wT50uXrzI6N490NbWIadFHnLmysNvDVqRK3declpYydv5vXvFuAG/ExIcwOzVJ+S9B517j6FTr9F89n/H54/fX58+vuWz/zu+BQcSEx2Fjq4eunoG6OrpY2hkSqOW3Vkzfyyvnnszb/3ZFP12X7BYOS6div8oaOi3YACMjHMo7gsRBCFZ2SIQ7NixA1dXV5YtW4a9vT0rV66kSZMmPHr0iPz58zN+/HiqVKnCzJkzcXNzY/v27XTp0kXdZWdr+vr61K9fn8OHD6cpEMD3aYDPnT/PwEGDaN++PSOGDydnzpwKrhTevv3+jH/evHnJp+YQ8IMkSSxesoRipauwcPPFZAdnLpw6gOio77cSwsO+sW/bEt69eU54WCjRURFER0USFRlBVFQk0VGRREdHYpXXjiIlK1K0ZEUKl6hAcMBn7t04zwL3AVw9d5DRHhspUrJiimotXcGevZsX8unjWwK/+PPs0W3e+75AJpOhn8oxDIIgpF22CATz5s3jjz/+oFevXgAsWLCA48ePs3z5cmbMmEFgYCCOjo6UKVMGOzs7goKC1FyxANDUyYmDBw9y6/ZtKlVM2cXlv2QyGUuXLGHbtm3MnTeP48ePM27cOFq3aqXQOn+srZDcpEqq5uXlxa1bt3Bf5JlsGPC+c5nbXqcBGN6jHgDa2jpY5y+MoZEpOrq6aGvroqOrh6FxDrR1dNHU1OL9m+dsXz2D8LD/TwWtoaFB0VKVGTxuMfWcOqa41pLlqgPw8O5V9m1dzD/3rwFgapZL9NQJggpl+UAQFRXFrVu3GDNmTLztDRs25MqVKwCMGTOGpk2b0rVrV6pUqcKsWbOSPF5kZCSRkZHyPwcHB8f7XyDeqnxC2lWqVInSpUvTs2dPlixZQvly5X79pkS0bNmSWrVr06dPH2bMmIFjgwYKrdPK6nv3+wNvbywsLBR67LQ6fuIE5rnzUqqCvbz7PTGHdqzEJEdOggO/0rbbn9Rt0gHLPAXQ0Pr1j4a4uDje+z7n5eP7GBiZULJ8DflTCcmd82c6uvrkyVcQr3OHeOx9gx6Dp1KyXA00NDVTdRwhewkOjj+oUFAAKYt79+6dBEiXL1+Ot3369OlS0aJF5X+Ojo6WPnz48MvjTZo0SQLivYyMjBJsEy/xEi/xEi/VvaysrKTw8HCFX0OykyzfQ/DDz92m0k+zqGlpacl/00uOm5sbw4YNS/ZYwcHB2NjY4OvrKx6BUSDxvSqH+F6VQ3yvypHU96qjoyOW+k6nLB8IcuXKhaamJn5+fvG2+/v7Y2mZ+uebdXV10dXVTVFbExMT8YNACcT3qhzie1UO8b0qh/heFS/Lj9jR0dGhUqVKnDx5Mt72kydPUrNmTTVVJQiCIAgZS5bvIQAYNmwYzs7OVK5cmRo1arBq1SrevHmT5pnqBEEQBCGryRaBoEOHDnz58gV3d3c+fPhA6dKlOXLkiNIWmdHV1WXSpEkpvrUgpIz4XpVDfK/KIb5X5RDfq/KItQwEQRAEQcj6YwgEQRAEQfg1EQgEQRAEQRCBQBAEQRAEEQgEQRAEQUAEgiTFxMQwfvx47Ozs0NfXp2DBgri7uxMXFydvI0kSkydPxtraGn19fRwcHHj48GG84zx58gR7e3vy5cuHu7t7vH22trbIZLIEr5kzZ6rkM6rChQsXaNasGdbW1shkMvbt2xdvf0q+w8jISAYPHkyuXLkwNDSkefPm8hUGf7h69Srly5enQIECrF69Ot6+xL5jmUzG33//rZTPrArJfa/R0dGMHj2aMmXKYGho+L/27j0qyjr/A/h7GO4XRwFxGAjylhdSVNzwdgSVEJNkUzeRltWyfnpaLfsVu5aepWOp1JZ46ZjV7tKm9dNMMZdcvARSKuYFUHTFK964iKkwXEQG5vP7w+McR0AGmAuu79c5/MH3+c73+X4+Pnz9zDPPMw80Gg3+8Ic/oLi42GgM5rVpLR2z95o9ezYUCgVWrFhh1M7cNmZKXk+ePIlJkyZBpVLBw8MDw4YNw6VLlwzbmVcLs+X3Jndk77//vnh5eUlaWpoUFhbKpk2bxN3dXVasWGHok5SUJB4eHrJ582bJz8+XadOmia+vr2i1WkOfcePGyaeffiqHDx+WoUOHyt69ew3bAgMDZfHixVJSUmL0U1VVZdVYLWn79u2ycOFC2bx5swCQ1NRUo+2m5HDOnDni5+cnu3btkpycHBkzZowEBwdLfX29oU/fvn3lu+++k3379knPnj3l4sWLhm0AJCUlpVGeH+bvPX9QXsvLyyUiIkI2btwoBQUFkp2dLaGhoRISEmI0BvPatJaO2btSU1MlODhYNBqNJCcnG21jbhtrKa9nz54VT09PSUhIkJycHDl37pykpaXJ1atXDX2YV8tiQdCMiRMnyksvvWTUNnnyZPn9738vIiJ6vV7UarUkJSUZttfW1opKpZK1a9ca2kJCQuTAgQNSV1cnkyZNkh9++MGwLTAwsNFC8t/s/kXAlByWl5eLg4ODbNiwwdCnqKhI7OzsJD093dAWEBAg58+fl6qqKhk6dKicOHGi2f3+tzElvoMHDwoAw+LIvJqmuRivXLkifn5+cvz48UZ/x8xty5qKb9q0aYb1tSnMq+XxI4NmjBo1Cj/++CNOnz4NADh69Cj27t2LZ555BgBQWFiI0tJSREZGGl7j5OSEsLAww2OVAWDx4sV4+umn4erqCjs7O4wfP966gXRgpuTwyJEj0Ol0Rn00Gg2efPJJozz/5S9/Qb9+/aBSqTBs2DD079/feoE8BCoqKqBQKNC5c2cAzGt76PV6xMfHIyEhAUFBQY22M7etp9fr8cMPP+CJJ57A+PHj4ePjg9DQUKOPFZhXy3skvqmwLf785z+joqICffv2hVKpRENDA5YsWYLp06cDgOFhSfc/IKlbt264ePGi4fdnnnkG165dg1arRdeuXZvcz6JFi4za0tLSEB4ebuaIOh5TclhaWgpHR0d06dKlUZ97H1g1a9YsxMbGoq6urlFfAJg+fTqUSqVR27Fjx9CjRw+zxNKR1dbWYsGCBYiLizM8DIZ5bbsPPvgA9vb2eO2115rczty2XllZGaqqqpCUlIT3338fH3zwAdLT0zF58mRkZmYiLCyMebUCFgTN2LhxI9avX49vvvkGQUFByMvLw/z586HRaDBjxgxDv5YeqwzcedfbVDEAAAkJCZg5c6ZRm5+fn3mCeEiYksP7NdXHzc0Nbm5uTfZPTk5GRESEUdtjjz3Whtk+XHQ6HWJjY6HX67FmzZoW+zOvD3bkyBGsXLkSOTk5LR6j92Num3f3Yu2YmBi88cYbAIBBgwZh//79WLt2LcLCwpp9LfNqPiwImpGQkIAFCxYgNjYWADBgwABcvHgRy5Ytw4wZM6BWqwHceTfg6+treF1rH6vs7e2NXr16mXfyDwlTcqhWq1FXV4ebN28aVftlZWWtelqlWq1+5PKs0+nw/PPPo7CwEBkZGUaPimVe2+bnn39GWVkZAgICDG0NDQ148803sWLFCly4cIG5bQNvb2/Y29s3Or3fr18/7N27FwCPWWvgNQTNqKmpgZ2dcXqUSqWhku3evTvUarXRY5Xr6uqQlZXFxyqbyJQchoSEwMHBwahPSUkJjh8/zjw/wN1i4MyZM9i9eze8vLyMtjOvbRMfH49jx44hLy/P8KPRaJCQkIAdO3YAYG7bwtHREb/5zW9w6tQpo/bTp08bHkLHvFoezxA049lnn8WSJUsQEBCAoKAg5ObmYvny5XjppZcA3DnNPX/+fCxduhS9e/dG7969sXTpUri6uiIuLs7k/VRWVhp9/gUArq6uRu/mHmZVVVU4e/as4ffCwkLk5eXB09MTAQEBLeZQpVJh1qxZePPNN+Hl5QVPT0+89dZbGDBgQKPTfg9SXl7eKM8eHh7Nnlbs6B6UV41Gg6lTpyInJwdpaWloaGgwxO7p6QlHR0fm9QFaOmbvL64cHBygVqvRp08fADxmm9NSXhMSEjBt2jSMHj0aY8aMQXp6Ov71r39hz549AJhXq7DlLQ4dmVarlddff10CAgLE2dlZevToIQsXLpTbt28b+uj1eklMTBS1Wi1OTk4yevRoyc/PN3kfgYGBAqDRz+zZsy0Rkk1kZmY2GeOMGTNExLQc3rp1S+bOnSuenp7i4uIi0dHRcunSJZPn0NT+AciyZcvMGapVPSivhYWFzcacmZlpGIN5bVpLx+z9mrp9mLltzJS8/v3vf5devXqJs7OzBAcHy9atW43GYF4ti48/JiIiIl5DQERERCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICIC9LXdeUVGBnTt34tatW7acBhERkU25uLggMjISKpXKZnNQiIhYc4f19fXYuXMnZrzyEW6U7oOzmx86eWmsOYUOx83dwdZTsCk3Z6segh2Si7LW1lOwKae6KltPweakutLWU7CpOu2jfQyUllahBDqEKtyxIG0DIiMjYW9v3ffsVikIRAR5eXmInrIM14p2Q2GnRFe/p+HjHwlXj+7o81R/S0+hQwsa6G3rKdjUk4/rbD0Fm+vlftnWU7ApdWmeradgc3I8x9ZTsKmr2UdtPQWbOvn1GVyU28jUa5EplWiAIEzhgXdzMhEcHAyFQmHxOVi0/CguLsaIiPdw7coO1NaUwMs3DE8MWQSV1yAoFEpL7pqIiOihEqhwwkxlV8SLN/KlBj+KFsMGD4EvHPDHvy5BXFwcNBrLnVE3+0WF1dXV+Prrr9HF5yn4+weg/Noh+PWcjqee3oInBr2Nzt4hLAaIiIiaoVQoMMjODW8qfbFe2ROT7Tzx9Z8SEeDnhyF2bvj6669RXV1t9v2a5QyBXq9HVlYWYv/wIX4tyYKTSzf4+Eei18AEOLn4mGMXREREjxwXhR3GKjphLDrhV9Fhj1Tind+/hFcQj5EKD7zz41aEhYXBzq797+/bVRCcPHkSkZOWoOzKLoi+Dt5+4zBgxEq4deptlc87iIiIHhXeCgdMVXhiiqILzuE2MvRaPDf2aThCgXBFJyz+zz707du3zeO3uiD49ddfERr+Hsqu7ER15Tl4dhuJngPmo3PXp2BnZ9O7GImIiP7rKRQK9IIzeimd8ZJ0RY5UI0O0GNivPx6HI15b/RFiY2Ph7d26C9ZNOseg0+mwZcsWeKlHwcfHF7+WZKJbwEQ8FbEFfUPehWe3ESwGiIiIrMxeocBTdu5YoNRgnbIHxtup8Om8BPh27Yrhdu7YsmULdDrT7uQy6X/x48ePY8qUKVDau6JX8J/R1S+CHwkQERF1IO4KJaIUnTFeocIeqcQafRmmTJmCnJwcDB48uMXXm3SGYNCgQdi7dy+8NeNw/sRK5OyJx+XTX6G2pqTdARAREVH7lYoO/6e/jv9puIC1+jKEKTywb98+DBo0yKTXm3SGQKFQYOTIkSi9uA21tbVIS0vD/8xNxuUzX8GjSxB8/CPh5RsGewf39sRCRERErVAtDdgnVcjQa1GAWxiicMOqTd8gOjoazs7OrRqr1R/8Ozs7Y+rUqZg6dSrKysowbOz7KLn4Pc4fXwlP9Sj4+I+/810DvKaAiIjI7BpEkCPVyJRKHJAqBMIRc1d+iNjYWPj4tP1W/3b9r+3j44Pzx1cBAE6cOIHxMUtw9thfIdKArpoIdPWPhFunXrzegIiIqB1EBIW4jR/1WmRJJZRQYIzCA7knjqN/f/N8/b/Z3sYHBQXhytlv0NDQgD179mD6zL8if/88OLtq4OMfCW+/CDg5P9rf2U9ERNQa16UeWaJFhl6LUugwQuGB73bvQHh4OJRK837rr9nP6yuVSowbNw5ll8ehqqoKqampmPe/K3Gx4AuovIfAx388PNWjoFS27rMNIiKiR0Gt6JEtVcgQLY5JDQYqXLH4q7/hueeeg7u75a7VM/uzDO7l7u6O+Ph4lF87jEuXLkDlNQSXz6zHwZ3P4UxeEsp/zYWI3pJTICIi6vD0Ijimr8GKhlLEN5zDJv0NxCYl4sLly8jRVyM+Pt6ixQBgpccf30tEkJubi+ipS/Fr0Y+Awg5unbpacwodjpPzo/2wJycHqx6CHZKT3aP9CGj7+lpbT8Hm5PajnYOGmkc7/l8rbkEPIEzhgcTDP2Lw4MFWv/7O6gXBvXQ6HbKysvDll18iNjYWDg4OtpqKzeh0OmzYsIHxP6LxA8zBox4/wBwwfh02b96M1atXW/wswIPYtCAAAK1WC5VKhYqKCnTq1MmWU7EJxv9oxw8wB496/ABzwPg7RvwWvYaAiIiIHg4sCIiIiIgFAREREXWAgsDJyQmJiYlwcnKy9VRsgvE/2vEDzMGjHj/AHDD+jhG/zS8qJCIiItuz+RkCIiIisj0WBERERMSCgIiIiFgQEBERESxUEFRWVmL+/PkIDAyEi4sLRowYgUOHDhm2V1VVYe7cufD394eLiwv69euHTz/9tNE42dnZGDt2LNzc3NC5c2eEh4fj1q1blpiy2bWUg6tXr2LmzJnQaDRwdXVFVFQUzpw50+RYIoIJEyZAoVBg69atVorAdD/99BOeffZZaDSaJucoInj33Xeh0Wjg4uKC8PBwnDhxwqjP7du3MW/ePHh7e8PNzQ2TJk3ClStXDNsvXLiAWbNmoXv37nBxcUHPnj2RmJiIuro6a4TYInPk4PPPP0d4eDg6deoEhUKB8vLyRvu5efMm4uPjoVKpoFKp7jw8rIl+1mat+E+fPo2YmBh4e3ujU6dOGDlyJDIzMy0YmWnaG/+NGzcwb9489OnTB66urggICMBrr72GioqKRvv64YcfEBoaChcXF3h7e2Py5MmWDs8k5jgGZs+ejZ49e8LFxQVdu3ZFTEwMCgoKmtzf7du3MWjQICgUCuTl5VkoKtOZI/57+za15lt6HbRIQfDyyy9j165dWLduHfLz8xEZGYmIiAgUFRUBAN544w2kp6dj/fr1OHnyJN544w3MmzcP33//vWGM7OxsREVFITIyEgcPHsShQ4cwd+5c2Nk9HCc1HpQDEcFvf/tbnD9/Ht9//z1yc3MRGBiIiIgIVFdXNxprxYoVVn/IRWtUV1cjODgYn3zySZPbP/zwQyxfvhyffPIJDh06BLVajaeffhqVlZWGPvPnz0dqaio2bNiAvXv3oqqqCtHR0WhoaAAAFBQUQK/X47PPPsOJEyeQnJyMtWvX4p133rFKjC0xRw5qamoQFRX1wJji4uKQl5eH9PR0pKenIy8vD/Hx8WaPp7WsFf/EiRNRX1+PjIwMHDlyBIMGDUJ0dDRKS0vNHlNrtDf+4uJiFBcX46OPPkJ+fj6+/PJLpKenY9asWUbjbN68GfHx8XjxxRdx9OhR7Nu3D3FxcRaPzxTmOAZCQkKQkpKCkydPYseOHRARREZGGtaBe/3pT3+CRqOxWDytZY7472puzbf4OihmVlNTI0qlUtLS0ozag4ODZeHChSIiEhQUJIsXLzbaPmTIEFm0aJHh99DQUKPfHyYt5eDUqVMCQI4fP27YVl9fL56envLFF18YvSYvL0/8/f2lpKREAEhqaqo1Qmiz++eo1+tFrVZLUlKSoa22tlZUKpWsXbtWRETKy8vFwcFBNmzYYOhTVFQkdnZ2kp6e3uy+PvzwQ+nevbv5g2intuTgXpmZmQJAbt68adT+n//8RwDIgQMHDG3Z2dkCQAoKCsweR1tZKv5r164JAPnpp58MbVqtVgDI7t27zR5HW7U3/ru+/fZbcXR0FJ1OJyIiOp1O/Pz85G9/+5vF5m4u5srB0aNHBYCcPXvWqH379u3St29fOXHihACQ3Nxcc4fQLu2Jv7VrvjnXQbO/3a6vr0dDQwOcnZ2N2l1cXLB3714AwKhRo7Bt2zbDu+XMzEycPn0a48ePBwCUlZXhl19+gY+PD0aMGIFu3bohLCzM8PqOrqUc3L59GwCMtiuVSjg6OhrFWFNTg+nTp+OTTz6BWq22zuTNrLCwEKWlpYiMjDS0OTk5ISwsDPv37wcAHDlyBDqdzqiPRqPBk08+aejTlIqKCnh6elpu8mZiSg5MkZ2dDZVKhdDQUEPbsGHDoFKpWjWOtZkrfi8vL/Tr1w9fffUVqqurUV9fj88++wzdunVDSEiIJaZuFm2N/+6Dbuzt7QEAOTk5KCoqgp2dHQYPHgxfX19MmDCh2dPOHUlbclBdXY2UlBR0794djz32mKH96tWreOWVV7Bu3Tq4urpafO7mYGr8bVnzzbkOmr0g8PDwwPDhw/Hee++huLgYDQ0NWL9+PX755ReUlJQAAFatWoX+/fvD398fjo6OiIqKwpo1azBq1CgAwPnz5wEA7777Ll555RWkp6djyJAhGDduXLOfs3ckLeWgb9++CAwMxNtvv42bN2+irq4OSUlJKC0tNeQIuPPRyogRIxATE2PDaNrn7qncbt26GbV369bNsK20tBSOjo7o0qVLs33ud+7cOaxevRpz5syxwKzNy5QcmDqOj49Po3YfHx+bnzJ/EHPFr1AosGvXLuTm5sLDwwPOzs5ITk5Geno6OnfubM4pm1Vb4r9+/Tree+89zJ4929B277q4aNEipKWloUuXLggLC8ONGzcsNHvzaE0O1qxZA3d3d7i7uyM9PR27du2Co6MjgDufrc+cORNz5szB0KFDrTN5MzA1/tau+eZeBy3ygfy6desgIvDz84OTkxNWrVqFuLg4KJVKAHcKggMHDmDbtm04cuQIPv74Y7z66qvYvXs3AECv1wO4c4HJiy++iMGDByM5ORl9+vTBP/7xD0tM2ewelAMHBwds3rwZp0+fhqenJ1xdXbFnzx5MmDDBkKNt27YhIyMDK1assG0gZnL/52Ei0uJ1Ec31KS4uRlRUFH73u9/h5ZdfNus8LaktOWhpjLaOYwvtjV9E8Oqrr8LHxwc///wzDh48iJiYGERHRxsV0h2VqfFrtVpMnDgR/fv3R2JioqH97rq4cOFCTJkyxfB5u0KhwKZNmyw7eTMxJQcvvPACcnNzkZWVhd69e+P5559HbW0tAGD16tXQarV4++23rTZnc3pQ/K1d8y2xDlqkIOjZsyeysrJQVVWFy5cv4+DBg9DpdOjevTtu3bqFd955B8uXL8ezzz6LgQMHYu7cuZg2bRo++ugjAICvry8AoH///kbj9uvXD5cuXbLElM3uQTkA7lw8k5eXh/LycpSUlCA9PR3Xr183bM/IyMC5c+fQuXNn2NvbG04bTpkyBeHh4bYKq9Xunva6/11AWVmZoVpWq9Woq6vDzZs3m+1zV3FxMcaMGYPhw4fj888/t+DMzceUHJg6ztWrVxu1X7t2rVXjWJu54s/IyEBaWho2bNiAkSNHYsiQIVizZg1cXFzwz3/+06xzNqfWxF9ZWYmoqCi4u7sjNTUVDg4Ohm1NrYtOTk7o0aNHh18XW5MDlUqF3r17Y/To0fjuu+9QUFCA1NRUAHeOgQMHDsDJyQn29vbo1asXAGDo0KGYMWOGFSJpG1Pib82ab6l10KKX7Lu5ucHX1xc3b97Ejh07EBMTA51OB51O1+huAaVSaaiAH3/8cWg0Gpw6dcqoz+nTpxEYGGjJKZtdUzm4l0qlQteuXXHmzBkcPnzYsH3BggU4duwY8vLyDD8AkJycjJSUFGuH0Wbdu3eHWq3Grl27DG11dXXIysrCiBEjANwpjhwcHIz6lJSU4Pjx44Y+AFBUVITw8HAMGTIEKSkpD80dJ6bkwBTDhw9HRUUFDh48aGj75ZdfUFFR0apxrM1c8dfU1ABAo393Ozs7w9rREZkav1arRWRkJBwdHbFt27ZG1yCFhITAycnJaF3U6XS4cOFCh18X23MMiIjhuqtVq1bh6NGjhjVx+/btAICNGzdiyZIllgugnUyJ39Q136LroFkuTbxPenq6/Pvf/5bz58/Lzp07JTg4WJ566impq6sTEZGwsDAJCgqSzMxMOX/+vKSkpIizs7OsWbPGMEZycrJ06tRJNm3aJGfOnJFFixaJs7Nzo6tNO6qWcvDtt99KZmamnDt3TrZu3SqBgYEyefLkB46JDnqXQWVlpeTm5kpubq4AkOXLl0tubq5cvHhRRESSkpJEpVLJli1bJD8/X6ZPny6+vr6i1WoNY8yZM0f8/f1l9+7dkpOTI2PHjpXg4GCpr68XkTt3HfTq1UvGjh0rV65ckZKSEsNPR2COHJSUlEhubq588cUXhqvpc3Nz5fr164Y+UVFRMnDgQMnOzpbs7GwZMGCAREdHWz3e+1kj/mvXromXl5dMnjxZ8vLy5NSpU/LWW2+Jg4OD5OXl2STuu9obv1arldDQUBkwYICcPXvW6Pi++zcgIvL666+Ln5+f7NixQwoKCmTWrFni4+MjN27csEnc92pvDs6dOydLly6Vw4cPy8WLF2X//v0SExMjnp6ecvXq1Sb3WVhY2GHuMjDH38D97l/zLb0OWqQg2Lhxo/To0UMcHR1FrVbLH//4RykvLzdsLykpkZkzZ4pGoxFnZ2fp06ePfPzxx6LX643GWbZsmfj7+4urq6sMHz5cfv75Z0tM1yJaysHKlSvF399fHBwcJCAgQBYtWiS3b99+4JgdtSC4e5vY/T8zZswQkTu33CQmJoparRYnJycZPXq05OfnG41x69YtmTt3rnh6eoqLi4tER0fLpUuXDNtTUlKa3IeFatpWM0cOEhMTmxwjJSXF0Of69evywgsviIeHh3h4eMgLL7zQ6PY8W7BW/IcOHZLIyEjx9PQUDw8PGTZsmGzfvt2KkTatvfE393oAUlhYaOhXV1cnb775pvj4+IiHh4dEREQY3b5sS+3NQVFRkUyYMEF8fHzEwcFB/P39JS4u7oG31HakgsAcfwP3u3/Nt/Q6yMcfExEREZ9lQERERCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICCwIiIiICMD/AzMunYAXy+6uAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "# 繪圖\n", "plt.title(\"MSLP, Dec. 2021\", loc='left') # 設定圖片標題,並且置於圖的左側。\n", "olrPlot = (mslp_mask.mean(axis=0)\n", " .plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(986,1048,8), \n", " cmap='coolwarm', \n", " add_colorbar=True, \n", " extend='both', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': ' '}) #設定color bar\n", " )\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(0,70,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines() \n", "ax.set_ylabel(' ') # 設定坐標軸名稱。\n", "ax.set_xlabel(' ')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "33fa05a9", "metadata": {}, "source": [ "## 計算相對渦度 (vorticity)、散度 (divergence)\n", "\n", "以上的計算都只是一些基本的統計,利用xarray的函數就可以辦到。但如果想要計算一些氣象的函數應該怎麼辦呢?我們可以使用MetPy,目前MetPy對xarray有完整的支援,可以直接將DataArray讀入MetPy的函數中。接下來我們以計算相對渦度為例,渦度和散度是氣象上常用來衡量風的旋轉量和輻合散的方法,[metpy.calc.vorticity](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.vorticity.html) 可以用來計算渦度。\n", "\n", "**Example 5:** 計算2017年12月平均之850-hPa 相對渦度。\n", "\n", "Step 1: 讀風場資料、選擇時空範圍。" ] }, { "cell_type": "code", "execution_count": 13, "id": "0e066184", "metadata": {}, "outputs": [], "source": [ "latn = 30 \n", "lats = -20\n", "\n", "uds = xr.open_dataset('data/ncep_r2_uv850/u850.2017.nc')\n", "vds = xr.open_dataset('data/ncep_r2_uv850/v850.2017.nc')\n", "u = uds.sel(time=slice('2017-12-01','2017-12-31'), \n", " level=850,\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).uwnd\n", "v = vds.sel(time=slice('2017-12-01','2017-12-31'), \n", " level=850,\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).vwnd" ] }, { "attachments": {}, "cell_type": "markdown", "id": "5e0d0550", "metadata": {}, "source": [ "Step 2: 利用MetPy計算渦度。\n", "\n", "在計算前,應檢查u, v是不是有單位 m/s,如果沒有的話,必須先利用MetPy加上單位才能進行渦度計算。" ] }, { "cell_type": "code", "execution_count": 14, "id": "452521b4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 21, lon: 33)>\n",
       "<Quantity([[ 2.27227035e-06 -6.35822645e-06 -1.46749070e-05 -2.08053115e-05\n",
       "  -2.30204190e-05 -2.14179636e-05 -1.73882539e-05 -1.29046760e-05\n",
       "  -9.84929500e-06 -9.54206099e-06 -1.12507049e-05 -1.23807539e-05\n",
       "  -1.01248504e-05 -4.97617877e-06 -9.28601335e-07 -2.13257232e-06\n",
       "  -8.04519296e-06 -1.36745794e-05 -1.37081362e-05 -8.49913312e-06\n",
       "  -2.77764758e-06 -1.18851542e-06 -3.59719131e-06 -6.00788240e-06\n",
       "  -5.68558831e-06 -3.57765352e-06 -2.98596786e-06 -5.61280440e-06\n",
       "  -9.78352706e-06 -1.28709753e-05 -1.36409031e-05 -1.30405734e-05\n",
       "  -1.21284570e-05]\n",
       " [ 1.59641488e-06  1.27951490e-07 -2.96147587e-06 -6.09627077e-06\n",
       "  -7.14075885e-06 -6.30349598e-06 -5.16875042e-06 -4.56615673e-06\n",
       "  -4.01070010e-06 -3.29133037e-06 -3.14996178e-06 -4.03313727e-06\n",
       "  -5.06772766e-06 -5.30085544e-06 -5.33611754e-06 -7.06711890e-06\n",
       "  -1.08910896e-05 -1.43131536e-05 -1.42338578e-05 -1.03047389e-05\n",
       "  -5.71612173e-06 -3.96175474e-06 -5.53658936e-06 -7.88921794e-06\n",
       "  -8.64479278e-06 -8.03751306e-06 -8.04710263e-06 -9.82336098e-06\n",
       "  -1.24495122e-05 -1.41660453e-05 -1.44190610e-05 -1.42504704e-05\n",
       "  -1.44654921e-05]\n",
       " [-2.25853323e-06  1.13172266e-06  2.50715062e-06  3.24109081e-06\n",
       "   4.54796451e-06  5.22032636e-06  3.42384104e-06  8.61968466e-08\n",
       "...\n",
       "  -8.52059086e-06 -1.10716107e-05 -1.19881288e-05 -1.13950856e-05\n",
       "  -9.98141214e-06]\n",
       " [ 3.40814844e-07 -1.87193747e-06 -2.55199434e-06 -1.83217317e-06\n",
       "  -7.07930811e-07 -2.45485863e-07 -7.17219789e-07 -1.21135839e-06\n",
       "  -6.77305687e-07  1.98063110e-07 -8.42058040e-07 -4.36596747e-06\n",
       "  -7.21982209e-06 -6.11138032e-06 -2.24744337e-06  6.50249030e-08\n",
       "  -5.85517420e-07 -8.93727851e-07  1.92617077e-06  5.34523983e-06\n",
       "   4.91827661e-06  6.98802749e-07 -2.36916696e-06 -8.49899076e-07\n",
       "   3.18171194e-06  5.20927594e-06  3.40469449e-06 -5.15668196e-07\n",
       "  -4.15454945e-06 -6.51466556e-06 -7.57468620e-06 -7.70031620e-06\n",
       "  -7.32678885e-06]\n",
       " [ 3.86059996e-06  4.83366406e-07 -1.67842807e-06 -2.14714011e-06\n",
       "  -1.31075583e-06 -6.41593796e-07 -9.82999754e-07 -1.46979384e-06\n",
       "  -7.01365099e-07  5.12796672e-07 -4.05116393e-07 -4.63963087e-06\n",
       "  -8.87224706e-06 -8.92474419e-06 -4.83957896e-06 -1.08197146e-06\n",
       "  -7.43141058e-07 -2.15767543e-06 -1.95926642e-06 -1.83126193e-07\n",
       "  -9.75771821e-09 -3.08505634e-06 -6.80966442e-06 -7.53604087e-06\n",
       "  -4.54671714e-06 -6.88500940e-08  3.41230334e-06  4.97175514e-06\n",
       "   4.77222735e-06  3.07068630e-06  7.25767405e-07 -1.38476001e-06\n",
       "  -2.89335635e-06]], '1 / second')>\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n",
       "  * lat      (lat) float32 30.0 27.5 25.0 22.5 20.0 ... -12.5 -15.0 -17.5 -20.0\n",
       "    level    float32 850.0
" ], "text/plain": [ "\n", "\n", "Coordinates:\n", " * lon (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n", " * lat (lat) float32 30.0 27.5 25.0 22.5 20.0 ... -12.5 -15.0 -17.5 -20.0\n", " level float32 850.0" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import metpy.calc as mpcalc\n", "from metpy.units import units\n", "vor = mpcalc.vorticity(u*units('m/s'), v*units('m/s'))\n", "vorm = vor.mean(axis=0)\n", "vorm" ] }, { "attachments": {}, "cell_type": "markdown", "id": "087fa996", "metadata": {}, "source": [ "以上預覽的資訊中,多了「Magnitude」和「Units」的資訊,這是因為在MetPy計算中,單位也很重要,因此除了文字格式的Unit attribute之外,DataArray還附上單位資訊,稱為「unit-aware array type」。如果將這個DataArray繼續做其他的計算,單位仍會保留下來。\n", "\n", "有時候將unit-aware array type餵給某些函數時,程式不認得而造成錯誤,此時可以用 `.dequantify()` 的方式轉換成一般的DataArray,或稱為「unit-naive array type」。" ] }, { "cell_type": "code", "execution_count": 15, "id": "3ea7ec27", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 21, lon: 33)>\n",
       "array([[ 2.27227035e-06, -6.35822645e-06, -1.46749070e-05,\n",
       "        -2.08053115e-05, -2.30204190e-05, -2.14179636e-05,\n",
       "        -1.73882539e-05, -1.29046760e-05, -9.84929500e-06,\n",
       "        -9.54206099e-06, -1.12507049e-05, -1.23807539e-05,\n",
       "        -1.01248504e-05, -4.97617877e-06, -9.28601335e-07,\n",
       "        -2.13257232e-06, -8.04519296e-06, -1.36745794e-05,\n",
       "        -1.37081362e-05, -8.49913312e-06, -2.77764758e-06,\n",
       "        -1.18851542e-06, -3.59719131e-06, -6.00788240e-06,\n",
       "        -5.68558831e-06, -3.57765352e-06, -2.98596786e-06,\n",
       "        -5.61280440e-06, -9.78352706e-06, -1.28709753e-05,\n",
       "        -1.36409031e-05, -1.30405734e-05, -1.21284570e-05],\n",
       "       [ 1.59641488e-06,  1.27951490e-07, -2.96147587e-06,\n",
       "        -6.09627077e-06, -7.14075885e-06, -6.30349598e-06,\n",
       "        -5.16875042e-06, -4.56615673e-06, -4.01070010e-06,\n",
       "        -3.29133037e-06, -3.14996178e-06, -4.03313727e-06,\n",
       "        -5.06772766e-06, -5.30085544e-06, -5.33611754e-06,\n",
       "        -7.06711890e-06, -1.08910896e-05, -1.43131536e-05,\n",
       "        -1.42338578e-05, -1.03047389e-05, -5.71612173e-06,\n",
       "        -3.96175474e-06, -5.53658936e-06, -7.88921794e-06,\n",
       "        -8.64479278e-06, -8.03751306e-06, -8.04710263e-06,\n",
       "...\n",
       "        -7.17219789e-07, -1.21135839e-06, -6.77305687e-07,\n",
       "         1.98063110e-07, -8.42058040e-07, -4.36596747e-06,\n",
       "        -7.21982209e-06, -6.11138032e-06, -2.24744337e-06,\n",
       "         6.50249030e-08, -5.85517420e-07, -8.93727851e-07,\n",
       "         1.92617077e-06,  5.34523983e-06,  4.91827661e-06,\n",
       "         6.98802749e-07, -2.36916696e-06, -8.49899076e-07,\n",
       "         3.18171194e-06,  5.20927594e-06,  3.40469449e-06,\n",
       "        -5.15668196e-07, -4.15454945e-06, -6.51466556e-06,\n",
       "        -7.57468620e-06, -7.70031620e-06, -7.32678885e-06],\n",
       "       [ 3.86059996e-06,  4.83366406e-07, -1.67842807e-06,\n",
       "        -2.14714011e-06, -1.31075583e-06, -6.41593796e-07,\n",
       "        -9.82999754e-07, -1.46979384e-06, -7.01365099e-07,\n",
       "         5.12796672e-07, -4.05116393e-07, -4.63963087e-06,\n",
       "        -8.87224706e-06, -8.92474419e-06, -4.83957896e-06,\n",
       "        -1.08197146e-06, -7.43141058e-07, -2.15767543e-06,\n",
       "        -1.95926642e-06, -1.83126193e-07, -9.75771821e-09,\n",
       "        -3.08505634e-06, -6.80966442e-06, -7.53604087e-06,\n",
       "        -4.54671714e-06, -6.88500940e-08,  3.41230334e-06,\n",
       "         4.97175514e-06,  4.77222735e-06,  3.07068630e-06,\n",
       "         7.25767405e-07, -1.38476001e-06, -2.89335635e-06]])\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n",
       "  * lat      (lat) float32 30.0 27.5 25.0 22.5 20.0 ... -12.5 -15.0 -17.5 -20.0\n",
       "    level    float32 850.0\n",
       "Attributes:\n",
       "    units:    1 / second
" ], "text/plain": [ "\n", "array([[ 2.27227035e-06, -6.35822645e-06, -1.46749070e-05,\n", " -2.08053115e-05, -2.30204190e-05, -2.14179636e-05,\n", " -1.73882539e-05, -1.29046760e-05, -9.84929500e-06,\n", " -9.54206099e-06, -1.12507049e-05, -1.23807539e-05,\n", " -1.01248504e-05, -4.97617877e-06, -9.28601335e-07,\n", " -2.13257232e-06, -8.04519296e-06, -1.36745794e-05,\n", " -1.37081362e-05, -8.49913312e-06, -2.77764758e-06,\n", " -1.18851542e-06, -3.59719131e-06, -6.00788240e-06,\n", " -5.68558831e-06, -3.57765352e-06, -2.98596786e-06,\n", " -5.61280440e-06, -9.78352706e-06, -1.28709753e-05,\n", " -1.36409031e-05, -1.30405734e-05, -1.21284570e-05],\n", " [ 1.59641488e-06, 1.27951490e-07, -2.96147587e-06,\n", " -6.09627077e-06, -7.14075885e-06, -6.30349598e-06,\n", " -5.16875042e-06, -4.56615673e-06, -4.01070010e-06,\n", " -3.29133037e-06, -3.14996178e-06, -4.03313727e-06,\n", " -5.06772766e-06, -5.30085544e-06, -5.33611754e-06,\n", " -7.06711890e-06, -1.08910896e-05, -1.43131536e-05,\n", " -1.42338578e-05, -1.03047389e-05, -5.71612173e-06,\n", " -3.96175474e-06, -5.53658936e-06, -7.88921794e-06,\n", " -8.64479278e-06, -8.03751306e-06, -8.04710263e-06,\n", "...\n", " -7.17219789e-07, -1.21135839e-06, -6.77305687e-07,\n", " 1.98063110e-07, -8.42058040e-07, -4.36596747e-06,\n", " -7.21982209e-06, -6.11138032e-06, -2.24744337e-06,\n", " 6.50249030e-08, -5.85517420e-07, -8.93727851e-07,\n", " 1.92617077e-06, 5.34523983e-06, 4.91827661e-06,\n", " 6.98802749e-07, -2.36916696e-06, -8.49899076e-07,\n", " 3.18171194e-06, 5.20927594e-06, 3.40469449e-06,\n", " -5.15668196e-07, -4.15454945e-06, -6.51466556e-06,\n", " -7.57468620e-06, -7.70031620e-06, -7.32678885e-06],\n", " [ 3.86059996e-06, 4.83366406e-07, -1.67842807e-06,\n", " -2.14714011e-06, -1.31075583e-06, -6.41593796e-07,\n", " -9.82999754e-07, -1.46979384e-06, -7.01365099e-07,\n", " 5.12796672e-07, -4.05116393e-07, -4.63963087e-06,\n", " -8.87224706e-06, -8.92474419e-06, -4.83957896e-06,\n", " -1.08197146e-06, -7.43141058e-07, -2.15767543e-06,\n", " -1.95926642e-06, -1.83126193e-07, -9.75771821e-09,\n", " -3.08505634e-06, -6.80966442e-06, -7.53604087e-06,\n", " -4.54671714e-06, -6.88500940e-08, 3.41230334e-06,\n", " 4.97175514e-06, 4.77222735e-06, 3.07068630e-06,\n", " 7.25767405e-07, -1.38476001e-06, -2.89335635e-06]])\n", "Coordinates:\n", " * lon (lon) float32 80.0 82.5 85.0 87.5 90.0 ... 152.5 155.0 157.5 160.0\n", " * lat (lat) float32 30.0 27.5 25.0 22.5 20.0 ... -12.5 -15.0 -17.5 -20.0\n", " level float32 850.0\n", "Attributes:\n", " units: 1 / second" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vorm.metpy.dequantify()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "dd031e58", "metadata": {}, "source": [ "單位就會被轉換為文字格式的attribute。" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e6386fd6", "metadata": {}, "source": [ "Step 3: 繪圖。" ] }, { "cell_type": "code", "execution_count": 16, "id": "0b72ee9e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/waynetsai/micromamba/envs/p3/lib/python3.10/site-packages/shapely/predicates.py:798: RuntimeWarning: invalid value encountered in intersects\n", " return lib.intersects(a, b, **kwargs)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGeCAYAAACtobqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hURReH303b9A4pJJBAEiD0XkIVQkcQEBEEFAWUJiAiSBGUoqCIH4iIUqVIlyqCVOk19N4DhPTes/f7I+ySTXaTrckG7vs8eWDvnTszt8387pkzZySCIAiIiIiIiIiIiBQjZiVdAREREREREZHXD1GAiIiIiIiIiBQ7ogARERERERERKXZEASIiIiIiIiJS7IgCRERERERERKTYEQWIiIiIiIiISLEjChARERERERGRYkcUICIiIiIiIiLFjihARERERERERIodUYBoyYULF+jevTve3t7Y2tpSpUoVvv76a1JTU5XSvf/++0gkkgJ/VapUUZnvggULqFKlClKpFH9/f6ZPn05WVpZGdZo2bRoSiYTo6Ogi0/r5+SnVx97enkaNGrFq1SqNyiqMbdu2IZFIWLx4sdo0+/btQyKRMG/ePL3LA5g1axZ//fVXge2HDh1CIpFw6NAhrfJbsWIFEomEBw8eKLatXbuW+fPn61VPTZHfS/mfra0tPj4+tG/fngULFpCUlFQs9SgO/Pz86NKlS4mVn5OTw7x58+jQoQM+Pj7Y2tpStWpVJkyYQHx8vMpjNHlPw8PDGT16NC1btsTZ2RmJRMKKFSsK5PXgwQOVbYT8r0OHDkY4axERE0IQ0ZirV68K1tbWQq1atYT169cL+/fvF7766ivB3NxcePPNN5XSDhw4ULCxsRFOnDih9BcWFlYg3xkzZggSiUSYOHGicPDgQWHOnDmClZWVMHjwYI3q9dVXXwmAEBUVVWTaChUqCCEhIYr6bNy4UWjUqJEACIsWLdLsQqghKytL8PT0FBo0aKA2zbvvvitYWloKkZGRepUlx87OThg4cGCB7QkJCcKJEyeEhIQErfKLjIwUTpw4IaSnpyu2de7cWahQoYKeNdUM+b3cs2ePcOLECeHw4cPCunXrhI8++kiwtrYWfH19VT5DpZEKFSoInTt3LrHyk5KSBAcHB2HIkCHCxo0bhYMHDwo//PCD4OLiIgQHBwupqalK6TV9Tw8ePCi4u7sLbdu2Fd59910BEJYvX16g/PT09ALtw4kTJ4QvvvhCAITFixcb8/RFREocUYBowaRJkwRAuHPnjtL2IUOGCIAQGxur2DZw4EDBzs6uyDyjo6MFa2trYciQIUrbZ86cKUgkEuHq1atF5qGtAMnf6MfFxQmOjo5CQEBAkccXxfjx4wVAuHz5coF9cXFxgrW1tdCzZ0+9y5F3DuoEiCEpCQGi6l6GhYUJTk5OQvny5ZUEUmmlOASITCYrICTkZGdnC9HR0QW2b9y4UQCEP/74Q7FNm/c0JydH8f8zZ86oFSDqaNWqlWBra6u1eBYRKW2IQzBaYGlpCYCTk5PSdmdnZ8zMzLCystI6zz179pCens4HH3ygtP2DDz5AEASVwwvqeP78Oe+++y5OTk54eHgwaNAgEhISijzO2dmZypUr8/DhQwDOnj1Lnz598PPzw8bGBj8/P959913F/sL48MMPAVi+fHmBfevWrSM9PZ1BgwYBkJ6ezsSJE/H398fKyopy5coxfPjwAuZvual+y5Yt1KlTB2tra6ZPn45EIiElJYWVK1cqzNatWrUC1A/BnDp1iq5du+Lm5oa1tTWVKlVi9OjRiv35h2BatWrFrl27ePjwoZJ5XBAEAgMDad++fYHzTE5OxsnJieHDhxd5vbShVq1aTJo0iUePHrF+/Xqlff/++y9t2rTB0dERW1tbQkJC2L9/f4E8bty4wbvvvouHhwdSqZTy5cszYMAAMjIyFGkiIiIYOnQoPj4+WFlZKYYasrOzFWnkwwdz587lu+++UzwrrVq14tatW2RlZTFhwgS8vb1xcnLirbfeIjIyUuV5bd26lZo1a2JtbU3FihX53//+VyBNYmIi48aNU3pWRo8eTUpKilI6iUTCiBEjWLx4MVWrVkUqlbJy5UqV5Zqbm+Pm5lZge8OGDQF4/PixYps276mZme7N6t27dzl8+DC9e/fG0dFR53xEREoFJSyAShX3798XnJ2dhV69egl3794VEhMThR07dghOTk7CyJEjldIOHDhQMDMzEzw8PAQzMzOhXLlywvDhw4WYmBildBMmTBAAITk5uUB57u7uwrvvvltkveRfzZUrVxamTp0q7Nu3T5g3b54glUqFDz74QCmtqq/OzMxMoWzZsoK3t7cgCLlfgFOnThW2bt0qHD58WPjzzz+Fli1bCmXKlNHIytKsWTOhbNmyQmZmptL2Bg0aCOXKlROys7MFmUwmtG/fXrCwsBCmTJki7N27V/j+++8FOzs7oU6dOkpf+BUqVBC8vLyEihUrCsuWLRMOHjwonD59Wjhx4oRgY2MjdOrUSWG+ln+JHjx4UACEgwcPKvLZs2ePYGlpKdSsWVNYsWKFcODAAWHZsmVCnz59FGmWL18uAML9+/cFQcgddgsJCRE8PT2VzOSCIAg//fSTIJFIhFu3bimd588//ywAGlmv8lOUNevGjRsCIHz44YeKbX/88YcgkUiE7t27C1u2bBF27NghdOnSRTA3Nxf+/fdfRbqwsDDB3t5e8PPzExYvXizs379fWL16tdC7d28hMTFREARBePbsmeDr6ytUqFBB+PXXX4V///1X+OabbwSpVCq8//77irzu378vAEKFChWErl27Cjt37hRWr14teHh4CEFBQUL//v2FQYMGCX///bewePFiwd7eXujatavSuVSoUEEoV66cUL58eWHZsmXC7t27hX79+gmAMHfuXEW6lJQUoXbt2oK7u7swb9484d9//xV++uknwcnJSXjjjTcEmUymSAsI5cqVE2rWrCmsXbtWOHDggHDlyhWt7oH8Gdi2bZtim67vqbYWkC+//FIAhKNHj2pVZxGR0ogoQLTk+vXrQpUqVQRA8Tdq1CilRlAQBGHevHnCvHnzhL179wp79+4VJk2aJNja2gpVqlQRkpKSFOkGDx4sSKVSlWUFBQUJ7dq1K7JO8k5rzpw5StuHDRsmWFtbK9WtQoUKQqdOnYSsrCwhKytLuH//vjBw4EABED7//HOV+WdnZwvJycmCnZ2d8NNPPxVZH3kDvmXLFsW2K1euCIAwadIkQRByxYCqOq9fv14AhCVLlijV2dzcXLh582aBstQNwagSIJUqVRIqVaokpKWlFVl3uQARBPVDMImJiYKDg4Pw6aefKm0PDg4WWrdurbaMwihKgKSlpQmA0LFjR0EQcjtnV1fXAp17Tk6OUKtWLaFhw4aKbW+88Ybg7OxcqP/N0KFDBXt7e+Hhw4dK27///nslUSUXILVq1VIacpg/f74AFPCJGj16tAAoDStUqFBBkEgkBXxaQkNDBUdHRyElJUUQBEGYPXu2YGZmJpw5c0Yp3aZNmwRA2L17t2IbIDg5OSkNh2pDeHi44OHhIdSvX1/pvHR9T7URINnZ2UK5cuWEKlWq6FR3EZHShjgEowUPHjxQmO83bdrE4cOHmTNnDitWrOCjjz5SSjtmzBjGjBlDaGgooaGhzJgxg1WrVnHjxg1+++03pbQSiURtmfJ9giCQnZ2t9JefN998U+l3zZo1SU9PL2D63r17N5aWllhaWuLv78+GDRsYOXIkM2bMAHKHEL744gsCAgKwsLDAwsICe3t7UlJSuH79epHXqXfv3jg4OLBs2TLFtmXLliGRSBQm7AMHDgC5s4Xy8vbbb2NnZ1dg+KBmzZoEBQUVWbY6bt26xd27d/nwww+xtrbWOZ+8ODg48MEHH7BixQrFUMCBAwe4du0aI0aMMEgZ+REEQen38ePHiY2NZeDAgUrPhkwmo0OHDpw5c4aUlBRSU1MVpv0yZcqozX/nzp20bt0ab29vpfw6duwIwOHDh5XSd+rUSWnIoWrVqgB07txZKZ18+6NHj5S2V6tWjVq1ailt69u3L4mJiZw/f15Rp+rVq1O7dm2lOrVv317lMNsbb7yBi4uL2nNUR2xsLJ06dUIQBNavX19gKEWT91Qf9uzZw5MnTxTDmCIirzoWJV2B0sSECRNITEwkLCwMOzs7AFq0aIG7uzuDBg1iwIABtGzZUu3xb731FnZ2dpw8eVKxzc3NjfT0dFJTU7G1tVVKHxsbS7169YDchr9169ZK++/fv4+fn59SXnmRSqUApKWlKW1v1qwZP/74o2KaZ6VKlZT8V/r27cv+/fuZMmUKDRo0wNHREYlEQqdOnQrkpQpbW1v69OnD8uXLiYiIwN3dndWrV9OyZUsqVaoEQExMDBYWFgU6Q4lEgqenJzExMUrbvby8iiy3MKKiogDw8fHRK5/8jBw5koULF7JmzRqGDBnCwoUL8fHxoVu3bgYtR47cD8fb2xvI9fsB6NWrl9pjYmNjMTMzIycnp8jzf/78OTt27FD4O+Un/1RvV1dXpd/y50jd9vT0dKXtnp6eBcqQb5M/A8+fP+fOnTsa10mXZyUuLo7Q0FCePHnCgQMHqFixotJ+Td9TfVi6dCmWlpYMGDBA77xEREoDogDRgrCwMIKDgxXiQ06DBg0AuHLlSqECBHK/YPN+WdWoUQOAy5cv06hRI8X2iIgIoqOjqV69OgD16tXjzJkzSnnJOyFtcXJyon79+ir3JSQksHPnTr766ismTJig2J6RkUFsbKzGZXz44Yf89ttvrFq1iqCgICIjI/nhhx8U+93c3MjOziYqKkpJhAiCQEREhOKaytH3C1NeRnh4uF755CcgIICOHTvy888/07FjR7Zv38706dMxNzc3aDlytm/fDqBwtnV3dwdy41M0btxY5TEeHh7k5ORgbm5e5Pm7u7tTs2ZNZs6cqXK/rs+cOiIiItRukwtqd3d3bGxslCxqeZFfAznaPitxcXG0bduW+/fvs3//fmrWrFkgjabvqa5ERkayc+dO3nzzTcqWLatXXiIipQVRgGiBt7c3V65cITk5GXt7e8X2EydOAEV/XW/atInU1FSljqJDhw5YW1uzYsUKpYZNPhuje/fuQK65X51oMCTyGR5y64mc33//nZycHI3zadSoEdWrV2f58uUEBQXh5OREz549FfvbtGnDnDlzWL16NWPGjFFs37x5MykpKbRp00ajcqRSqUZWmaCgICpVqsSyZcsYO3ZsgfPTp4xPP/2Udu3aMXDgQMzNzRk8eLDGeWvDxYsXmTVrFn5+fvTu3RuAkJAQnJ2dNRr2admyJRs3bmTmzJkFOm05Xbp0Yffu3VSqVEmnYQxtuXr1KhcvXlQahlm7di0ODg7UrVtXUadZs2bh5uaGv7+/QcuXi4979+6xb98+6tSpozKdpu+prqxatYqsrCxx+EXktUIUIFowevRounfvTmhoKGPGjMHd3Z2TJ08ye/ZsgoODFePkDx8+pG/fvvTp04eAgAAkEgmHDx9m/vz5VKtWTclfxNXVlcmTJzNlyhRcXV1p164dZ86cYdq0aXz00UcEBwcX6zk6OjrSokUL5s6di7u7O35+fhw+fJilS5fi7OysVV6DBg1i7Nix3Lx5k6FDh2JjY6PYFxoaSvv27fniiy9ITEwkJCSES5cu8dVXX1GnTh369++vURk1atTg0KFD7NixAy8vLxwcHKhcubLKtD///DNdu3alcePGjBkzhvLly/Po0SP++ecf1qxZU2gZW7Zs4ZdffqFevXqYmZkpicHQ0FCCg4M5ePAg7733nsov2FatWnH48OECPhzqOHfuHE5OTmRlZfH06VP279/PH3/8QdmyZdmxY4diSMPe3p4FCxYwcOBAYmNj6dWrF2XLliUqKoqLFy8SFRXFL7/8AsC8efNo1qwZjRo1YsKECQQEBPD8+XO2b9/Or7/+ioODA19//TX79u2jadOmjBo1isqVK5Oens6DBw/YvXs3ixcvNugwlre3N2+++SbTpk3Dy8uL1atXs2/fPr777jvFUMfo0aPZvHkzLVq0YMyYMdSsWROZTMajR4/Yu3cvn332mZIo0JS0tDTat2/PhQsXmD9/PtnZ2UrDo2XKlFEMGWr7nm7atAmAe/fuAblT2+UfLaqGy5YuXYqvr6/Kad0iIq8sJegAWyo5cOCA0K5dO8HT01OwsbERgoKChM8++0wpoFFsbKzw1ltvCX5+foKNjY1gZWUlBAYGCuPHjxfi4+NV5vvTTz8JQUFBgpWVlVC+fHnhq6++KjCNVR3qZk6omtGhSfCn8PBwoWfPnoKLi4vg4OAgdOjQQbhy5YpQoUIFrYJ+RUVFCVZWVgIgnD59usD+tLQ04YsvvhAqVKggWFpaCl5eXsInn3wixMXFKaUrrM5hYWFCSEiIYGtrKwBCy5YtBUFQPQtGEAThxIkTQseOHQUnJydBKpUKlSpVEsaMGaPYr+qaxcbGCr169RKcnZ0FiUQiqHptpk2bJgDCyZMnVdazXr16gqenp8p9eZHfS/mfVCoVvLy8hHbt2gk//fSTYrpsfg4fPix07txZcHV1FSwtLYVy5coJnTt3FjZu3KiU7tq1a8Lbb78tuLm5KZ61999/X2nac1RUlDBq1CjB399fsLS0FFxdXYV69eoJkyZNUkxDlc+CyTtdVhBeXvf85cqva96ZLPL7umnTJqFatWqClZWV4OfnJ8ybN6/A+SUnJwuTJ08WKleuLFhZWQlOTk5CjRo1hDFjxggRERGKdIAwfPjwIq9z3nNQ96fqWdf0PS0s3/wcO3ZMAISpU6dqVG8RkVcFiSBo+EkmIiKilvr16yORSAr46QAkJSXh6urK/PnzDR6cTERERKS0Ig7BiIjoSGJiIleuXGHnzp2cO3eOrVu3qkx35MgRypUrZzTfEBEREZHSiGgBERHRkUOHDtG6dWvc3NwYMWIE06ZNK+kqiYiIiJQaRAEiIiIiIiIiUuyUaCTUX375hZo1a+Lo6IijoyNNmjTh77//VuwXBIFp06bh7e2tWOjq6tWrSnncvHmTkJAQfHx8+Prrr5X2+fn5IZFIlDzbIderXh5HQURERERERKT4KVEB4uPjw7fffsvZs2c5e/Ysb7zxBt26dVOIjDlz5jBv3jwWLlzImTNn8PT0JDQ0lKSkJEUew4cPp3///mzbto0dO3Zw7NgxpTKsra354osvivW8RERERERERAqnRAVI165d6dSpE0FBQQQFBTFz5kzs7e05efIkgiAwf/58Jk2aRI8ePahevTorV64kNTWVtWvXKvKIj4+nTp061KxZE29v7wLLzw8dOpSTJ0+ye/fu4j49ERERERERETWYzCyYnJwcNm7cSEpKCk2aNOH+/ftERETQrl07RRqpVErLli05fvw4Q4cOBeDrr78mNDSUtLQ0unTpUiCQj5+fHx9//DETJ06kQ4cOBRaYUkVGRgYZGRlK2wRBMMiCUyIiIiIiIobGysrKYAttFhclLkAuX75MkyZNSE9Px97enq1btxIcHMzx48eB3HUs8uLh4aFYkAtyV+OMiooiMTFR7SqfkydPZvny5axZs0ajCJuzZ89m+vTpStvs7e1JTk7W9vRERERERESMjqenJ/fv3y9VIqTEBUjlypUJCwsjPj6ezZs3M3DgQKUlv/NbHVRZIqRSaaFLjJcpU4Zx48YxdepU3nnnnSLrNHHiRMaOHav4nZiYiK+vL48fP8bR0fFlXe4WDDoFkFGuhsrtd+IyVG4HOPooTu2+3WHPCq3vg2uRhe4vjCfn/il0f7l6hgsN7Res/SJbnWrrtwruq0qz8tqv0xLgovn6N/pQ2HMup7DnHeDW2eMs/fITxW+PBu0p17QLDuUC9aqbps+Tpte3uK5pfjS5xsWJoa6DvudV1HNVGEW1s6bE9qFNlH7L+6jMzExRgGiDlZUVAQEBQG40yTNnzvDTTz8pHEcjIiKUlteOjIwsYBXRhLFjx7Jo0SIWLVpUZFqpVKpysTL5bB05goNdgTQAJN4jw6d2gc11HeFWrOoXrEO13HwPPyi44mzPEAe2nX+itr4B9V4u0HXv8nO16VTh2+QtrdJrQ8Ua2t8ngG51yxm4Jq8WLf1ci06kgojs3H+DXI3badpnF96JHH4Qi42dg9r9D69fVBIf5Zp1x7/jB0gddTvvvOy9majR83UuJluj6+zoWPwC5FZsBvYOJSN81CF/ttRR1DMnbxf1Oa+inqvC2Hb+CRY2atpzEyRvP1SaKXEBkh9BEMjIyMDf3x9PT0+lFSozMzM5fPgw3333ndb52tvbM2XKFKZNm0bXrl0NXW2D0dLPVaUIydtoFiZG5J2+tkJEX3QVG3KMJTp07azzo+qelASGOJ9bsRlGEyHqBLY2WEltlH67Vq5vEPFhDIx5LdWVVxoxdr31eT8La09FjEuJCpAvv/ySjh074uvrS1JSEn/++SeHDh1iz549SCQSRo8ezaxZswgMDCQwMJBZs2Zha2tL3759dSpvyJAh/Pjjj6xbt06n1TO1QRoeptIKEuQqLfJllHcy6l4qeWetiRBRhT7iRF+hkRdDiw5DiQ1t8i5OYWLI8zNGx6lJJ6PJ9Tr99xal33Ze/mpSGpfDD2KN+kxpS2kVH8ZGFB+llxIVIM+fP6d///48e/YMJycnatasyZ49ewgNDQVg/PjxpKWlMWzYMOLi4mjUqBF79+7FwUE3M5ulpSXffPONzgJGWwoTIVB0g6LOGiJHU6tIfgwpIrTBGFaOku4giipfl8axuM7JkCLEUOIDoMXbA9m/dgkAjSevwc6jvF51MzbFYQURxYdqRPFRuhFDsWtAYmIiTk5OJCQkKPuA3DlZyFEvUSVC8lJU46LtS2YKL5apD6mIvETXzlObTlGbZ/j2+ZMsGNkXB9/KNBz/uy5VKxJNn09tnjdTHtZ6FXmdxce/I5op/VbXR5k6JucD8jpSlEUkbyOoyUuXv3E15stmbIdRUXAYH22+4I3dGWamp3Hw/G0AgnqNMmpZmqBuGOb5s6dsXbeKX374lvnL1tC6fWeDW0JE4aEeU/HJEtEPUYAUA+qGYvKjydCMtmIESsesElFolCzqOk9DdIKaPqdXju3ntwlDQWIOQPSVEzhXrKl3+YZm67pVTBv3UhyZmZkr/i+/XvoKEVF8qMYQwqO0Wz9eJUQBUkxoKkJAOx+RvJSGrwJRaJguchFiyM5Pk2cyJzubi4f2sHXhTASZDDMLC8o174Fn/bYGq4c+5LeC7N+9U/H/NbsOUL123QLH6CNERPGhjCHbNVF8mBaiAClGtBEhoNmMmbzoYh0xNKLAKN0Ut/gAeP7wDiu+yrUoOAXUwrd5DzzqvmGweqhi2/knWlsGMzMy+G7qBPoN/hgkErr07K1SfORF22EZUXy8xNBtmCg+TA9RgJg4eRsvXcVIYRT2kr/qYkJ0GjQNjm/7E4DhP/3BDTO/kq2MGg4/iKWSWSKbVi/n+OH9/H3yksbHamINMYVnxlTaAmN8PIniwzQRBUgxIw0PA4qeGaMKXcVIYbzKIqM4A0RpW64pdDjGRNNOJDM9jSObVxHcpBWV64dww4Q7Cp/yfkyYMQevcj46Ha9OiJTUs6BNR58/raHbDWNabEXxYbqIAqSE0HY4Jj/GECOliZISF4biVb5/2k25PQFAndadSkVH8e4HQ/TOI68QKc57b8hOvjT4m4EoPkwdUYCUIPpYQ/Jiyp1ZaRcKxYGmTselAW06plO7N7Nh7mSqN2tL/fbd2XmpeJcP0BZDR0Z9Fe63KSOKD9NHFCAmgKGECKjv8PVp7EQRUTyYspAsCk2FhyAI3L9yHiupDX/OmUStlu3o++UckxUfOdlZJERH4lzWCzMzM5MLzy6iGlF8lA5EAWJCGFKI5EcUEaWL0mAV0dYM//zhPWb2fTm11sXDi35fzmX31WhDV01v0lOS+Xf1Yvauyl09e8T/VhNUr2kJ18r0OLFzA1kZ6TTv0R+JRFLS1QFE8VGaMCvpCogURC5ERESCXKWKP1Pg8INYxZ+22ORbw6lmi/ZYSk3jvPJzeOMKhfgA8PQLfLmvlPg/FAcR929zYO1vZGWkl3RVAFF8lDZEAWKiSMPDRCEiokRJiRB9REdeHF3L8Mm8FQBUCK5N9xFfmmSHEfMsnF2/zQOgYs16fPPXCRzdyiilEUVILt2GT+TTXzZgZW1T0lUxyWdJpHDEIRg9yPCpbXSRYMxhGRERVRi6c71/5Twnd24ksG5j/lo4Cxt7B9q+N7TE/T7UBSMLO/i34v/Df1qNpZVpWmlMATMzM1zKepV0NUTxUUoRBYieFIcIAc2GZXQRKSVlZXkVBFVR185YvjzG9Asxxpf9s3u3ObFjPSd2rAeg5pBveeBQ3eDlGAp7Jxfsnd3oN2lOoeJDdEg1DUTxUXoRBYgBKC4RUhSmUAdNyVvX0iRGtLnGJSFQdMWYQwpNuvYmOS6af9b8TlZKApmJMUYryxA06tyLRp17lXQ1RDRAFB+lG9EHxECYUmdS2pD7u5iygDJG/XTNz5C+IIbw7SiKbeefEF2mDmVqtQCJGTf+nEvMjTNGLbO4EH1BSg5RfJR+RAuIATEVS0hpxtR8XorDx6ekzrW4wl+HH9nCrU3zlfanRT9Ve6wsJ5vkJ3ex9/LHzNLKWFU0GOJQTPEjio9XA1GAGBh5Z/KqCJHU0/u0Sm/bMNQg5ZbkEE1x3ztdRJc+viDFue7G8/MHFOLDzssfB58gXCrXw6tB+wLHCrIcYm+d596u30l8cA3H8lWp3HsMjhWqGq2+hkIUIcWHKD5eHUQBYiRM2RqiragwRN76CJPisoqU9P0ytjXEWMJDXYeQk5XBvV2/Y2ZhRYXQ9/Bu2gVr5zIq0wqyHMJ++ZzYG2ewKeNDYM9R3N2+mLBfPqfRl6uQOureucuys5CYmSExM9c5D02QX19RiBgHUXi8eogCxIiYsggReb0wtPgoqjPISIzhxDf9yElPwa/9QCp2+qDQ9E9P7CL2xhlqfjQT95rNkUgkJD68TuyN05hb6ufzcvq7QaTHPqfp9A1Y2TsDqJx+ayhM1Roir1Np81sRhceriyhAjMyrNiSjK6mn9xlseMZYlPS9Mpb1w5AdTmGdQfLTu1z6fTJm5hZY2NiTk56CV6OOVOryUaF5xt+9xM1N8/Fu0iXXUfUFWcnxOAfUxsLGTqO6CYLAw71/4BxQG+dKNRXb02KeIcvKIC36CW+3qKZRXvpiqiIESq8QEXn1EAVIMVHSnZspoI8IKU4/kJK4V9qen6b+H8UlPhIfXufM98pL1Zep1YLAt0YUmmd2eipXVkzDyS+Yyr3HKu3LTI7H7oXFojBubppPRnw0SY9ukh4XgU/zHkoCpNUP++hSsywWxezQasoiBHKFiChCREoSUYAUM6IQKT0U170ylvgwJEWZwW3L+ir+79GgHRZSGwJ7jCxy+OTe7qVkpSZRv/8UzCwsFdvj710iOfw2/h3eL/T47IxUwg9vflGH8gD4te+v2G/MoZZXAdEaIlKSiAJED+QdgS5xGfJ2Oq+TGCkNQzH5MaYvT2lwOi1KfAgyGQ/3rwPAtWpDqr33pUYOn0nhdwg/vJlKXQdj7eqhtO/+npU4+AZRpkaIymPzCou6v24mLuIJ1Zq1wUpqbTKrsoLpW0HkiEJEpCQQBYgB0EeIwOsrRkoTxrCG6CI+invopSjxkfjoBud+HI4sOxOPem2p2vcLjcSHIJNxc8MP2Jb1ZdiY0UrDI4IgcPLpbVr0GkDH+uWLzMu/eh38q9cp+mRKiNIiQkAclhEpXkQBYkD0FSJgfLO/JlNw41PS2HLqKu+3qouZmeGD5WprBTGVoGRguPtjTPFhKNSJj+yMVK4sn4YsK4O4W+cB8GvXn0pdh6hMn59udctx4eBuDty/wsiF6wr4Zjy9c4OUhDgq1qyv3wmI6IRoDREpLkQBYgQMKUSgeK0iAxdsYPPJKwDUr1iOmn4lv9KlKVKYEClpwWSIjkOt+EhL4e6OJcRcPYG5NHcJdp+WPTUSH3mHTaIe3cfW0ZnAOo0KpHtw9QJm5ub416inY+1Nj9JkBZEjWkNEjI0oQIyIIYQIFG88kbjkNMX/rz5+LgqQIigusWFI60dmehpW1jZq9xc27HJ+wackPb6JR902VHv/K439LfI7g2akpao99sbp//CtXAMrqbVGeZcWRBEiIqKMuBhdMXArNkPvDqS4OrrtEwfiX9YFgOiklGIpU6RwtHl2CussZDIZEzrWZVybakSFP1SZRp34yEiM5fmFgyQ9vomDTyDBAyZrJD661S2ncibKoxuX8fQLKLA9KS6aaycOUatVwVDtrwKlsTMvbaJJpPQgChA90LYx0VeIFIcIyc7J4X5kHADLDpxFEASyc3L4dNkOft5zwmDlaBoOXp9zll/vkpi2aigMJT4Atv5vBqmJ8QAkx8co7ctMT2PzidtkJsXx+PBmEh5c4+7O37mxYR5X/5jJyRn9uLJsKhJzC6oP+gYz86KNp4VNga3Vsj13L54hPipCsU0QBLb89A0WUilNuvQuMn+R4kMUISLGQByC0RNdzKq3YjP0mjFjzOGY2DxDMLefxfDV+n2cvfuEI9fuA9C3eW1c7NSb702F/B13/t+GXNLeWBhaOFWs1YDDG1cAsPTLYUxYtRszM3Mu/beXjT98RVZGOhY29mSnJSuOkTqXwcxSilfjTjhXrIGDb2Vs3AofltMk9kbdNl3Y9ON0zu3bQZu+gwHYs3wB5/btYOC0+dg5ueh+oiZOaRyKAXE4RsTwiALEAOiyCJW+MUQ0FSHPo2Mp6+ZSpLl81aHzRCYkM65bC4K83Ln1LBqAH3ccxcnu5Vj8yN+3s/rTd7Suc3GiScdt6oJEW/GhScdQp3VHLoW+yYUDu0iMieTLzvWxdXAiNSkBADNLKU7+1an8zmckPbqBhY0DrpU1dwTVJuiXraMT1nb2bPt5Ns5lPCgXGMyeZT/R8cNPqRf6psb5lFZEESIiIgoQg1KcQkQTESIIAl5NOuPt4c6DQ1uxsFC+3TkyGZPX7uW9lnUY9ttfAIzuEsKYrs34ZEnubwGIT0mnnKsjT2IT+ev0VT5ftZu5AzppVd/iQlerQd7jSlqMGGPI6Mmd67h6+WBuYYkgCDiV8SQhKkIhPobOXUq1pq2BXD8QG1dPo0cRnbR2LwtHvsfKaaPxCaqGraMzof0/MWqZpkJpFB9yRBEiYihEAWIEikuIFBWTQm71ePo8mhqd+7Fo+ng+/WYFC99ry697TzGlVxsW/H2c7WevKY5xHjAdK4uCgaQOTh9MelY2Ncf+RER8ksZ1VIcmcUBKKkR5SVhHdK27uo4gKzODjNQU7J1deXzrKnM/6KrYV6l2Q6IeP1D87vDBKIX4gOILX+7g4s6EP/7mp2G9uXfpHOWr1iz29VqKk9IsOvJTnCKkW91y4oq4ryiiADEiuvqHgPZCRJUIEQSB97p1YPW2PVTy9WHmouVcuXWPVlOXABBaMxCAh1HxSse5O9iRlpXF201qUK9iOSqXK4O3qxMAzar4ceyG6hkUmmLK4kOTvA0pSOR5r/p1IccPH+CbHxdRxsNTo2NVdQDXTx0hNuIJN88cJezg31SuH8LNs8cAqB7ShuY9+1O5fghIJAgyGTk52SU63VUikVCt6Rvcu3QO5zKanXdp4lUSHfkRRYiIvkgEQRBKuhKmTmJiIk5OTiQkJODo6KjYvuD4fY3z0LUh0razk4aH8Tw6lhMXLrP6rz1s2XtIo+NWjHibHWev8/eFm2wa9x4tgv1VprPvNxWAf6d+ROPKRYfJzoum0U9NSXwUByeOHOTjd98CoGmrNrzVpz91GjYmMzODxT98y+BPP6e8f0WlY/I3/IIgsPPX79n3xy8qy+j44Wg6DhplnBPQk+ysTM7s2YpftTp4VQxSbDd2522szvNVFh2qKM7hGFGE5PLviGZKv9X1UaaOKEA0wBACBIwvQk6ePMmoUaO4fPkyAAEVfOge2pIflq4l/222tLSgf/eOtGpUl3oWiVQokzvrIDsnBwtz9Wt5VBn5PeGxiXzZozVf9mytNl1+RPGhzOMH9/n1x++4e+sG1y6FKbZbWFqSnZUFQP0mzTh74igA77w/mC++/hZzc3MOP4glMz2No1vXcCfsNJnpqTy+cZm05CTqhb5JaP+PuX/lAmf2bOXepbMA/HDgOpZS03G0Lc2dtLoOtzSfk74UlwgRBUguogB5jTCUAJFjDCFy6dIlWrduTfXq1RkxYgQt/Rzx9cpdYTQnJ4ecHBmCIBARHYOrkyMO9nZKx2sal+Pv8zcZsGADIzs1YerbbYtMr+3Kt5oKkNIqPBIT4pkyZhhHD+zDydmFRs1bUad+I5q2boOntw8A82d+xR9LfsbZxZWg4OqcPnYEgP0XbvL9wl94evcGd8JOkxKf2+gH1m1CpdoNCKrXlIDaDRVlZWdlkp6cTEZ6Km5ePsV+rq9zh/y6IVpBihdRgLxGqLu5bRce1cthT5cGWp0IGTRoECdPnuTcuXPY2LyM06FtzBBNhEjo179jbWnB9gkDC53eK4qPXFJTkrGSWpOdlcXCOTP4Y8nPABwMu41rmTIF0guCQFpqCrZ29sxfvprlk0fQZchn+FSuzuLPPgCgYs36vDnsC/yCa2NWiMXK2IgiQ0ROcc+MeZ2FyKsiQEQnVD2RvwS6CBFdZ8uoEiGOjo5kZWVhba3sUKht4LK8okGdGBnZsSl95//Jn0cv8m7z2oXmoSmvqvhIT0vjjdpBpKWmKm13L+tRQHwUaMCjYnl07RJm5ha06TeEz9vWUOzq/NEYKhbzYm3FLTYS4+OJi42hQsVKxVquiG4U9/RceZv7OguR0o4oQAyEvkJE3ym7b7zxBr/++it3794lIEB5jQ1do6eqEyNvNgjmrUbVGLVsB/Uq+RDk7V4gvTaUtPgoqtHUp+O1kkoV4sPMzIw3336XbRv/pHmfwRo11i6e3shysrkTdhprO3uS42Np0OEtKqlYRdaQmIJlY+HcmRzYs5N/z10v6aqIaEhJxAgRZ8iUXkpUgMyePZstW7Zw48YNbGxsaNq0Kd999x2VK1dWpBEEgenTp7NkyRLi4uJo1KgRP//8M9WqVVOkuXnzJoMGDeLhw4cMGTKEqVOnKvb5+fnx8OFDTpw4QePGjRXbR48eTVhYGIcOHTLoOekqRPS1hpw4kbtOS0xMTAEBAvqHcM8vRv734Zu0nrqEup//D78yLhzYsBQ/HfItDvGhb4Ooz/H/bfkDgAYd3sLe2ZVmg8fyxqhvND6+eY/+7FryA4c2LOeTH1cy94Ou3A07jSDLATPDLuVkCqIjL4JMRvVadXh4765oBREpFNEaUjop0cXoDh8+zPDhwzl58iT79u0jOzubdu3akZLychXWOXPmMG/ePBYuXMiZM2fw9PQkNDSUpKSXwbCGDx9O//792bZtGzt27ODYsWNK5VhbW/PFF18U23mB7i/C4QexWnV4t2IzuHr1KvPnz2fs2LE0aqT+y9hQi9nZNgylXOs3ObBhGQAPouKo2LoHvYZPNEj++dEnSFdJRmwUBIHz+3dRLqAq/af8wFsjJ2Flrd06OhKJhDK+/lw9doD9q3/FO6AKcc+fkhxnmPNq6eeq+DM1hn3+JQf/2c2PM6aUdFVEtKAknyV1qy+LmCYlKkD27NnD+++/T7Vq1ahVqxbLly/n0aNHnDt3DshtwOfPn8+kSZPo0aMH1atXZ+XKlaSmprJ27VpFPvHx8dSpU4eaNWvi7e1NQkKCUjlDhw7l5MmT7N69u1jPb9v5J0YVIglxcaxbvoSQZs0o4+HJJ58UHcY6w6e2wYSIj1dZdv72g+L3lr2HOHzqPOkZmgkGY67uW9KhonOys1k7azx3w07TWM+VXXuPy7WYnN+/k6jHD6jXrhtHt64hOytT5zxNVXTkxcXVjW9+XMToSV+XdFVEtKSkny1RiJQOTGoWzJ07dwgMDOTy5ctUr16de/fuUalSJc6fP0+dOnUU6bp164azszMrV64EYPfu3fTp04e0tDS6dOnCpk2bMH8xM8DPz4/Ro0dz//59Dh06xIULFzAzMyt0CCYjI4OMPJ1oYmIivr6+KmfBaIO+M2bOnz6Bra0dVarXJCEujl5tQ4iMeMobHbswY/4v2Nk7aBW4zFCr6n776yq+/P5lAKwyri58+clAhr/Xs8D6M3KMNfRS0sID4NKRvWycN42k2Gj6fvkdDTu8pXUeUeEPuXXuOJf/20diTBRm5uY8un5JKY2bd3k+mbecsr6qg8aporg6hpJaT6e0OSm/6pjC+1hSGHM4SJwFY2AEQWDs2LE0a9aM6tWrAxAREQGAh4eHUloPDw8ePnwZDrxTp05ERUWRmJhIGRXTGgEmT57M8uXLWbNmDf379y+0LrNnz2b69On6nI5Ktp1/opMIkclkTBj+EX//tQmAWvUacvnCWWQyGVZSKbMWLMHGxhZQP0tGFfr6hcj56O03FQLE0sKCqNg4xsycT/fQFlQoV3Dp9pJ2OjUmmelprJ8zCXcfPwZOm68Ul0NTsjIy+Oad3CBvrp7lqNKoBTlZmTTq1JPUxASiwh8SWLcxG3+Yyum/t9BlyGdF5mlo4VHSC/apo6h6lcZnqjTzOi9cp88H5+viy2IyAmTEiBFcunSJo0cLWhXyx5oQBKHANqlUqlZ8AJQpU4Zx48YxdepU3nmn8OXkJ06cyNixYxW/5RYQfdH1gbx24qBCfADYOTgw5bv5hLRqg4e3fmZGQ4gQd1dnbuxdz9PIKGytbfj0m3mcuniVcd8uYMV3U7CztVGUZWxKusE79fdmkhPiGPPrZtzLFQxVn7dhUfU8pCTEsWzyCADeePcjug2fqDLWyuWj+8lMTyPycdHB8PQVH6YqNnShsHMRxYlxKOl3sjTyugwfmYQAGTlyJNu3b+fIkSP4+LyM2Ojpmbs4VUREBF5eL7+kIyMjC1hFNGHs2LEsWrSIRYsWFZpOKpUiNXDYal0fqMyMdC7tWANA9Tr1mL90jcaLlRUnQf7lCfIvT0RUDNFx8QBs3nOQJxFRHDxxRuv89OkMSrLBe3LrGl7+gRx7bg7PC/+Kyf+VE8xjlk0ZAYLA0Lm/U63pGyqPi37yiJXTPqVSrQa8+fF4tfkX1/pDhkQQBJYuXcp///3H0qVL1Q7hGQN15y0KE/0RRYiIKkrUCVUQBEaMGMGWLVs4cOAA/v7KY9n+/v54enqyb9/LGBSZmZkcPnyYpk2bal2evb09U6ZMYebMmSQmJupdf03RVXwkx8eyYERfws6c4vtfV7Jm536jiA9DWibS0jO4++hlx3oy7IrWeZS2Bl/ubPzXuXAunz9Hlr1u92jpzIlYuHhT5/Nl3LGurDbdlv/NwM7RmaFzl6q0suhKkKu0xK0d33//PSNHjmTDhg2KIdiSRn5d8v6JaE9JO6aKmB4lKkCGDx/O6tWrWbt2LQ4ODkRERBAREUFaWhqQO/QyevRoZs2axdatW7ly5Qrvv/8+tra29O3bV6cyhwwZgpOTE+vWrTPkqahFV/EhCALbf5nDs/u3WLZlN6Fduhm4ZsoYSoT4+3rzSb8eSttKws+5uBq7vFaMZ6d2kxR+m3JNu+qUV1ZKIm7VmiB1clfknX8mVVpyIleP7adl7/extrNXm5e2528KnaogCEydOhVvb2/Onj2LRCLhnXfe4cKFCyVdtQKIokQ3RBEikpcSFSC//PILCQkJtGrVCi8vL8Xf+vXrFWnGjx/P6NGjGTZsGPXr1+fJkyfs3bsXBwcHncq0tLTkm2++IT093VCnoRZ9xvGO/bWWkzs38PmUb6hWq07RBxgA+RRdfabqno0z55c1W5S2/fDDD2pSF6S0WT+UeCG0rBxcdDs8Jyc3wJgK5CLk8tH9CIJA7VYddaujCkyl85RIJPzzzz/88ccfVKtWjS+++ILt27dz8+bNkq6aRohiRDNUiZBH1y/x24ShpCYmqDhC5FXFpKbhmiqFLUanDn3Ex7WTh/ltwlB69RvIlzPn6pSHMRrBwpxV5YIlLS2NoKAgoqOj2bBhA71758bASE1NLXThOjCO+DDmuHN+Hw5ZTjanZg1E6uxOnRHzizzf/Fz4eSxmFlbUGvptgX3Zacmk/LuYs3u3EVCnEaMWqrfgafqVaYhnJO8zoatovXr1Kr/++ivPnj0DoG/fvnTv3p2zZ89y48YNunbtirW1dYF1jkoLpVpUG5G87+atc8d5cOUCddp0poyPX8lVqpQwsqmyu0JpnYYrChAN0FaA6CM+7oadZtGYgVRu0IwVq9dhaWWlUz4l+RWWmprKpUuXaNy4MTt27KB3794cPXqUevUKXzytpNZ60QV10+Sirxzn4q9fUKnLYPzaD9Aqz3u7lnJ/zwrcazTDu3EnHMpXQerkzqP9a7m74zcEWQ69xk6jUadeSF9Mu1aFJgJE2+dDl5lSmgiSlJQUvLy8kEgkNG3alPT0dE6ePEmDBg0YN24c3t7edO7cGRcXF86fP4+trfrzLg2IYkQZ0TFVN0QB8hqhjQDRx+H04J9LObxxBeWr1mTd5u1Y6TETx1TMwNnZ2dSrV48KFSqwfft2temM3TAbsqErao7+vd3Luf/3MtyrhxDcfxKWtpoNFwqyHCLO7uPhvjWkRDwAwKaMD2lR4bhXb0rXd/pS541Oheahr/gwVHA6deQXJQcPHqRTp04cOnRIsYzA4cOHmTJlCmfOKM+eOnXqFDVr1jRq/YoTUYwos+7ACVIS4gk08kKLrwKvigAxiWm4rwq6io9LR/byx9efISDQvGd/Qt/7RC/xYUpYWFgwYsQIPv30U9LS0rCxKbgWSmlqiDUJEOTf8X1sPXy5tXE+FxaOpt6nCzGXFr0GjMTMHK+GHfBq2IG02Ajib18g5vpp/EL74d2kC48Afb2BSlJ85C8jw6c269atIzAwkIYNXwZsa9myJUeOHOH27dvcvHmTqVOnUqFCBUWAwlcF+b0oTc+/MVk7ZTgRz57w/QFx9ePXBVGAGAhdxce9S2dZ8dUoqjVpzTvjZ2LvbPprdGhLjRo1EASB69evU7du3RKpgyHiEGganVAikeBZry1ZyfHc2vQTMddPU7Z2SwDuXX6uSFexhvpYNjauntg06ohXI82dTYt6bkpafOTH6vEF/v3nb97tGqrSXyYwMJDAwEAGDx5M3759MTPw6r+mgihEclmz+wCPH9ynWp7nWByiebURBYgB0FV8XD1+kBVTR+FXrQ4Dps3H0urVsHrkp1atWri7u7Nu3boCAqQ4G93iDob0/Nx+AB6eOkGyeZUC++VipDAhYgiKGo4rCfEBcOXWXZ5FRtO+WWO1zqwymYz4+HhcXHSbWaQJmjhXFwevuxBxdHIuMOOvpShGXmlEAaInuoiP5w/vsmf5As7t2061pq15/+sFWFpJDWb5MBX/Dzk2NjaEhIRw9epVjY/5b/9efCv44xcQaNC66CpCdFmbwbnleNISppB0fR8OVdpi5ao6nP+9y881FiHq1hNS9+yYmtUjL2npqjtaeb0yfGpjZmZGUFAQf//9NwMGDMDS0lKnsnQ9V1XHGVuUvO5CRB35n3FRkJR+RAGiB9qKj8z0NLb89A0ndqzH0d2DdyfM5osRH2s9XVMdpiY88hIeHk7FihWVthXWwI4YkDt9d/nWv6nbsIlB61IclpB7l59jZmWLV7eZPP1rIs92TKVsm9HY+NRSm97YlhBTo36Nqpibm3P97gNCm6lftG/ChAkMGjSICRMmaBVTxlgCS12+hhYmQa5SUYQUgi4fbKJoMS1EAVJMZGdl8r8R7/Ls3i3Gf/0tvfq9bxBHU1MWHXIuXbrEuXPnFAv8adKoeniV4/mzJ3zYszM7jp7Hp4KfQeskb7yM3SCZWVrj1fVrog78RMTfMynbZgx2FXUXVNqIXmNYP1JP71O7z7ZhqFZ5SSQSBEHAylJ1MyQNDyPDpzbvvvsumzdvZtGiRbz//vvUqFGjyLxLwrqT13JjKERriGF51fzrSjuvpleXCWIfcZNH1y8x66fF9B00VO8ptqUp4uLBgwcxMzOjQt1mahtSQRC4de0KgiAgCALmFuZUrlYDmUzG7RuaD91oS0s/zZx+9YntYm7tgEeHidj41CLmxArSn9/SOa/iJPX0vgJ/hiQ8IhKZTIaTg/qQ8nKaNWsGoLRYpTpKemhJGh5m8DqUlnddREQbRAFiROSdW0s/V4Kq5U4hjHr+TKe8SpvoyMtfu/YQ0qotDo5OatOc/O8Qb4c2Y+Mfy/lr/WqePn7E2Mnf4Ovnz58rficrM5PE+Hij1dHQX0b5h1MkZua4NR2Eua0zz7ZPJuHKboOVpW3dC+sc9REb2h6zZvs/2Nna0LlViNo00vAwZDIZa9asoX379kU6o5a0+MiLoYVIaX3/RUTUIQoQAyMXHPXcLEhOSiQ7O5t/d29n5IB3sLC0JKS15mbq0iw6INds/M/py5w5/h91GjVhcO83uXYpTGXaioG5q7/OnDiWaZ+NpGe/gTRq3pKPx07g5JGD1PcvS/Nqfkatb1HWEH2sIACWTl54d5uFjU8tYo8vI/b0WqMt1KfLM2NoC0dRRETF4OtZFkcHu0LTbdq0iStXrjBhwgS1aYxhdTAUxhAiryIRT8JLugoixYwoQAxE3s5rw6plNKtagZAq5WngX5bPBg/AzMyMX9dtxa9SQKH5lHbRAbnCQz7UcuHMSXJycoh89pTTx46wbOGPSp1uTk4O/+3fyzvtmiu2fbdoGZO//RGJREL7N3vg5ZM7e6R67cJDuefFWNdQXxEiMTPHo/0EnOu9Q0LYFh4u60tqeFixOaAau5MuSsQ8iYikdtf+zPplBb5eHjx48oyk5BS16TMzs1j16wKaNGlC48aNVaYxVeGRH0MKkdLcPqji5tXL/PDNFM6fPlHSVREpRkQnVD1Q9bUsk8n4/X8/0OyNdnTu2Zu4mGjqNWpK5WqqHedepYZElX9H+IMHAPy54jcA9u3axt4df5GRnoaFpSWXzp9h3bIlePuWZ/J3P9KmY1elWUGWlpZ8OnEaE0d8RMOQFirLLewa6jKTwFCzZCrW8FAKPCZHYmaOc91emEvtSbp5gOe7Z1Au0AOXgNp6lwnqr0dRQy/FwdFzl7h04w6XbtwhOMCf9IxMwq7fpnmD2krpklNS+ebn5fy6biuJySksXbpUZX6GFh+qroO2zrVFYShn1VdployHVzkaNG1OjTr1S7oqIsWIKEAMwO3rV/lr/Roy0tOxs7fn+bMnfPfLUuo0UP3F9iqJDijcQ9/Fza3AtkXfz+LB3dsAWEmlvD/sU0Z/OU3tdOQWbdthbmFBxLMnOl07XWYSFCZCutUtp1NckLxIJBIcq3fEPqgFj/4YzM0N82jw2a+FhmzXJv5HSZJ6ep/aTtvOJndF225tW3Dm8jXaNWtE/RoFg7S9OfRzTl+6xoj+b9OjXUtqde5bII0hxUdhAsyQM3/yYggh8qqIEGdXV3oPGFTS1RApZkQBoic7Nq5jyphhuLi5ExsdBUDvAR9Su77ygkqvmuiQU1Tj997gYQDs2bYFAYGrYecV4gOgcnANho4ZX2gslDrl3ZnwxRfMnTsXmUymc0huU5zSaGZlh3f3WTz9awIP/l1Dpc4fGaUcU7B+AHRq1ZSQejXJysom/OgOlWlkMhnHz19m2Hs9+fbz3OeHF1Ny5RhKfOh77vmP10WQSPOdm7aY4nMtIqIJogDRg7S0VObNmEpol+7MWrCE29evcu1SGJ16vK3oUF9V4QGaNXgSiYT+Q4bTf8hwEuLiSEtPxdHJmeOH9vPo/j36ffgxUmtrtcfLr1+9evXIyMggPDyc8uXL61VvTb8aDWEFUTcMkxcrNz/82vXn/p6V2HtVxKPuG0Xmqw5tnzdjiQ91VhAzMzNqVA7g5IXLao89ffEa2Tk5VPD2VLnfEOLDmOcN2gsRfUUIvDrWkOKgONplY92LV6lPEQWIHmxZs5LE+Dg+nfgVlpaWBNesTXDN2gZ9QPRpbI0ZMlqXl8vJxQUncqdRtu30plbHyqdfPn/+XG8BApp/NRbX+jH+HQaSGhXOleVfgSDgUa9NkcdoOvxiak6aFbw9WbNtDxkZmUilVgX2fzb7J6oF+jP8vZ5K201ZeKgqRxQh2nHp/FlkOTnUbtCo0HSlpQMuLfUsScRZMHpw/PABGjVvpYjSaYiZF3JPeUN4zBtramJxNXB5r6WzszMAT58+NXgZut4zTWfEaDLDRWJmTrUBU3AOqE340a061UcVJTn0oi7/rm80IykllT3/nVS5Py09A2cHBywsLDh48lyhs2QMUR9joUs8FUO8r6Wx47t28QL9u7Zl3OD3lGYCqvoTeXUQBYgexERFEljBR+8Xw1CCo7D8DUVJfV0FBQVhbm5OZGSkcfIv5P4Z29FTLlAkEglla7ci4f5VslKTlNJoIna0eQaLuzPOS3CgPy5ODpy7cgNBENhz5ASpaemK/VNHfsh/Z8MYOf172vQfQfdPvtCrPGNEcTVm+YZoC0y1s1YnKs4d2AXA4sWLS7iGIsWJKED0oEbVyly7dk3n44szeJIhyilJ065EIsHc3JxRo0YRERFhlDJ0abD1tYLk3162TisAwo9sLjQ/TUSRqQ295CWkbk1m/LycvmOm0unDsbjWa8fPqzcBuTNkynmUYcs/hwB4GhmlUxklLTzyU1LWkJIQI9paL0JCQpg4cSKdOnUqxlqKlDSiD4getGzZkk2bNhEXF1dkiGg5ptwpmDrNmzdn//79bNq0iREjRhilDHVj6IbwBcnvkKpKlEgd3XCvEUL01ZP4d3gfKN3WD3W+ECvnTuWdUZNZv+tfAOxsrRk5/Qe6t21BOc+yVK5Ynlv3HwPQqpHmAejylqstj/ad0Tht+dAGWucP2jupGnKBu6KeEW0+MAwtaDp06ECHDh0MmqeI6SMKED2oUqUKMpmM8PDwUrVGRWllwYIFBAcHU66cftFISxJNZsU4+AQRe/00ORlp9GhSMHKuMa0fj/ad0blz1QYXJ0f+/OkbyrfoTmpaOnEJSXiVdcfZ0QGA4ICK3Lj3kGfHd1HW3YXbDx6zautunB0d6PpGM4L81Tsiays+tBEeRR2j6bXTRYgY06kcSqfviEjpRhyC0YNjx45hbW2Nv79/oelMRXyYSj10xc/Pj6pVq/L777+XSPnqOn5tw7NXrOFRqGOqZ7225GSk4Z+m2aq5hrZ+6NIh64KrsxP3Dm7G3NycyhXLc2z9EuxscwOxDerVhafPo+ky5DOC2/ehavs+/Lx6M1PnL6Fax75s+vsAEVExZGVlK/LLzMzi9KY/NC7/0b4zBj9XbfMrbt8QU+Po0aN88sknJV0NkRJCFCB6UKZMGTIzM0lJUe2l/yo1GKYwtU8ikRAaGsqBAwf4999/jVaOMX1BNMHG3RsXD2+unThosDyh6M4ub+dpbBGSk5NDQlIyZd1cEQQBrzLuOOVZlC4pJRWAc1ducPP+I2QyGR/3fYtDaxbxVmgLeo+ahHfTLgS2fZsVm3cRE5fA+0NG0njiIjafvFJo2cYQHvrkXxJOqqbCt99+S2pqaklXQ6SEEAWIHoSGhiKTydi0aZPSdlNuIEy1XqpQJXosLS0B6Nq1a3FXp0gMKULinj/l1O6CjqjF6XxqqE5aVec6+cdfcakbytrt/yCTyTh06jy1uw7g8KnzzPplBS37foLVi3sNYG5uxreLV9Go54d4lS3zso5PIxg0YQYBLbtx5m6uz8jgXzaTlpll1HPSBF2EiDaYcjujKTt37mTlypUlXQ2REkIUIHowefJkACZNmgS8Gg2CLgiCwL+7trH/b9WhtQ1J3iBkjx49KjRteno6x48fZ+nSpcyYMYOrV68qrcSrC0UJAEOIEG3y0NRao431Q5Pt+tK2aa6vxNodexk76F2+/GQg5mZmtH5vOJPn/UrvTm04sek3PunXA3tbGywtXrqrLVi1AYAe7VrRoXYQAB4uDtyNyHUSzszOwcrCvMB5FKf40LVsXWOHlKZ2RxAEBg4cSM2aNXn+vHB/KJFXG9EJVQ+qV68OQEZGRqlcldNQ7Nu5jc8/fh8nZxfadDSuZWLw4MH4+voyYsQIvv76a7X+IDf2baTTR2N5Fhmt2DZz5kyGDh3K/PnziyxHn4iS+ixWJxcf9UK7EvNMOY+SmnprDMfUNk0bsG3xHLp9PJ7dh44r7ese2pI/vp9Gv7FT2bQndxiqvLcHj57mdlYdWjRmz5GTlCGNqnUqsyfsFiM6NuH4jUecv/+Ez99sgfmL9YK0FR139twrsC2gQ0VdTrEA2lxHXSOpgnEjIBuCxYsXs2FDrojMzMws4drojiHeNVO/V8ZGFCB68NlnnxFz7yo/Llun1yJpcor68tF1nYn8GNqj/tTRwwAkxMcZLE91SCQSPDw86NmzJ7///juTJ0/Gz8+vQLqf12zmWWQ0x48fx8/PD6lUSmBgIAkJCXrXQZMpubqIkLyWD0upDYkxkQiCoHahPmNbP/KnMbQIqV+jKkH+5bn76AnTRn2EXzkvfly+jr/2HWbGouWUdcsVXBKJhOXfTqHNgNyp19+NH05lezMW/H2CM3NG0CekFqOW7uDeovGUdbLX6rzyokp8FLY9L5qKFHmdNLmW+qwrA6bbucktlytXrsTX17eEa1OQ4rQm6VxWgOqV1ksbogDRA2l4GKlp6dSoXEln8aFLvAJDCRFNKcwSEBMVyd6dfwHQrutbxVKfkJAQAKRSKTt37lQZEySkbg1+X78Nt5RwXFzqAGBra4uHR9Fh0Q2FNiIk/7BL7VYdOLlzAw+uXsC/el2drR+GjPmhjwhR9UXvVdadw2t/4e2RX7Jg1QbuHdxC3zfb0WPYBL5ZuIyb+zZQoZwngX6+tG5Sj/mTxwDQ86PR3ImIAaDX3NVU8nQDoOKwOczq255RnUO0Eh+aCAxN8zCWENF1lV0wPSEyZcoUmjdvTrt27Uq6KgpK0xDWq4ToA6In127fp1qA5iZa+RivIaI0mkKkxw0rl5L4wvLR6a1exVLmzJkzcXR0pGrVqpw/f77Afml4GHcehuNob4d3WXek4WEIgkBERITSlOnMzEyys7MLHC/HEHERNPHnUJXGt0oNAK4dP6RSfBgqZoO2VgJD+1F4uLvy/YSRRMbEce7KDSQSCS0a1sbCwpyACj58Pvg9uoe2BGDUwN58VNWFb9592XFJJBL+vXRH8fvf/8I0ruOdPfcMIj70ydOYviFyjL3Ug7bY2trSqVMnLCxK7vvXkGtuieiOKED0IDMzi0s371AtqGgBYkyxUFKLXgGUe7EQH8DzZ4ZdKA5UW19q165NWloabm5u3Lx5U+Vx+4+fpXOrpoq4ElFRUWRnZzN69Gj8/f0JCQnBw8ODgIAA/vjjj0KFiCq0WR+mMBGibt+S8YMBeHj9okZlGNv6kRdDi5DgAH/KurnwxZyfAfBwcyU7O4dHTyM4ceEy7g06MGLkGJ4c3IYgCHStX5WNn/UFwNLcDKnly47M3EzCX3cec/xpFAceRbDuxgO23H5ElkymSGMM4ZEfbcrQ1klVH17nTvd1PndTRRyC0YOt+w6TkJRMt7bNC01nykuA64uzy8uO2ExiXD2blZXF8OHDKVOmDFlZWRw/fhxvb2+VaV2cHEjJs8CZb+ZT/ve//xEREYEgCDx+/JhevXpx8uRJhgwZwpAhQwgLC6Ny5cpGqbuq4ZjChMnDa2EAfPThRwX2aWL9MHbAMV2GY+TPZ2paOhIJ2FhbA2BvZ8vcCSMZ+PnXHD17kWWbdlDG1QWLm2cIGTobgB1nrrNoz0m61KvCH6PeIS4l997efJrrZOxkZYGTVMqppzHse/hyrSBziYQcQeB6bCKTGlU3uvDIz50997QaljGmb0h+8nfEpjZUYwhEsWHaiAJER549e8aor+fRpXUI1YMqlXR1jEphM0KiI19Oo3uzd1+jlC3n0qVLbN68WeGUKQgCd+/eVXmcu4sT9x4rW2QGDx6sMu3OnTt5++23qV27NiNGjGDChAm4ubkVWTdt14eRC45t559oNDTj6l6G0C7dlLapEh/aNrKGsmDoKkKafrOKSzfusHvpPBrUCMbNxYm3O77BoiXLafHuxwBM6tmahNSXAnLsm80Zs3wnO8/dIC0zq8B0amsLC/7o2JQ5Z69xNiKG5e2bYGdpgau1lG/PXGXN9fuYP06hl30Zihtt/EN0cVIFw/iDqXqOSqsoEYVH6UAUIDoye/ZssnOyWTp7UklXRYEu3vL6NjCH9u4GwNLKitiYKLx91K/RoS35O9u6detSvXp1HBwcaNWqFdOnT1d5XHJKKsfOXSakXg3FtsLOs0uXLlhZWZGZmcnChQs5e/YsBw4cQCKR6DUdVx1FiQ/58E7+Kc2aio/CrB/GCj2ujRCxysoVFp0+HIvU0oKYFVMB2PBZPyau2UON8h4MeqMBttLcQGSu9jYMbtuQ5lX9Sc/MwtHWmg3HLynl+Tw1nfH/XWBs3Sr8c/8pnx85z1dNalLG1prOMVJ2mplzOD1BIwGyKyKZzp72RabTFm2tIaD92jJgWOd0dR25qQoTUXiULkQfEB3Iyspi5cqVDOvXkzJuRa+Ca6rxO7RBVecX8SScw/v2AJCVmcm7HVoZtQ4SiYRly5bx4Ycf8tdffyn8NvIHJFu4ehPPoqL5YsgAjfNu3749AB9//DEnT55k7ty5hqu4FrT0c+XBndsA7N2xtdC02oiP4gg/rinpL6KU2kot+bBNfcV2Nwdblnzcg5GdQrCztuJZXBKO1lLspFb8efQiQV5u1PbPHXKLTMhd/mBdp2bYvAg6dupZNDaWFixt35iM7Bw+2HmMTdsuYW9mjhVmVLW0LbReuyKS2RWRrPT//H/6oouTqi7ryxjbQT2/E6cp+FeI4qP0IVpAdODEiRMkJiYqvPNfF/JbA6xejOEDjJ8+m7qNmhi0LFXIg7/lpXfv3pw8eRLIjX76+5Z/eKNxPYIDc2e8aPK1tmHDBnbt2sXAgQMxNzfnq6++onnz5jRpUvg5aTsMU1ReAJfO53Y4IyfkWgb0tXwUVwRQTb/a29cO5Mrj53zUpgGz+qlfgj08JoHE9AwS0zP46JfNrD5ygTY1KuHv4cr39YNxDqmNg9SS/b3a8vPFW6y5fp/jT6KYe/YalSysSUHG1LiHrClbGTszM9IEmdqyNBUXqtLpYi3RxhoCuk+BNpZlpDCK22oiCo/SiyhAdODhw4cA+HiWLeGavETXxkWfYRhXN3c8vcsR8fQJDZo2Jyi4oDgwNL///jsffaTsmDlo0CDF/1etWsWDBw/Y8fNMrfOuWrUq9vb2bN++nTZt2vDtt9+ybds2vetcFHln1AiCwNzpX2JpZUX7N9/SS3zoGwtD1wig6jrLtMws/j5/kx92HKVFsB/jurUoNJ+Ggb7Me78LY1fsZOXI3oz/YzeHrr6s55CaAYyuWxVnaysmNarOuHpV6bv7KDmCwK2sNEU6O4k5vhZS7mWnIxMEzPIEdjOEVSNvHtqIEV1jh4B2Q15y8j8jxW2ZNbQwEYVH6UcUIDpw+HBu5M+TYVfo1rbwRvRVI78VJDLiWe52A4qPwmZ59OvXj8ePH1OvXj1SU1Pp06cPderUUezftm0boaGhVA3w07rcihUrcv/+fWJiYnB3d+fs2bMApKWlYmOj3nyvjxVELj5kMhmnjh5m8qcfkxgfz/9W/El9/4JB0wwtPgobDtD2Kz1/+Xk7SZlMRtvpvxOXnLvy6ZsNquFqX/iQCEBKegZOttb0bFyd2gkpZGTnMPnYRfY+fIb5CyHxc9hNfO1tORkRg21SToE85saH08Dagf/SEzmdkURja0eDCA9VyPM1phAB/cUIlLwgkaOJkMgrUkTh8eogChAdGDt2LEuXLuXyzbuvnQABZRFy/FY4gky9aVuXvIuiW7duWFtbs2rVKgDKls21RMXExPDff//x3XffKdJq+3UlkUhwd3enUqVKJCQkMGPGDL6bM4fpPyykS8931B6nLi5IYcJEfkxyUiJTxw5n/+4dBNeszVdz/8egXl0KpDek+NDUD0FfEQK5HeSu8ze5+CBXrMaunIqVhkGo4lPSsZNIeLTvDJZmZkRnZZAtk2EGeNrZkJiRxc9htxTTbfvbl+VcVgrdbN0IsrRhbkI4xzISOZaRCMCs+McMpYJO56MNujiy6iJEwDBiBExHkKhCFB2vJqIA0YHg4GC8vLyQGbDj1YeSWBsmyFXK9B8W4OziStvO3Yo+wECsX7+e999/n5o1a3Lp0iV8fX2pUCG3Q7l48SJZWVm0atUK0G/myttvv824ceOYOTN3KOd/s78uVICoQ5UwOfwgVrF94XczWLVkIRYWlnz/60radOpKFXcbjfLWRXzoEgdD144xb51+PHoBACdba43Fx6N9Z9hz/BKBLg4AZGTnMGL/ae7GJ4MEvjp+iblnrjHOqRzfJ+TGWClnbgXAttQY3rB2BuADew+szcw4lZhKJsX3zupiDQHle1RSYgRKxn9E5PWiRGfBHDlyhK5du+Lt7Y1EIuGvv/5S2i8IAtOmTcPb2xsbGxtatWrF1atXldLcvHmTkJAQfHx8+Prrr5X2+fn5IZFIFA6KckaPHv2ikxLRlQcPHvDt5PFMGP4R508dL/oADdDE+iFfeO7Ondzw21OmTAFyTfzTp0+nSpUqBAYGkuFTWy+nt/fee48qVarg6emJg5MTz589Ye2yX4mPjS0Qg0ITnj99wrrlSxAEgRYVXDi8bw8f9urC7wt+oEO3nmz89yihXbqpFB+qZhfoMsNB3yBc+hz/6Gk0nnbWJKSms//SHSVfDqV0L2Z9PNp3hiyZjKsxCViZm/H92Wu02fgv12MTsbU0p76HG391a0lyVja7Ul9amTIFgYZW9jSROnAgPR6AJzkZyBKtaIAzIWgewdZQ6DODRp+orXmvpb4Ux8wakdePEhUgKSkp1KpVi4ULF6rcP2fOHObNm8fChQs5c+YMnp6ehIaGkpSUpEgzfPhw+vfvz7Zt29ixYwfHjh1TysPa2povvvjC4HXPzMzEyspS4/Sm/gWhrYnT1vbl+L1PnnDsxqZRo0bcvHmT9957D3Nzc/r16wfA9u3bOX36NAsWLDDIGhNOTk588MEH9OrVi6QXK+h+N+ULWtaoyDvtW/DwnuoAaPl5eO8utco5065BNb6dPJ53O7ZiaJ/ujHq/Dzk5OXw+fTZT5/xE61pBRpvtYsjQ47rk8yQplSyZQCNPdwC6fbeKLrNWcPXxyyB2qjrKzJxca8W+hxHsvBtObEbu0u3xGVm8V9Wfm//lTr+OyMnCglx/kO2pMZzOTCbI0gZriRm1cWRvWjwpZPOINBLI0v6kDURJCREQxYiIaVKiQzAdO3akY8eOKvcJgsD8+fOZNGkSPXr0AHKXb/bw8GDt2rUMHToUgPj4eOrUqUPNmjXx9vYusNz60KFD+eWXX9i9ezedOnXSq75Hjhxh1qxZpKWlERMTg1QLAWIsSkrYlClThpUrV+Li4kI5X/3H1LVZXK18+fI0b96cJUuW8OjRI/z8/Jg/fz4+Pj40a9ZM77rIGTVqFIIgUK5KLTatWcG5E8coV74C6Wlp9OvcmvHTv6Vd17ewtilotXhw9w42Nja82bye0vbrly8SUCWY+cvW0KpdJ0WwM1XoKz6MFXZcmyGZk8+iGbrvFFkyGdvuhiMByjvY8WazWthee8ijG4/UHmsmgRruzrxR3pOBwf68tf0I5hIJ9xKSKXcthenJkZQ1syBSlo1UIsEKM2a4+mEtMeOP5EjSBRlh5Pp+nCWBGyQTgB1tcDfIddAVfQKd6TM8I0ccphExFUzWB+T+/ftEREQoLdkslUpp2bIlx48fVwiQr7/+mtDQUNLS0ujSpYsioJQcPz8/Pv74YyZOnEiHDh0wM9Pd6PPBBx/g6+tL3bp1adiwIT3atdI5r9KORCKhd+/eBbbrEjVU25Vd7927p1gFt2rVqqSlpZGQkEDz5oWvyaMLEomE0R++h3tZDwafeJMnjx5y9PpDPuzZmSljhrFwzkzGfTWTdl27A5CdnU1iQjzdWtQvkNe83/6grJc31WvXVYST10Z8qKM4xUf+MgrrBK9GxzNi/2nFQnBvVvJhaM1A/J0063xtLCxY3+XlPd3ctQXrbz5k7tlrxORkcyUzBemL9YfMkVDHyo4Po27hYW6FY7aVUl5yy4clEqLIwAwJbiinKU509Q/Ji6HFCBjGiVUUIiKaYrICJCIid0EpDw/lqYgeHh6KOBwAnTp1IioqisTERMqUUR1mefLkySxfvpw1a9bQv3//IsvOyMggI+NlR5qYmPsVFR0dzYIFC+jTpw8At/dv5NKNOwQH+JXo0tKGQt7p6eM7UZiYyCtOdF1O/ty5czRr1gxzc3Ol7QkJCfj7+yt+C4JAamoqdnZ2OpWTn4YhLahWuy516jfCwdGJJeu3c/TgPiaNGsrnH79P4+YPcHR2Zt+ubUwY9mGB4z8cMZY2nYoOrQ4lZ/nQdQqpqs7vcVIKb+/8T/Hb39GOCQ2r4SzVrdP/58FTxh0+T44gUN3Sln/S4gAUwcUqWVhzLCOJ5taOnEpPxoIsKmPHTXIjpmaT67cTThrXyT3P4pgNUxSGECJgGDECr9b0XhHTx+R7TUmeoEGQ27Hk3yaVStWKD8gdLhg3bhxTp07lnXeKnskwe/ZsleuMtG7dWvHV37NnT7Zs2ZK7vXE99q74qUCnWBwY46vDWKtk6io68mJpaUmjRo347LPP6N27N2vWrAFyBYijo6Mi3dV/1tPgrQ+IiIjAyclJ73KDXKWcPvYfd+Jzv6SdXV1xccs15Tdt1QabFz4xLUNfRvZ0L+uhWKzvw5FjCuSXH3VWD21mu2gjPtT5I2g7RJBfhESlpvPxvlOK39u6tSTA2aHAe6sN2++GU8HRjvfN3KhhZceE2Pu4mVkSJcvC2cyCy1mpdLd1o7mNE/+lJ5IJtMKdVrhzlxSukIg95vhizbUXoiSVHGwp/ndWFYYSIlC4GMnMkWFlrpkV+HWY3itSspjsWjCenp7AS0uInMjIyAJWEU0YO3YsaWlpLFq0qMi0EydOJCEhQfH3+PFjAJYsWaIYwjlx4oQi/cGT5/Bv1YP4xCSV+ckx5otnTKcwU1nrAaBmzZocOnSIBw8eIJFIaN26NdLwMCr5enHm4D+KOo6Y/j0AaTcMM0MHwMzMTEk4nD56GE9vHxat3oSlVe6Xva2tHfsv3ARerhTcplNX6pR3J8hVqvjLj77iQxMnRW3WNdHWWVJedmJGFh/tPcn9xNxOfmBwRQJdHPUSHwDV3Jx5lJQ75GIukZApCETJcsVgRxsXnM0s+Cs1hs9i7mGNGS15uZqxLzZEkEkyOdx4IT6a4GIy4iMvhlpzRo78ubiz5x7b74ZT+49d/PPgadEH5kN0YhUxBiYrQPz9/fH09GTfvpcPaWZmJocPH6Zp06Za52dvb8+UKVOYOXOmYkhFHVKpFEdHR6U/yHWa3bVrFwCPHz9mYI+XTq3hEZE07/MxqWnpKvOUY2z1Xxwvdn4xcvny5WKJiSIv0+rxBZb8/D96d2qDZ0rucNxb7Vqx+Z+DbPx7P6O+nsfF67kLurm7OBtcNMlFRExUJF4+vkqda3JSIru2bMD6ReTUr7/+mqWLFhR5XqrQRnyoQt+F1LQ95u8dVxm2/xRPklMpZ2+Dm7WUYbWDtC5XFR/VCCDA3JovYu/zbdxjOtvmTqd1kpjjZWHFArdKzHb14we3ivSlHF5IyXkx7GKFGc5YUAlbKpJ7X2TIFMMypoihhQjAnjO5z4nZ5Xi98jHkwoZ5xYgoTF4/SnQIJjk5WRHPAXIdT8PCwnB1daV8+fKMHj2aWbNmERgYSGBgILNmzcLW1pa+ffvqVN6QIUP48ccfWbduHY0aNdL6+Dt37tClSxdOnTrFP//8Q1paBrWrBnJ++yqu3r5H/e4f8NVPvzF3wshC87FtGGr0l6y4zJ4Rp/5mzGfT6NXhDT59X/3wVmHDONoKhDXb9nDnYbjSdfYr5wXAO6MmY2tjTWZWNjf++RM7WxtFGYZeDCsnNRHHF8M7WZmZrFv4Hb/99htpaWm8++67TJw4URG3RB36RjctTHwYAk2HY7anxPB70ktrZWZKOovaNsTBQDPFrMzNmOnqx57UOH5LisDRLNd6kSLImJfwhFmuflS3yvX3KVfWij6RN7DGjH74kEEO7kiJI5O38CKWZ5wiAVeklEezoG8lhSGHZoY5ejPM0RtrMzOTm02TH1XvgDh08+pRogLk7NmztG7dWvF77NixAAwcOJAVK1Ywfvx40tLSGDZsGHFxcTRq1Ii9e/fi4OCgU3mWlpZ88803OguYS5cucefOHRISEpg6dSoSiYQpI3IXQqsWWJHxQ97jm4XL6NCiMW2aFv5CFocIyYuxXmg7GxuCA/xp1ahuoekMaYV4FhUDQGAFX8W293t2pm61ytjZWGNvZ4tXk85cvnWPoIovHQ0NLUJycnJwssm1hkya9DULFixg1KhRDBs2DG9v70KPNabVw9AUJULWJEWyPiWK+lJ7zmUk01jqQD+HsjQrZ7jFGu/suYelxIyudm6czUhmT1ocdazs8TC35EpmCvaSl8Mp1hIzKmDDU9L5i2fEvJgB440UcyS8hRdrCOcGySYvQOQYQohYq5kBaGqzadRRWHspipPSiUTQJazja0ZiYiJOTk5Kjo6jRo3i18WLib+wD2tp7ph+YlIKbw4dx837j7iyey1uLkU7P5qqudGUX+iPvpzFvqOnuXdws0rHX0EQcKj1BtM/HcxnHxYUm4YSIS1btuTJkyd88803fPLJJ3z++edMmjRJKc2NGzeYN28es2fPxs0t1y+hNImPvKjq/OSWj7LmlqTKZLiYW/C9qz82LywU+szIANXnKhMEkoQcEAROZiTRUOqAi7mypWVuxDP+IxYbzMhGoDEu+GGLLeYICPxLNBFk0B8fvepX0hjCMqIKfe9bfowhSLTBlNszXZAENFb6raqPKg2IAkQDVN3cCRMmsOy3JTw/tVsp7bPIaKq0e4e32rVk+XdTNHK+M1URUhQl9VI3e2cIgRV8WT5nito09boN5O6jJxzbsIRqgQUbU0OIEAcHB7KzswHo1asXv/76q1KEWIDz588TEhLC/fv3qZAdoSobQD/xYWzhkZe8Hd7T7Aw+jn45hNra2omPHD1xMFM2rOramakTWoIgcCg9gZ2psdzOSkMCvGNXhr4OZTmYFs+ypAhSZDLsMOcdvBEAM16+h+GksYtIHLHgXcrpVDdTRRQk+lMaxIooQF4j8t/ctLQ0bG1t+aBXF5bOnlQg/aAJM1ixeRcbF8yiZ4fWKnIsSGkVIXIeR8djaW5OWSc7lcHeDPlSt3j3Y2ykUhrUDKZTqyY0rVuzQJqtew/Rc/hEALJuHFVpKdFXhOzatYvjx4/TpEkTOnXqpDbIneWj82r3aRrfo6SsHqqQd3J/JD1nY0o0NkiY4lpB4YOhCm07sMJm9PydGssvic8IsrShh507NzNT2Zoawy/uAUyOfYC9mTlp2QI1cCSAgnVKI4d/ieYp6fTCq0QDkhkbYwgSQ4sRMG1BAqYnSkQB8hqR/+Y2a9aMY8eO8euMCQx+p+BKsIIgUDm0N21DGrJo+ucal1OaRciUdXv5cedRvuzRip/3nGTfVx8R7KO7D0BhL/yn38xjwaqNAFhZWnLr3w2U9/YskO5/KzcwesaPHNuwhCZ1aqjMy9COqfkpzPeltFg9VNHBw46dKTEsTX5OBxsXhjkV7vMCmnVc6oRHliDjVlYaFzNSOJAWj7O5Bd+75eZ3NyuNMTG5x0mA+W6VuBaTXWg5GchYTTjVcKAxLkXW61XB0ILEGGIETFuQmIIYeVUEiMkHIjNF5Ave+Xqp7mAlEgktG9Vlw+5/mTpiEJ5l3FSmy09xO6Yaki97tsbZzoZVh8+RkJrOvYgYvQRIYddBWTMLhPQewvr/zShgCfmkbw++mPMzpy9eUytAjDE7Rp5vYZRm8QEw6fkjrpFMLzt32to4a3RMUaHb1YmPm5mpzIh/RIIsB3uJOd4WVrzv8DIW0L4XUVH9LKT0sS+Lv6U11yj8GkkxwxlLMjD+9HFTIu+zY+ygZ/pQHE6tuiKuf2M4TDYOiCkzbdo0AFo3qqc2zezPPsHSwoJhX83RKu/S+kDbWFnSt3kt7kbE4lfGhQ51DBP/QRVZz3MDw9Wq4MXsccOws7Wh46AxRMbEKqX772wYGZmZ/HvsdKH5GTLAWlF5qYtzUJrEB8B9UgHoauuKt4XmEW7ViQx121NlOcyIf4SXuRVv27nTUOrAcEdvXM0syBBkjIu5x7+p8XSwcWGOa0WaWmv+9ZeJjHRyEEw4HghADgLP0X6NpaLQN05MfvIGPTP0WkR5A6EZKgaJIRBjl+iHOASjAfnNW3v27KFjx47cO7gFPx8vtcctWLWR0TN+5Oa+9QTkmTKqCcX9QBvqpY5Jy8BMAi7WLzslQ3+9XLj/lF/+Ocn0d9ri5eLI4F82s+7oRaoHVeTs1hVYvYg9Edy+Dzfu5QYqk90+UViWCnS1hmgiYPTx9zAV4SEnjkxiyCIAO52+pOVfy0V1VDczU/k89j797cvyR3Kk0r7m1o78l56Ir7mUxzkZlDW3ZKaLHx4WuT4dRV2zKyRxjFi64YEn1lqfQ3GxkafEksX7+CItpm/G0uI7IscQbUx2Tg4WBlhOozg+IsUhmNcYeXCpR08jChUgH/XuyuR5i1mxeTczxg7VOP/iEh/G+JJws5HyX3gkf1y/x3fN6+BiLS2yHG0bjzr+3iz5uIfid9kXq6teuXWPEZ9+xuBPPqZBzWCqBVZUCJCnz6Pw9lC/XpCcooSEKoGiy3CLnNIoPgBcsCKFHG6QjBAh0MVTt9g8RXE7Kw0z4Eh6AgEW1vhZWLM/PR4B+C89N6Lxj+4VicrJYnrcQ76Nf8w8t4oqZ5/lIPCYNMphjSVmVMaOY8SSasLDMFnIiH0Rx8QK/cLZa4Ohh2qg4LNtzCEb0LxdCbv/lC9W/83wDk1wd7SjaWX9FikUVwXWHFGA6IB8LZrn+Uz++bGxtmZAj04s/GNjkQKkNIuO/Cy/epeTz6L56fxNvmpSo8ipyPo0HgDT32lL7yY1mLnlIL//e4ZDV+5xfu5IFn/zBZv/OQhAq37DuLlvg95rkmg7VPMqig+ARLLYRa5FwhvdFxnM2wnlP/9UWQ5bUmKQAQ+zM5jp4sexjAQEYLKzL/GyHKQSCVYSM7zNrahpZcfBtARkgDkvO075NdzDc8LJoD5O1MM5j/+H6RqBLZDghw1lkCIpRgGSF0NGY82LOuuXoYSJurYuf9uSmpnF1UfPSUnPpHX1SgYpG8RF+DRBFCA64OzsjKWlJc+jCxcgAFUr+ZGarnp9mOIcZinOcdMGHm6cfBbNhlsP6VvVjyAX7U2C2ogSC3Nzavl7s+Gzfgz6eRMbjl/ixK1HhJiZsfPL9+kyawV3HoYzZPK3/DBhFHGJiVhLpXi4u2pdL00p6t5qcj9MVXxcI0mxjoonUnp7OGt1vLoOJv/2s89jiP77BgD+FtZUt7KlmpUtA+w9sDVTNpWfykhib1o8Hzp4YJ5PZHb2tOdcRhLhcbl+FDclSXxaxpMFCU9xyDTHWzDd4RcJEtpjuIiy+mAMq4gqVAkTY1pLfIBjb7dFkp6Fg43+K3aroyjn1Su37nLtzn3aNWuEs6NxLIqmhihAdEAikVC2bFlFSPDCePo8Glenlx1waRUd2jiVBWS9nAJ58cgDzKT2BmlA5OdTmHVkYo9WbDh+iQNX7tK0cgVaVatI8pqvWXnoHOP+2MPSDdsVaUd/0IcfJo7S2yqSH13ER/7ra6ri4xnp/MdL4R1Jhlbf5do8B9XdnPFztONBYgqjm1Uj0C93qq+qZ/FWVhrOZhZ0s3MvsC9VlsP8hCf4mFsRnpNJkiCjf2TuisVfOvvSWAvH1byY6j0qDoxlFVGHsa0l8jZAX2uspqgSI4MmzOTs5euM+6gfc74YYfAyTRFRgOhIgwYN2Hf0NDPHfqw2jSAI/LVjN60q+5YK4WEoz3V/S2v62JXhTEYS1axsC81blwakMCHy16mr2Eot+W7rYTycHBgS2hCAga3q8Ub1Svx94RYBTVpy5fY9vvz+F2pVCWBgj85a10Ed2gy5yCkt4kNA4BTxit/WmJGOjKVJEfS0c8c1Xzh0fVl25S4PElMAmHL8Ek3LlcXO0kLlsE2gpQ2bUqKJyM7E00I5sNi97HQSZDl86OhBNakdCxOeciEzhRBrR53FB6jvfE31/hmD4hYi+TG2MAHjTwmWtxkjW9VgsYU5Xd9oZtD8TRlRgOhInz596NOnD+HPIvHJEw9E/jDJZDK+++sw18IjmTugU7HUqaSFR176OpTlXfsyRVoX9Ikj8GjfmQKNwdXwSFIzsqjr7834P3ZTr2I56lXKDbft6+78QpCk8UYdL2681ZFPv/mRch5laBvSUKuy86PrkEtpER8AZ0ngORn4YYMlZoTgyiUSOZAWz+G0BBaXCcTeTP0sAm3vb1xGpuL/iZlZpGZlY2epOsy7EJcE2x7zPKegAAm0tKGypQ2LkiL4RRpAeQtrLmSmEGhpnIXo8nfGpnxPDYWm51iSFhNj+ZYYSpD0bFydno2rgxBlkPxKA+I0XA1QNcUpNjYWT08Pvv18GEOrvTT7ZmZnc/DKPX7adYwj1+7zZY/WfNlTs3Ds+qCL+DCG8DAk2jQY8kZg2+mr9PtpPQBeLg5ULVeWbRMGqBRCCanpfLByP/uOnaZv13Z81PtNWhaxqq8qDCU+wHQ7qyskcow4GuFMbV4ustjZ054rmSl8GfuAKc7laWCteuxal8Y/LTubaccvkSMIfFIriErO6sfFs2UyOm89iK2FBfNb16eCo53S9U2W5TAg8iYDHcriYyFletwjJjj7ahU3xFCY6j02RYwpWEpDSHl1jquvyjRcUYBogLqb+26z2uw8d50pvd4gyLsMx24+ZNn+s8Qmp1LVpyzfvdeBN2oEGL1+xSk+dG089W1ING0syoc2YOn+M0gtLHBzsOXtH9awfcIAtfchRybjf7uOsfr0TR4+ieDSrtWFxmzRdijtVRAfSWSzlidUx4GmuCjNxujsac8/qbH8nPiMvvZliM3JZoijFxZ5BJ8m9+5BQjJjDp3jXkIyg6pXok/lCnjYaWehuBmbyPD9p4lMS+ftoAoMDK5IYmYW3525yrh6wUw7cYk6ZV2Y2qQm/+y4ir+FNWYG9v/RFlO956UFUw4tb0gxkl+IiALkNULdzX2+bDKjlu5gy6krZOfIcLCW0r9VHQa0rEs1Xw+DOzfmpziEhzEayOdkcIxYfLFhmqd2y6FrI0QEQaDWZz/RrlYg3w8s3M8jJT2ThhMW4lO+PJs+6aq3N3xh96Y0iQ+AU8RxiUQG4IMU5SGWDh52vPX8mtI2T3MrBtiXpYm1I+YSiUb3bN656/x++eXKuqPqVObjWtpH003LzuaPa/dZfvUuiRlZWFuYk5adQ98qfvx15zHvV6vEiDqVC82jpCyDpvwMlCYMKUoMIUiMYRURBchrhLqbm7L2GwCS0jKITU6lnKujQSLpaYK24kOTRrW4GsAUslnNE1ywpDL2+GFDX0/tFgTTtGEYduYqznY2rP70nSLTHr/5kF5zV1O+jDNrPu1DJU/N1vDJjzZWDzDdjiecNJLJ4TAxNMCZunmGXuBlQ/9XSjRJshz2psWRIMtR7K9lZcfvb7co4LehisSMLPY9fEZUWjpmEgn9qvprdJw60rKz2X3/KVej4/nzZm4wujI2Uv7q1lIpSq82FJcwMdXnoTRTXBbYwjCkELHrO0XptyhAXmGKEiDFSWkWHnLCSWMXkVhjRjYCMgRa4kYQuY2Epo1FUY3Cxag4xh0+R6CzIzu/G65RntfCI3nnhzWExySycuTbvNkgWKPj5Lwq4uMaSYrptu5Y0QPPAoGw8t+niOxMbmal0kDqwMmMJOYnPMFFakXPoPI4SS3pX9UfqzwCPUcmYG6mmZVQ3njrYvX77sxV/guP5JuQWtQpa/jYL8YUJqb6fJRmXgUxIgqQ1whTESCvgvgAuEMK+4nmPcphhRnHiOUmKXgixR0rpJgRSxblrC2obGlLmpCDp7kVLa2dVA5rqWsQJh8LY8vtx7hIrTj2bnuNX/rk9AyGLt7Kv5fucPq74VQoU7R1RtshFzDtzmUTT4knm9a44YONyjVICmvIAzpUJDwplSWXbnPwcQQx6Zl8E1KLnoHliU7LYPKxMI6ER/LvVx/ROKi8QepsCouUGUuMmPKzUtrRR5DoK0Z0FSKvigARp+GWAl4V4SHH6cVj94g0quJAyxed3D1SCSeNdGS4Ysmt9GyOpydi9SLexIPsdAbaF/StkZ9v/sagk385niSlcioihpi0DNAgkBmAvbWUxUPfos64//H1xv0sHdar0PSvivjIRsZ90vDAivLYEEMiEiRai48rmSncf/iMAGcHGnm5E5eRyf5HEThaWZIlk9Fh835Ss3OHah5ExhlMgBR2X4tLnGi6yJ625L3epvjslGb0ifCqTxgB0Cy44quMKEBMnFdNfACUQUoAtpwlgUDssUBCAHYEYFcgrYCABAmXSGRLSgwxOdmMdSqnkYNvU+8yBDg70HrDPo6ER/JWYO7sFlXxQ/LjYCNlYo9WjF6+kzFdmlG9vKfKdK+K+Iggg/1EkUyuMDAHHLGgnJbrvFx9MSWXgw8U26q6OvJN01q0Le+JALQu74m0jAvj3mxOjQqqr6uhKep+G1qgFLbGjb6IAdCMhz6B1dR9CGnC6ypERAFiwpiCSdlY1MeZDTzlJHGE5JvamRf59po40sjJlvkJT2hr40wtqWYNRFlbaxp6urH9XrhCgIBmImRAy7rM2HSATScuqxQguogPUyKZbJLJ4T6pXCGRskgJxI4MZDhhSRB2BWa9QOGNc1qQA5yEz+pVpbq7MxWd7Clj+3KtlQqhDVjfTr+gb8ZA1bNgqPfPWFaR/GjTaYpipXD0FSK6Ds28bkJEFCAmyKssPOQ4YUkIrvxHLGZAk0JEiJxW1k78lRLNjwlPmOHqh4+FZl/nTb3L8FueKZ5yihIhlhbmVPUpy/3IuALH6YqpNPzxZLGBpwjkLvNeByfq4IR5EfdAXYMsb3D9ZQLnImP54dx1BlarSCOvl0H6TLFRfRwdT5tpvzNnQEe6N6ymtC9vfQ3xThrTKqItRXWspvKcljS7IpKL3RoCr48QEQWIiaFPQ1fSjZq2BOOADDhGLDkIhOCKWSEdoJlEwnQXP76Ivcdvic+Y7uqnUTlSc3OyZDKyZTIszJT9GYoSITZWFqRnZivSaoK29yGeLBywKLLzNySxZCIAHSmLF1IsVfh55EddQ2zepCxtN/5LeUdbglwcefRi/ZZ9D57xRYNqJt2Inrz9mKdxibz303qSVk9XO7RnTDECpvfuyu+1KERKblgGXn0hIgoQE+F1sHqoojoOmAP/EUsC2YRSRqXToxwXcwsCLG24nJnCo+x0ylsUvZR6fU9XMnJkrLvxgP7B2jUEz+OTqVOxnEHER/7GXEDgOHFcIYnaONII7WKh6EoK2RwnjrIvnE01QV3j6/GGL122HiQqLYOnKWnciE2kpY8H7f28aVve02ANp6qQ1IZY4NHH9eWMAU0DBxpajEDhHVRJihNRiLxEV2sIiEJEHaIAMQFeV/EhpyoOOGLJPqLYSySd8SjUEtLF1o2rmamMiL5LV1tXBjt6FZp/sJszAAsu3FQpQNRZQWQyGfeeRtPCxRHKF16GLsSSxRWSALhIIjVxxEaFz4UhSSWHXUQC0I4yGh1T2LDLk+TU3BlGL5jYsDpdK+VGt9WlsVS39oU+aQsTKp+t3AXAqE5NNS43L8YQI/kxZHhwXcVMZ097UYSg/+q/+viHwMtnrGpfnbMwKUQBUsIYqtHStGEx1UakHNa0oww7ec46nuCFNXVwwoXcJd7zvvDBVrb8XiaQzSnRrE2OIksQ6GHnTmGr7gwI9mfVtfv8+/AZbSsUFBOqRMjBTYdIzMyipgZxQEA76weAMy+XrxeADGRGFSCZyNhBBJkIdMUDOw1ef3UNbaX2/px4GoUAWJiZkSmT8UG1inSt5KOx8NBGbOiDbcNQZv2yAu+yZXi/Z25IfrkoqeXnxaWHEcSlpOldTnGIEX3Rx9IiWkNeUpLWkFcJUYCUEKbaQJUk3ljzJp7cJYWHpLGdCHrghYOKx9RSYsY7dmWwkZixITmavWlxvLUxjqk9G2FpVnAIZ2y9YJ6npjPm0Dk2dGlOVTenAmnkIkR+bxysLDCTwP2EZJp6a2Yt0AZzJDTGmZPEE4idkiAxNAIC/xFDCjn0wEujsgqzfJx6Fs2He08qbZehmdWjuIRHXibP+xWAkHo1CfTzVdRhZcNQeh34Dw83V8h4arDySoMYyY+mTrKiEMnFENYQeL2FSNGeZyIGp7Q0SCWBJ1JCcKUHnlggYT/RyFAdrFcikdDNzp1lZYPoa1+Wv1Ki6b/7GHfjkwqktTI3Y06LulRytmfs4XPEZ2SqzDPvvfG0s6G8gx0PXjhVFoaqBjvtxboohTXUtXBiCOV5A3e1aQzBJZK4QyotcNNbfAA09HRj4otZIx4vptmOGNCxyHxLQnwAjBn0LgB7jpwssK/rG81pWKsatg1DFX+GpHxoA8VfaSGgQ8UiO8bOnvYGX422NKKvELuz557JOSEXF6IFxMiIYkM3rDGnDe5s5zkXSaQrDmrTSiVm9LYvQy0rOxZkRPLW9sPMDKmt8EWQY2lmxv9aN+Ct7Yf59eJtvsg37VIVlmZmFLVaQd7GIzw7A29zK3amxvJ7UgSL3AsbGMqlqOnHupKDQBQZ3CeNKyRSC0eVwd7yU5T4gFzx1z+4Iksu3Sb2hZhzc1Cfd0kJDzlzvxhBtzbNqVe9ikbp89ZXV2fXjKxs7kTEUM3XQ7FNGxFSVNuhraDRpS0K6FBRo6EZ0RqinzUEXk+LiChA9MBUxEVpVs9p5HCLZAKwK+CT4Ik1NXDkHPEcTLOjlZq1YORUtrJlW6eWfHXiEpOOhuHjYFtg8bGyttbIBIF/HjzVSIDkp7AF1CJzMhkWfYdy5lZMd63AvrQ4jkSn4qTh0IqAwC4iccWSpmi/aFoCWcSQSQxZRJJBBBlkI2CNGTVwpAHOReahifjIy7JP+9Dtu1UAuNipnlFT0uIDwMzMjBYN6+h0rK5i5PKjCPaG3cbb1VHttSkMQ1tMdA22JooQzRGFiHaIAkSkRDlCDA9I4zJJNMMVP2yV9jfAmVSy+THhCTYSMxpbF77QktTCnG9CanE/IZmvT1xmfZfmWJm/HGm0tjCnnL0t9xKSuRaTQLAKX5C8+DjYcvDxc94OqoCDlQVtN+3n8/rBfFC9EqAs/uwluQ6kruYWlDW3YoF7gFaNsgQJiWRrZQ+RIXCIGJLJ5hm5s1FsMMMdK+rhhDfWuGNV6KwiOdqKj/KhDSgPtKsVyN6Ltxnx+zZ+/biHYr8hhEeGT22t0kvDwwpsu3zzDl/99BvjB/encZ3qetVHfk6aCJFAL3eszM11Eh/FhaaiRJNorqIIeYk+TqpyXgchIvqAiJQoHi/WGkkhh3+I4jRxCHl8PiyQ0IYyeJtbcTmzaF8MyB02mdq4Bnfjk5hyLIwcmfIQyvL2TQhycaDXjiOMOnCGtOxstXl92bA6DlYW9N75H2GRcVR3c8JRaqly3NbWzJyVZSrztYsfoNvY8Ft40oGyGqdPIpvbpPCMDFrhxgB8GIAvnfCgNk6URWo08SFn7eg+dGsQzF+nr/EoKl4nP4oMn9oq/7RFVR4XYwX+2neEiOgYrfMD+PfYaRr2GMTvG7YrhuM08RdxsrWmpp/hp28bm8L8VV7lztDQ7IpINogge5V9RCRCUQPcImqXOr7+wZslWKuXaPNwmtoXioDAI9K4RjKPyJ0K2Ro3glDuEC9IY4nJyWKSS3nczdUPaeRtIP++/4TPj5znoxoBjK5blavR8dhbWVLB0Y6M7Bx23X/CzFNXqOrqyI+t6iutWZKXjOwc+v99jBxBYGPXFphJJCaz6N954jlDAgBDKK+1P0lhX2maiA858SlphEz6BTsnF85sXYaNdeEB4nQRF7oiCALHjh0jJCREaQhPlbUkP+eu3KBxr4/Iycl1KL57YDP+vt6FHmOIAGm6Upgg0qVe6oZotJ1y/rpjKGdd+TtZdfl2pe3q+ihTRxQgGmDqAgRKtwiRc5cUrpJEI1zwQMp1kjhCLB1sXGggdWBW/CNygIZSBz5y8MTTwkpxrLrOcvHFWywMu0ntMq6cj4wFYFz9YN6s5ENGdg4PE5OZeDSMjBwZg6pXol9Vf+wsC45MnnseQ/+/jzOvVT06+HmbjAD5h0gekEZV7Gih5UwaQ4kPOTP+u8O3i1dxavNSGtQMVpuuOMWHJqgSIvGJSYz7dgGXbtzm0dPn9O7UllVbdxN9Zg8WFpqPXBtSjBjDl0bT+mkrREy1jSkJDDlTSBQgryGGECDFGRegtAclk7+wD7PSGRlzF4DtntWIzckiLDOF1UmRJMqy6W1fhs97NFAZ90NOjkxg7tmrrLp2H4C6ZXOFiBm5cSta+pRlRkhtfrl4iw23HuJuLWVFh6aUdyw4o2PQPydIysxiQ5fmSIxsBREQuEkK10iiErbUQrWvyn6iuU8qg/DVaKgFDC88bBuG8uu6rXwydQ69OrRm3fxvMDdXHVDN1MQHFBQgySmpNO09mCu37uFXzpMHTyIAmPDxAGZ99oleZRXV4ZuCw666Omq7+rOpti/FhbGmKAd0qCgKkNcJdTc3Ze03RivTECKlNFlF1L2sqbIcYmXZSivferUpzy8Xb7Hy6j3eC/bniwZFz2a5EBnLt6evMiOkNpOOXuBKTO6wRWUXR7Z2awnAk6RUBu87SUxaBj0CyzO4ZgCu1i/LPf40io/2nuT3do1p6l3GqELvAan8QxSQ66hV94VDaQ4CZZAq1stZzxM8saYlbhrlq62vBxQtPgCu3b5P9U59eSu0Jev/N6OAlaAkhEd2djZXr14lICAAO7vCpx/nFSEfT/mOJX/+BcCquVMxNzfHzdmJtiENMCtE7L5qaCtERGtILsaOjSIKkNeMkhAgqtBVlGjrwFRcDYYmL2q6TEZYZjL1pQ5U6VhJad/SK3eYd/Y6u3q0xs9R85f+5NMoBr2I4ulrb0sZWynuNta09vWgvocb62895M8bD5AJAh/WCGBIjUCyZTLGHj7HwcfPae/nxY+t6htNgCSRzV9E4IgFnSnLaeK5RjI5L5xzpZhRC0fiyOI2KbTCjcoUfv66WD1AvfhQ9aW+Y/9/9Bg+kVaN6rByzlS8PXKjx5aE+BAEgX79+rF161YqVarE2bNnsS7EL0UuQNIzMnCr355RA3uzde9hqlbyY8mMCazZ/g9RcfFM+uR9bG2KXgCxJCnqemvi+5IXQwiRV12EFGdANlGAvGaYigDJS3GJkbzo2ojo+nJuTo5mZfJzABp5urGkXWOl4ZaM7BzabPqXrpV8ClhBioqhcO95DMeuP2Tu9sPcex6n2D6oeiXG1Q8mPj2TJZdvs/LqPeytLEjKfDlTxs1ayn992gHGGe76h0iiyaQ7norYKFnISCabLASuk8wtkpG9SN8IZ2qrGaIxtPCAwocJDpw4S/9x08nIzOT7CaPoM+pLjVaZFQSBM2fOYGNjQ40aNYpMXxjh4eEMGDCAEydOUK1aNa5evcq+ffto1qyZ2mPknfLx85do9s5QDq7+mRWbd7Fy624c7e1ITM6dgbVn2XzaNW+kV/0MhaGFXVHCRBsh8rpYQ0oiEuyrJEDEOCClFHkHoa0Q0WQ+vzqK62WT19H/pjmceI6jlSVnn8cy98w1Pm8QrBAhUgtz2pT35OCj54yvH0yFdg01LqOihxsVPdzo1jCY9l//zuXHuSvE3srOZu31+7St4MXn9YOJTstg970niuMcrSzwc7Tl8yPn6V7JBw91BeRD0xgJMgQevJgNlDcwmyVmuJDrdFv2Rbj6aDLYxnO15amjqKmUuoqP9IwMWjeux6Wdqxn19Q8MmjCDK5GpzJgxo0gR8tlnn/HLL78AULZsWcaNG8fHH3+MTCZDKpUWemxenjx5Qv/+/Tl//jzLli1j6tSpdOnShSZNmhR6XIZPbaThYSxeu5Xy3p6U9/bkn6OnAGhSpzo/TRlLlXbvkJBcch2osS1J+fPPL0jUxUBR1Rapa2dehVghJR1+/s6ee1Qt0RoYDlGAlHJ0dW7VdOGp4kBdh9i7cgXuJySz8to93q3ix+rr93memsZPrXPPuXxoA3q7ObLxhzWkVfPXqWxHW2tm9uvAm9/mRvM8euMhR4EZp67wfnBFdt57wuyQ2iRnZzHz1FUSM7M5FxkHkXEcfvyc0/06GvT6PX4hPmoWEnoecuOjeGLNUCootmnSMBrD6iHHt3k3YuISSAzbz7KN26mzYAHjx4/nwYMHrFmzpkD6U6dOce/ePQIDA1m8eDHTp08nICCATZs2MX78eMaPH4+FhQU1atTAxcWFcuXK0adPHypXrsylS5dwdHQkICCAsmXLIpFIOHHiBCNHjiQ6Opo//viDI0eO8OzZM7Zt26bWKTY/WdnZPHoaQd1uA0lIyu0ou7zRjB+X/wlAGVfNVkY2FPqKjluxGYr/B7lqLuTkZauyitg2DFVpDcm7kKMcVVFUS+tidiUtPF5FRAHyClGaxIimAY2G1gpk8+1H7LgbTmMvd44+i8G3bX3FF3Wr6hVxsJay6cRlJvd6Q6e6NKlcgTIOtkQlpSptX3HtHu42VlyOieNmbCLl7Gx4kmfZ9iAX7Uydmnz9xZCFFDMao1lHp2mjqKvwAM3Ex71HT4iJy3Xsrdj2HWrVqqVwRH3w4EGB9BEREbRq1QoAS0tL6tSpw6hRo7C2tqZbt25s2bKF9PR0UlNTCQsLIykpibNnz/LHH38UyMvZ2RkPDw9u3rxJcHAwu3btYsmSJSxZsoR58+YRHKx+SnBejj7L4uqt3OdfLj7GDHqXcbMXYGVpwczPPqZFg9oa5aUvugqPvIJD032FCRN5PbSxhmgiQqB0WENE0WFcXjkfkEWLFjF37lyePXtGtWrVmD9/Ps2bNwdyG70PPviAixcv0r17dxYuXKiRV7sp+oBog6Gm/WojTgwZMdGmUTBvfLWE+5FxVPUpy5nvRijt/2TJVk7eesSF7z/VuYynsYl0nLmMuxGxBfaVsZGSkSPjw+qVOBcZS9vyntyITeStAF+quTsb1Mn3FHHcJZW+lCs0D0MID9Df6gGQmZlFlfbvkJ4tMHXqVB49esTVq1cRBIFq1aoxdOhQvLyUI4K2atWK27dv07ZtW8LDw/ntt9+oWPFlXQVBKDBsIwgCu3bt4uzZs/Tv35+MjAxu377NrVu3CA8Pp2XLlnTv3p0dO3bQp08fFi5cyIcffqjROQAcOnSIXj3eIiUtHcgVH/WqVea9z6bRq0Nrvh49hCqV/DTOT1t0ER2FCQ59UCdK1PmJqLKIlGbfEFMXHl2fXVH6XVp9QF4pAbJ+/Xr69+/PokWLCAkJ4ddff+X333/n2rVrlC9fno8++ghvb2969uzJxIkT6devH/369Ssy39IuQPJiKgvoFYaqTnHJvtNMXvcPY7o0Y2KP1kr7Np+8wsAFG7i1YBzerrq/fIIg8Dw+mX0Xb/PJb38pttd0d2Zp+yYqA5TJMZTlaHNyNBtTovjTQ79RXn2EB2gXj+K39dv4eMp3nD17ViNrw9q1a/nwww8ZPHgwO3fu5NmzZ1hZWVG/fn0SExN5+PAhKSkp1KxZE1tbW8LDw0lJSSEnJweZTEZ2djbW1tZ8++239OnTBwsLCx48eMCFCxe4du0aP/74I23atGH9+vUaOcDKEQSBzz//nJ9//pn/TR3LroPHiIiK5frdB2RmZWFpaUH4f9sp42a4YRhtRYexBIc6tBEi+ooQOSUlRkxddORFFCAmSKNGjahbt67CmQ2gatWqdO/endmzZ9OrVy/efvtt3n77bUaOHEm1atUYNmxYkfkaWoDoE2zIkJEVTUWMaLrqp6qvYoC4lDSCR82jlr8X3/QJpX4lH606HjlPYhKoPOoHpW3j6gfzy8VbNPBw4+c2DZBIJESkpLH59iN6BJbH68VCY4YSIGczkvg67hG97dx5z0FTF9eXFKfwgNwOtF69egQFBbFu3boi06enp1O5cmUCAwO5fv06VapUYeLEidy4cYPTp0/j4uJChQoVsLW15dy5c2RnZ+Pr64uDgwPm5uaYmZlhbm7OqVOn2Lx5M5C70q1MljsnyN7enr59+zJ79mxsbW0Lq4paunXrxt69ewFo07Q+dx6G8/BFMDKAqNN7cHMpfBHDwiguS8fhBwWteXlp6af5isuqhIim1hBdRAgUjxApTaIjL6IAMTEyMzOxtbVl48aNvPXWW4rtn376KWFhYRw+fJizZ8/SuXNnYmNjadCgAXv37sXevuADmJGRQUbGyxc+MTERX19fvQRISYZR1oTiEiOGWGI8LTOLdUcv0qtxdTxbdQXg0KnzfDRxFvceP6FDi8b89cscrKxy14zR9DqdufOY1l/9BsCPH3Rh0Bv1ebL/HGuu32fmqSv82bkZNcu4cCsuke7bDgNwZWAXzF6IHUOIEEEQ2JwSzarkSMY6laOVjXORx2gy3GUM4QGQmpqKm5sbS5YsoX///kUeFxkZSYUKFbCwsMDZ2ZmwsDDc3DQLopYXmUzG4cOHefz4MZmZmfj6+lK7dm2FQ6qutGjRgszMTC5evAjApV2rqR5UiZv3HvL5twsIu36bw2t/wdXZkb1HT/F2xzaKYwVBIDkllYs37nA//CkBFXxoUKMqFhYWRvHpUEVRokNTVImTkrCGgHGEiDGEh77Dztq0H6+KAHllnFCjo6PJycnBw0P5q9HDw4OIiNyvl/r16/PkyROio6Px9PRUm9fs2bOZPn263nUydljl/PnrI0i0EQbqxIohxIU68p7rjas3GbX0G+buPsXDI7kCpFWjutzct56/9h2hz+gpLF63lVEDexc4trBr1CDAl+Q1Xytt+09qwbenr+BgaYHjC0HzJPmls+qhx89p5euhECH6IpFIaGnjzKrkSCJzsgpNawjhAdo9p/k70ocPHwLg76/ZLKSlS5cCuVFK+/Xrp5P4gFyrR+vWrYtOqAXJycnExcURHx+v2Bb9wrG2csUKbF/y/cvyA3On9cbPSGbwO90QBIHQgSM5cOKcUp6+vr5s2LCB2j7a1UUb4WEo0ZE/z/wiRF6n/EJElaOqqpky6hxUofDO11CzZkxRdBSVV0nPUDQ2r4wAkaPKcS3vNgsLi0LFB8DEiRMZO3as4rfcAlIYprCGg7o6GHp1TmMKDSj6WtaqEgDA42fPuf3gMYF+uffG3Nycnh1a896b7fluyR/0e7N9AVO5Ou99dQz9dSsAOYKAvZUliRlZzD1zTbF/xIEzDKsVxIg6lfWKsZKXsIxkJEBHW9W+BqYgPOQ8e/YMoICTqSY0aKC+joIgsHfvXnx9fTWexaIP169fp27dulhbWys5pq87HEaTnoMUv+Wd7J39m2jaezDxiUlA7qyZ/OID4PHjx/Tr14+rV68qtp07d45NmzYRFxdH1apV6dixI0FBQYr9mooPYwgPVflrI0TyixBQftfUxS/SZCZeSQX9KklKunxj88oIEHd3d8zNzRXWDjmRkZEFrCJFIZVKNQp+ZAqiQxNU1bMklwzPiy7X8NTFl415WRUOgdM+/Yhdh47T+r1hHFm3GGfHgjE1tBUiDSqXx8bCnGVX7vAgMTcq5oBgf2LSM2nnp9z56itE5GOit7PSqStVbnT19fEAwwgPOYGBgUgkEo4fP06lSpUKTStPL+fJkydq061cuZJPPsld+C0qKkoxVCoIAtevX+f48eNYWVnRq1cvnX098iIfcklPz50BY2trS2pqKr/99hufffYZFSrkxluRX49yPrV5GP409+DwMJwdHbhx4wYtWrQgMjJSkW/VqlUZPHgwAGlpaYwePZpVq1bh6elJuXLlWL9+PRMmTKBDhw788MMPZDsXPvtJzsG7UZhpGNtk2/mX17lbXc3yz4sqawjkChFDWkPkmHJYABHD8sr4gECuE2q9evVYtGiRYltwcDDdunVj9uzZOuerbnxNuHNSr/qqQ12jr+0aDrpgDGFiaKF2+8FjOg4aw3vdOzBt1Ecq01y/84BmfYbQsGYwO3/7ochAVOrOu+OMZdyJiOHKj2N4fugC12MS6LnjCAB7e7bBx6Hwzk+XBjRNlsM7kTcA+KtbS43jjRjSz0NTnwWZTEblypUJDQ1Veu9UkZOTQ6dOnThyJPf61apVi6NHj6pc3v7vv/9m9erVNGnShIYNG7Jnzx5kMhl//fUXN2/eBHKtnSEhIezbp/8z++TJEwICApS2OTo6kpiYiI2NDc+fP8fS0rLIfH7//XcWLlzIO++8Q/fu3fHz8+Pff//lv//+Y+/evTx8+JDvvvuOQYMGYWFhQXp6Olu3bmXatGk8ffqUJi3b4OrujiAItOnYlVbtOhYo4+u5P7J5fu4QcYXg2nT4YATVmqqOgZNXfBSGpsLEGL4hULQPmiGFyKsgNl6VUOyvlACRT8NdvHgxTZo0YcmSJfz2229cvXpV8QWjC4YSIMYOpVwcAsWUiI1P4Pula0lNS+e7z4cjlVopXeP/1i+h3fufsmLOFAa81UmjPPM3kEevP6Dr7JVUKOPMsA5NaJSeyfXYRGq6O2NvVXSHJEfTBlTeOH5+5Dy77j3B086atwJ8+aRWEBZqYtYY0uqhzTN68uRJhg0bxvXr15k0aRKTJ08uNP3s2bP5+utcH5tWrVpx5MgRunbtyrfffoufn58i3bJlyxg5ciSVK1embt26bNiwAUdHR2xtbXn8+DGQa6UsX748jx49Ii4uTi/HU8i1fAQGBhIdHa3Y5uLiQlxc7jpBnTt3ZtOmTYXm8ezZM6VYJkFBQdja2hIWFkaFChVo0qQJI0aMoF69egWODXscw5a1qzh68F9SkpK4f/cWSQkJbD5wgoDKVUlOSmT177/g3iCU+KjnLBjxruJYiZkZ/SbNpWGHt5Ty1FR8qKIwQaJu9oymQqSwjxxTmZmnDl2Hnw19XqIAMVEWLVrEnDlzePbsGdWrV+fHH3+kRYsWeuWpiwApiRVA1VHahImm1+7TTz/l999/RyaTqZ2F0SakIW7OTmz7da7G5edvIK88es7MzQfYde4Gshevy8I3GvBG+cJ9iVShSoio+iKLTE1n8N6T3I7P9TFoWa4si9o2VOpoS0J4ZGZm4uTkxKeffsrSpUupVq0aM2bMICQkpFARkJiYSEBAAIMGDaJTp05Ur16dXbt28dVXX2FhYcHVq1extLRkz5499OjRg+7du5OYmEhUVBTdunXj888/JyEhgXr16uHg4ICVlRXXr1+nTZs27Ny5U6O6F4VMJiMlJYXExER27txJ3bp1CQ4OZvz48bRu3ZpevXoVevyjR4/o0aMH/2/vrMOjOro4/MaNuBJCQiA4wT24e6C4U6BFCxSKFCmUol8p0hb3QosUirsHt+ASJI7Fieve7480W0Jsk2x2E5j3efLA3jt37tyZvTO/PXPmzLNnz0hKSnUg1tbWZty4ccyfPz/L6zLz+bh8/gyj+3fnjwMnqVa7Ln9tWsviWVPR1NJiucdzIsOCWT91BH6P78qvqd68PUPnrcyX8PiY3AoRZVhD0lCHGClo/7bMyMtzCgHyGaGIAClMgkNR1C1M8ltnbm5umJubY2BgwP3793n8+HGGqZZ169bx7bff8uTETrmzqiJk1jm+i4jiwiMfvl77D52cS7CgUf7KnxM9D3nwKPQ9upqaJMpk/NaiDi0d7dRm8QCIiYnBysoKgMqVK3Pu3DmMjbPftwZgzZo1TJ48madPn1KixH+D2v3796lXrx7Dhw+nVatWTJgwgRo1arBnzx4MXt+Xp4tPSKDj8EncevCEqJj/ViGVKlWKpUuX0r59xqmKvHLw4EF8fX3p06cPNjY2ub5+2rRprF69msTERCA1wmq9epnvoJuVw2liQgK92jTGzMKSLfuOse/aA7bP+47abbrSsEtvAOKiI/lleDeCAnwAqNW6M2ZdpuS6vDmhLGtIbqKofkxuB2lJkjjp94b6xa0w1dPNcF4dQkNRFHlWIUA+I7Jq3DSHtYImM2cvVZMbsaIqMbZp0ybGjBnD3Llz+eWXX5g0aRKTJ09OlyYuLg5XV1dq1qzJgaXTc5V/Vh3jmPX7uef7hr+a1ZYfi09O4bB3IFdfh6CrpckXZUtSx84q1890Pzic+OQU6ha34srrYDzfhdG7vBPDTl6jho05m2dn7vOSRkEJjzTatm2Lh4cHEyZMYNasWQo7gPbs2ZOoqCiOHz+e7rhe4F36TfiBnUdS69rS3JTrezZS2vG/Qe/Rc29GzFyE5yMvOjVvxJ7jZ9PlMeWrASyaMibfzwawYsUKpk2bhqamJmZmZsyePZvhw4crtGVDGmFhYfTq1YvLly8D//mqdOzYkdq1a9OoUSMg59UuG39fxqqf57Pk3NMM9w97+wptHV2MzCwIexNIcmIC18MNM10FGPLwCq+vHkZb3wgX95Homeb+ewlZC5HsAprlRoiA8nzQPL1f0WTWWgAC1n2P+b8BA4saWYkRIUA+I5QtQFS9f8OniiRJNG/enKCgIHx8fChZsiTPnj3LkG737t0MHjyYI0eO0KJFi1yJqcw6xOWHL7Hwn/P4rplK8IXUvMafu8kpv/9WYBnraHOhdxv0tRVbqQCQLJNR9Y8jAFzv1w7jD3xM+p2/hUtxK7aM7Znl9YqIj7wOzrGxsbRr146bN2+ydu1aBg0alKvre/ToQXx8PIcPH85Q/5IkERefwKt3wdhYmmNqnLri5dCZi8xctpYHXi8pWdyW3b/OJ+x9JB2HT0x3vYWpCSG3TgBw+fY9Bn73I8FhEZQrVZJyzo5UqO3GkCFDgNSl2tHR0RgYGGBjY5NhYK9evTr+/v40bNiQM2fOALB9+3a6d++e5bO9ffuWQ4cO8fjxY5ydnRk3bhwymYydO3cSFhaGjo4Ox44d48SJE/K6fB6emG19JSUm0q6eK8XLV+WrRWvTnUuIi2VyqyrpjhnaOWFZoS46Rqbom9tgU6M5730e8eLAKqICnmHsWIH4sDckx8VgUb42NtWbYl2tKTqGOVuvPqSgrSEfkh8xEhOfSM3Jv/IqLJLL80dRrZTiy8SV6TSvbKf+NEEiBMhnRH4FiKr3b8iMoiROclNfSW9eMHjwYB49ekSFChW4c+dOhjSSJNGqVSvCw8O5ceOGfNVFXjvB84+86bRgC4e+H0zzKmU4cPMxg1bsooG9FZEJSQyo5MyMS/cYUbUso6uXyyTXrDn0MhADbS1aORWXm4nDomNxHLGI0e3q87+BGZ1pC1J4pHH8+HF5hOHY2NhcO31+/fXX3Llzh/v71mebLj4hgXrdh1HM0IBbD5/StE4NRg/oTvsmDdD715T+0i+Qsq16MuHLPrx+F4y1pTnd2zanad0aDJ48lyPnL+NWsyqHz13O9l4ODg48e/Ys3bP8+eefLFmyBGtrawwNDUlISGDDhg3ppo0+ZOnSpcyYMSPdsdDQ0EwtQ0eOHKFHjx4cvHgbp9LZL1kODQmmRbWyDJ6znFqtu6Q7J0kSB1ct5sxf67K83rJSfUIfX8PUuQplOn+NedkaJMVG8fbGCYLunSfi5X20DYyp0GsillUaoK2Xu6XMqrCGSJLEA6+XvPALBN+HlC9hjZ2ZMQYKOn9LksTbiCiKZ7GKTF1hFJQhSoz6zUr3WQiQT5i8CJDCIDoURdXiRNl1k5ycTICvNyVLlea7EYN57e/Hxr1HqFXqv/n7U6dO0aVLF27fvp0usFVeREh8YhKNZq7h+ZtQZvZozty/z6ZGwqzqQtPKpWmtocmMS3eJTkpmU9sGuX6ej+enJUmi55I/8Xjiw+v109H+189FFcLjwzLY2NhgamrKixcvcnXt27dvqVWrFu0b1WHbL3OyTfsuJIziDToC0KFpQ/7+fT4G+vrp0oRFvGf8T8uYPW4YLk4l6T1uBn8fO8uTEzvZd+oC05ek7gVV3MaK6JhYypYqycPn3iQm/hdZVlNTk8WLFzN2bPqdlXPL6tWr0wUtBAgMDMw0wuvdgFBa1qhArXoNWbbpz0yX9UqSxIunj/njn4McXLWYCnUbYWRqweA5yzO9/97LXgTdPU/o4+ukJMajbVCMYg5lCXt6k3CvWzRZdJgA74z9VHJMGCEea4gL8ERDRx9T186YuHZCS88IgNKuisVOyq0Qyamv+fB9HDd3Kb9v+ztDmodH/6JSWcUi7xYF8iJIhAD5jFBEgBQlwfEpU8/Fnvi4WOo3bsbanfuB1E7v3r171K9fn3/++SdTh8WchMjHnURMfCL1pq0kLjGJdtXLccTzKaZGBrx8G0qPBq4425iz8cxNTrg3y3YX3Q/JzjHuxN1ndP95O09WTKSklVmO4kPZfjghISHyaMDnzp2jfv36Cl87f/58fl2+jJdn9yq0idvTl7407PU1cfEJ/Ln0R75o2yzb9LFx8TzwekndapWQyWScuHgdc1Nj6lWrnGGKpZb7YO48fsYff/xBz55ZT2flhidPnnD8+HHevHlDv379qF69eoY0af2Dx+kTfDusP8Ympmjr6ODoXBpDI2OeP3lEWGgwGhoaJHzQr9g4lqZivSZ0n/BDuvw+XukSGxTAs72/Eun3hKSY92hoaePYojeazumX5n5MYngg0V5niXx0HDS1Ma7QEkPHGiCBrpUzZeu4ZHs9KHfJ7ofUqFyBp95+6Y6VsLVm/fzv+XrmIvatXkytKhVyzAcgLj4eHW3tTGPOZEdu36P8OvYrKkaEAPmMyKpx779+r5T8C3IDqc+NU4cP8N2IwWhqanLu3gvMLFLrpKy5Lk2bNuX9+/dcuXIFIyOjDNfmRoQsO3SRWTvTdxY2psVoWaUM+248Ytu43gz4dRemhvosHtieJpWcSbjxRJ42ODaeZ+GRtOzWFBvTnENMB4a+p8K4X/hn1SK6tm6aZbr8Co/sHJ5XrVrFpEmT+OWXXxTaRRpSf9F3bdOc2Ph4PHasUbgc70LCGDP7Z05fucmz07uxsVTOd/vvY2foPW4mvXv3ZsuWLUrJMyc+/nFy3/MWZ44eREtLmzevAji6779f+c6utfB5kBrSvUz1ugQH+NBn6gKMza1wqlQNyDy+x72104j0e0KJxl0xtCqBRYU6BPpm72fyIcmx4UQ+OELU09PIElL3XNHQ0kW7mBU6pvbU+Go6+mbW2eahrGmZNO7evcvr168xNTVFFviIMo4OOJe0Z9nmHUxa8CuH1i2hY3O3bMuUkpLC4Mlz+evQSWytLDiyYSmu5cogSRK6ujqFNjZTTkJECJDPCGUJkILeuyEnipJAyaquFHmGxIQEvmjRgABfb76fv4Q+Q1JXjvi8eEbfdk1p3LgxGzdulC8n/RBFRcjodfv544InX7aozdj2DYiOS+TH3ae5/jyAmIREfh7UgbouJRm+eg/P34SioaFB5LY5aGhoIJPJKDVqMWHRcQD0a1ydlcPd0cnGYdWwbmtKNupCf/d2LJqc+eCv7B1XPxwcvLy85L/sPT09qVixYo75BgUFMWTIEM6dO8fWn39gYNeMlqeEhESWbdnJqUs3sDI3Zd7EkfLl0qHh73Fp2YNhvTqzZNq4PDxZRpKSkpm4cAVdWzWhUa+v8pWXTCbLdnVMZvUaGRHBvp3biHr/ntLlyqOjo8v333xFleq1eBMUwlvf5wC0GzqOeh168GOP/2IYLbvwjMP336XLT5Kl4HvqT7wPr6d870k4NOoKgPeD9OkUfqbkRFJiQpFSkokN8CQlNpyop2eQkuLQNjTBuIQLJRp3xbpqYzS1MloT8mINSSM3U8HJyckKWTOSk5OpWrUqPj6pS5Vr1qyJs7Mze/fuZefOnXTp0kXuA3Tjxg1sbGzSBcVTNrkVJFkJESFAPiPyI0DULTqyozAIkvzUT3bln/TVIE7/+ytz++HTVKpaHUgN8DTzm6+oUqUKx48fz9SZUhER8ir0Pbe8X9G5VgX5IBQdn0CL2evxeh2Mk7UZw1vWpbqzPR3mb2Z8RzdmdG9OZGwCPX7Zzl2fNyz7shM6WlqM3XCAH3q2ZErXjJaND6da2n05Ad9Xb5g0rB+u5coQFBZO5xaNeOD1Et0ytTh//jxdunTJ1P/Az88PR0dH+fMqOmWYNii8fPmSKlWq8NNPP/Hdd98pdG3aMuk/lsxmgHu7DOe9vP3oMXY6z3z96dTMjQs379C8Xi3+/n2BPM3sFeuZt3Izc8YNZ9bYoRnyyAuKCjU/Pz9OnjzJlStXiIiIQFtbm5SUFJKSkrC2tmbXrl2UKVOGL7/8kuHDh2NkZISGhgYaGhqZ1m9ocBBtalciOTkZXT09EhNS0zRu0YZlG7dz5XU0r729eHHnOo26DUBTU5PfvunPc8+rAAyYuYQ3tunjifif283zfb/j1KofpTsOTycK8ipCPib+7VMS3nlhbq1P6NMbRLy4h565DaXaDMK2RnN0jNIPePkRIaB8n7TQ0FDGjRvHmzdv6NGjB5MmTZKfMzc3Z+/evTRo0IBixYpRo0YNzp8/n+PWDfklv0JECJDPiLwIkMIsPLKioAVJQdVJZuV++vA+M8aN4IVX6rTHxUe+mJiZAXDlwllG9fsiWz+A3PqEpOH9Loz636/E3MiA4MgYEpNT5OcWD2hHo4rOTNp6hGvP/FnzdTccrc3osmgr8/u1ZUy79A6rH/t5DJkylz/2HUt3zKmEHX6v/lv+27Rp0wyxNm7fvk2jRo0YPnw4Y+f8nKsVLOUs9JAkSb6q4/Lly9SsWVOhaz09PXFzc+P4puW0aZwxEFfz/qPxDnjN4fVLcC3vwtCp83jq7ceVv/9bKSOTyfhm7i+s/vOffDsfpgkPb29vHjx4QEBAAL6+vmhqatKoUSM6deokF5MRERHyHX5r1apF8eLFSUlJkU/hGRsbM3HiRJ49e8aePXtISUlBkiTsSzoy/9e11KiT0UcmOTmZbs3q4e/zEh1dXfoPG0mdho1p2KwlF/0jAEiMj+OfFT9RsoIrbu59iQwN5vSfazm/axMAC47c4ox3quUs/Pkd7q37HpvqzajUf1qmz6wsEfKhU2pUwDP8zu7k3a1TaGjrUMKtCw6NumJkV0qeJr8iBArOOd7b25uLFy8ycuRI+bE2bdrw4MED3rx5w7Fjqe9YcnIyjRo1Qv8jJ2hlk5ewAEKAfEbkRoAUReGhCLkVJ+qqhw/L+ezxQ3q2Tg36dO7+Cyws/5ty+WH0YK5cucKxY8eoXLlypnnlVYQsOeDBnN2nub5oDMsPX+K29ysaVyzFtG7NKG5uwrmHL+m8cKs8vbaWJk9XTMLO/L+YDJk5mYaGv+fmg8eULlmCifNX8OSlL1Vr1eHLL78kISGBAwcOsG/fPkJCQnj06BHOzs7ExMQwatQoeaeqqamJtW1x/jhwgteB/ty9dYP4uFhGf5d5kLZyFnpER0djbW2Nrq4u798rPu149uxZOnbsyLPTu3FxyhiFtseY77n39DmPju1AR0eb5v1HY2igz9GNy9KlS1sZM25wL5bP/Fbh+6fxscWjbNmyBAYGoqenR6lSpUhOTubly5f07duXpUuXcu7cOVJSUuSh/Zs2bcrevXu5ceMGq1evplWrVvTv35+QkBC8vb2JjY3l7ovUPWoO79nJ00cPOHLlDlY2GVeSJCcnE+jrw44t69i5eT1devWj+ZjZaGmnrog5sXUlR9b9QtUmbRi+8D+fmTvnjrJ55liG/PgrfqauhD6+xoMNMzFzqUbV4fPRNsjajyi/IiSrFTGxwYG88zyL/9mdJMdGYexQFpvqzbCs3BBD6xJ80SBrB1Z1ixCApKQkfvnlF3788Uf5sfqNm7Fk7RYmDBvArauX2LT3CLXqZ+9n8jF5KXNuLSIaLukFrhAgnzCKCJBPVXgUVdI6uAnD+nPu+BHO3nuOpdV/TnRhoSGM69+Nly9fsnTpUgYNGpTn6ZgPiYlPpO603ymmr8fl+SPlS2Y/JC4xiRVHLmNsoMeTwCD6uFWjUcVSQP52rE2b8qhatSr3799HR0cHTS0t9PUNmLV4OZHvIzi6729uXb2Enb0Db18Hyq+t3cCNjXuOZHqfWaMGcfBgauCj6dOnM2vWrEzTfYyfnx8VKlRg+qgh2FiaExefwOj+X2BcLNUB+NaDJ9T9Yihntv1OVEwsXUdOYc/vCzOsern/9AXVOw9k06KZDOneUcHaSSWz6ZaSJUtSq1Yt/vrrL7llZ/PmzYwePZrBgwezdetWmjVrxvnz5wHQ19fH0dGRFy9eIJPJAHBycsLP778VGm06d+P7+anWpRbVyjJo5DeMnTIz2x10j/yzm1kTRtHhq4m0HjiKuJgoprZJdTSdvccDy+IO8rQpycms+W4oXjcvyY9ZuTbCddhPmfpiZEZehIgiy3FlSYmEPL7Gu9unCX10jZTEVAuNvoUd9Vq2o9PXk9AzzOj0nZsfNQUlRJ6FJeD16AG92zYhbSgsXbY8yzZu4/iBf/hy9AT08mEByW25FRUin4oAyd2aJEE6ClJ0ZLWhlKLbZn/uXPANo2kpC5Zv/JPwsFDMLdL7RVhYWrHun+Os/ul7Ro4cybVr11i1alUGEZLgUD1Xv048HvvgFxzBjcVjMxUfAAa6Okzr1izD8fyGUU9OTgYgKiqKffv2cfPxS+Lj43Dv1V++GqhrnwHMHD8S7+de9BgwhIjwMLavX8Wtq5cJCw1JZyWKj4vjyD+7OXr0qPzYggULFBYg5bTC6dq6CQtWb0FPV5eExETehYaxdPp4AKpVKIumpiYv/AJ5FxKGpqYm9jYZHYPPX/cEoLVb7vbvyKqeBg0axPLly1mzZg2jRo3CwMCAxo0bA6mOs1euXCEsLEwuQOLj43n27BlaWlr8vGYLevr6XL94HosH93Dv3Q9JJrFo1hTOnThCtz4DGfDVaLasWkG5ipXp+EWvLMvXoVtPVq5YxuOr52k9cBTvfF/Kzz29cRE39/92vNXS1mbU0i28vHeTkFd+6BsVw9eoksLiA9KLCWVNzQBo6uhiU60JNtWakJKYQFSAF3Ehr4h69YJLB3bx4NJp+n2/iHK1Gqa7Lu0dVYQ0n5r8CpHMfHPKV3bl7L3nLJkznSP/7Mb7uRfuTepy7v6LfImPD++naLnTvrPq3qdLVQgLiAJkpS5/u+KT77yVsXOlECVZo0gHd/XQTkaOHMnWrVvp1SvjgJGbzmD7b8sY9OtuLs0bSXVne4WvU8YeLvHx8Zw5c4aGDRsSLCke2TL43Vta1azAkrVbad3JndCQYHZtWc/urRuJCA/D1taWt29T/Ux+++03hg/Pfj+aNPQC75KUlMzjFz5UKO1E/R7DqVzWme1LU03eSUnJWNZpy9SvBzJmQHe6jJiM5yMv9vy+gHZN/vOHuXjzLm2GjMfO2oLzf67CqUTOYbWzq6ekpCQmT57Mhg0bMDMzo1SpUty/fx9LS0t++uknBgwYQHBwMI6OjvJrylasTIVKroyfMQdr24y7IEeEhbH3r61sWb2CxIRE4uNiWb7pT5q3zdpic+yBL9PaVafN4DF0+noSG74fid+T+5SpWhvPM4cpWb4Kbl37U71ZOyQkJJmMYmb/fZ+VtettVmJE0WBk2REb5M/Tnb8Q8fIu5es0QpLJcChXic4jJqP5gUAvDA7xAAnx8bSqVYHIiAi0tLTYefwC5SpVyfnCXKCoGMmu3/lULCBCgCiAsgSIMrfJzgkhSv5Dkc5t9pghXLlyhYsXL6YbeNJQVIS8ehtEycbubFgwnaE9O+e4nj8/Uy5ZkdugeCkpKdR0tGTY2IlEvo/g4N9/oaGhSdc+/RkwfDQXD+5k8eLFFCtWDC8vLywsFBssPq6zhWu2MufXDbw8sxeH4jbceeRFra5DuPDXahrXqU5cfDx9xs/iyPkrdG3VhOUzv8WheGo0W2//VzTo+RWJSUlMHt6ff06ep0ndGnJryscoUlc+Pj6sW7cOf39/GjRowNChQ+VTMs/CEjh34ggpycm41qiNrb1i71NEWBhb1/7G5XOnWbtzfwbL24dWU0mSWNC/DUam5tRs2YkDqxZRv2NPekycw5H1S7l+ZA/vQ9KLg5k7TmPjWFr+Wdl9SpoYUYb4SEOSpRB4cR+6bx8hSTIeXT5LlUat6PbNDKwdnNKlLQxCJCIsjKauqXWsb2DIgt/W0rJ9Z5KTk/lzw2rad+2BjZ3ie8tkRX6EiBAgnxH5FSCqFB6ZIcRIzh1baHAQX7q3Rltbm/379+PiktGBThERsvHvg3w9YxHvrh3FysIsw/kPBUlhEB9puFVwJDoqEnNLK/oNHUHvwcMxNTcHwO+2BzNnzmTt2rWZRvnMio/ry+/VG5ybfcHh9b/QoVlDzl/3pMWAMXid2i2P/ZGcnMyqP/9hwrxlTPiyTzqBcfjsJbqM+G+3Y21tLWLun0fno0iz+QkuVVARjbOarr3vcZJNM8cgS/lvtdS0bcewL12exPg4nt2+gtfNy1z4ewsAP59+iJ5BeuuWuvsXRUnrh64f3cvRDctIiI3hm9//ooRLxpgyqhQix/bv4fiBvZQpVxGZJKNGnfpoaWszZkAPjE1NSYiP5/c/dlOnYWO6Nq2LW5+vqN8x89VzeSl3XoTIpyJAhA9IAVGYOoUPy/K5ipGc5pstrW1YteMA3w7pRZMmTdi+fTstWrRIl0YRfxAdbW0kScJAP/NOJS8bYBW0+ABYun4bb14H0K5Ld/QN0m9d7lSrCdevX89VfpnVU0pKqgOn/r+bypn864waGR0jT6OtrU2TOtUBaF4vdblvRGQUxz2u4XHzvzxNihnx07cjCrX4UMRHrGqTNiw4chstbW1+6t2CyNAgTm9bw6DZy9DVN6CKW0uquLXExMqGo+uXsXBAWxp9MQBtHV3Mbe2xK1UWSaaDRjYB0QoLBzxf4V6zBPU6dMe1cWt+H9ef5SN7UapydTp8NRHnKjXkadPqThVC5NeFPxL09g0XTh1HkiQ2A6Wr1kZTS4u2Q7/l1PY1rFm/nngHV3rPWk7x0llvMJmXcivqJ5Jbf7SigBAgSqYwCY/M+JzFSE4ixMGpFBv3n2TON8Po2LEjffv2Zfny5el+UeTUCbg4pa5c8A54hWv5nPfRyI7cDKb5HTzrNc46vLuy8A5I/e5ZmqXuB5PmcOr/+m26PT3uPkmNBtq8fi1uP3xKiwFjiIqJxcHuv80FI6NjUndJ/YDCIj5y65xuaJz6/Zp38BoxkRHpfCPSaD1gJNWatmX/bws4vPYXtLS0SEpMLbOxhRW2TXphV7s1eqYZnXgLE2kixNDYhDHL/+D8rs3cvXCcVd8OZuQvm/A8dYjI0CCGzk91CC9oIXLBNwz7SjVJ1rjPiCUb0dU35JevuhEfE40kSQQH+vI++C1lqtcFwKFcpRxy/C/fNHLjaKuICAEo2MgkqkMIECVQ2EVHVhQFMaLsMuYkQkxMzThw4ADbtm1j6tSpPH78mM2bN6cLPZ6dCEn7VR8dG5evcqpSfKiKfacuULpkCVzLp25Fn2Yleh8Vky6dmUlqTIuJC3/l9oMnJKekMLBre/48eCJdut/+2M2KWalxQZQdhj63KGtFnJGJWZbnbEo68/X/UoO0SZJEVHgIb1564XnmCNcOruHFgTUUr9eO4vU6YFKyHFp6BlnmpU7SRIiRqTkdv55IqwEjWD3pS1ZPHEJiXCwAspQUtD4Ita4sIZJZO9Vo2YlbJw+gqaWNqZUNVZu04d7541Rr1k4+9VWlYYsM1+X2noqUXVmrfYoKQoDkg6IqPDIjs2dRhyjJrk5VJZhevk9myJAh1KpVi/79+1O3bl1Gjx7NDz/8kOkmdh+SmJS6FFY3m/gPOfEpig+AF76BlHEsIY82uuPQSbS0tGjTqG66dO6tmjB3wtds2XsY74DXdGruxs4jp2hatwYXb94l+V9/iRF9U3d6Vaf4UFf8Hw0NDUwsrDGxsKZ8nUZ0HjmZmyf2c3TrGt5cOwoamuiZWVG8bntKd/gSDc2CDS2eW9JECICeoREjl2zif0M7Y1jMhE4jvksnPj4kL/X9zs+b555XadC5d7p8Q98EsnPR93jduoymlhaRocGc37WJq4d20aBzbzoMm0DYm0BqNO+AuW3mK9okSeLWyQOUrlo7XdyW7MquqBD5HESIECCCLCnoAT8/Ai4/ZcvMChIfF5fO9+FZWAKurq7cvHmTX3/9lYULF/Lo0SMOHDiAlpZWllaQtFgcmrkId55GbgfSoiQ+At8EcfrKTVbPnSI/duHGHeq4VsTeNv0uqxoaGswc8yUJiYnMX7WF9k0bcuryTc5du50u3XfD+vEmKIRomX+mK5eyIr/1VhiDDhYzs6B576E07TmEQK+H+D25x97lc/E9sZXg+x64dBmJVZWGOWekQj4UIfpGxVL9WSQZFeo2TpdOJpPx4s51jEzNMnVYzYn5/VoBYO3gRPk6qZGRw4PesPSrbujoG9B+2HhKu9bi+tE9XDmwg9pt3Ok8cjJ6BoZ8t2F/tnk/vHSGbXMn0tC9L32mzFeoPIpOz3wO1pDC77kkUCvuNUsUmLVBWfnmRch82An8unAu9VyKs2jWFJIS/9vC/FlYAnp6ekyePJk9e/Zw9uxZ5s6dKz+fmWB49S4YgBJ22W9d/jGFXXzk9n4fP8/xi9eQJIneHVvJj1UuW5p7T58TEhaRaR63Hz4FYNrPK0lIzLi1/NifN9Bz8kLatWuHoov58lNvF3zDCkR8BHg95Idubrz29sr0/Mt7N3nr+0KhvDQ1NXGsWJXGXwxkucdzJq3fR3E7W+6tnUr0seW0KW+i1unWtP4ks34lMuQdyYmJGdry4aXT/D6uP4sHdyQxPnVqMy0iLUBiQjwpycnIZDKSk9J/Tz5M51ipGqFvAomNiuTgqkXIZDImrd9H+6HjKV+nEa6NUr+blRo0y7DSKCuMzFJXil05sEPBGkiPIt+novRDI7cIC4ggUwqrT0hWpImQ3JQ7zRJSqWpq+Osdm9bx5ajx6WI+pJlCW7Rowdy5c5k1axbJyck4ODhw9uxZZs6ciZ2dHfPmzaOVqxNBoeHo6GhjZW6mcDkKu/jIKx9aiYpbp8bDWPXnXhrVqsbfx85y98kz4uITOHL+MoO/yBiwa/JXAzjucY2alcsTHBbB4xfpl7337dsXExMTDh06lOMGe3mts4K0dgR4PSQ+NoYj65YQEfSG0NeB2JcunyHNitG9AVh07A6GJqa5uodTpWp889ufnNq2miPrfiEpIYGBP/yS5XtSENPKir6TOnr6eN28xIxOdSlXuwF123enYr0mlKpSA0v7koAGWtraPPe8xrafJuFSox61WnZi48zRpCQloamlTUpyEg7lq1DatRZ+j+8RGRokz//79rWQpSTLP/eYOAc9A0P+nD+Z8KA3pCQlAaCto6vwszmUq4y+UTHiY6L539AudB4xmYr1Gud8oQAQcUAUIqs11q1+v5TNVUUPdYkOZXd6uXmONBOo93MvkhITKV/ZNUOaD02gv/76K1OnTpV/1tDQwNDQkJiYVEdKAwMDbGxsePr0qUJL5vLiv6DoYPruzWumjh7G1xMm07Bp3p3o0sirKVgv8C6SJDFr2ToWrN4CpO7iW8axBO9Cwlg8ZSwdmmU+PeD/+i3mJsYYFzPi2/nLWbFlF4aGhjx8+FC+W21O5EV8qGKaZenX3fF9dEf+efHJexgY/bch4dmdG9j/2wL5586jptB6wEjyyuZZ33DnbOp+P5nFE1EERd/VvPQlSYkJPL1+Eb8n93h46TSvX3pRomwl2gwaTRW3lmhoaqCto8u9CyfYOH0UABXqNOLpzUuUrlqbivWaUMzMgifXPQgO8MW6ZCmsHUpRpnodwoPe8D74HTYlnYkMC6Za03ZYOzhx4e+t7F3+I+XrNEJbR4c6bbtRs1WnXJX72KZfObZxOc6utXj90otZO89gYpk7C6gifiEfvn8f79Ar4oAIiizqtna41yyhVBHy4dxyTqRZQUqXLZ9lmg8dwsaNG0d4eDiLFi0CYOXKldy6dYupU6fy+++/89tvv9GoUSPatWtH7dq1cXV1pUyZMjhKofT6ZgbVK5WjW+umtGlcr0DFB6SGWL9z4yr3b99QigDJq2NcmiVk3sQRfNG2Gd7+r+jaugna2tpolm1Ap68mkfT0ElqZLD91tLcjwaE6CcC83zbQtEtvypYtm0F8/P7776xbt44rV65QrFgxeXlziyr9OxzKVZILkC9/+j2d+ADkwclaDRjJlYM7iYkIz9f9Ogz/Vi5AXr/0Shd3Q1EKsq/Q0dXDtXErXBu3ouNXE3lx5zont65k86yxWDs44VSpOsXMLWnWeyi123bl1on91GnXjajwULzv3+Kt7wu+GD+LYQtWZ2sRk6Wk4PfkHhf/2caF3Ztp2KUPfaYuyDJ9TugZGKKjp8/AWb+waHAHNkwfxcglm+TLq5XFp+iYKiwgCvCpWkDULTw+RJ2mX8j9L5C9e/eSnJxM796906V5/PgxDRs2xMoqNR7Dq1epz6WpqYlMJsPW1pbg4GAWLFhAnTp1qFatmjz8t7KnEZKTk/F58Ywy5SrIV57kl/x2gB9bhTTLpu75EnrrBOam6eOt5Ia03WyfPn2Kk5NToRcfAK9fPmX7vO+IDA1h7r7L6eJ/SJLEtHbViYuOYtofR1k7eTgV6zXJ10AJcOvkAf748Vum/XEU+zIVcr6gEOD3+B6X9m0n5HUAb31foKmpycR1/6BvaISRaaoPRsgrf45uWMatkwcwMrMgMTYGt2796fbNDPl7JUkSDy+f5dimFQR6PUTPwIg2Q8bQst/X+Xo/woPesHhwR0wsrOk8agp/zJlApQbN6DFxNsbmisdlyU0f9KlYQIQAUYBPSYAUJtHxMeqcioHci5DMWLlyJdOnT+f169cYGRkREhKCl5cXV65cwd3dnTJlyjBhwgQ2btyIJEno6emhp6dH5cqV2bdvH6ammc/xfzygxsZE8/b1K0qVKas0caEoyhQhaQIkOjo6UwtIboiLiyMgLvd1URhXtbwPfsesrql1Y1vKhaAAH6xLOPHtmr/lg25m5PQdTkpKonk1Fxq496fTiO+UWmZVEBUewi/Du6FvVIxv1+5Fz8Aw3TOfPnqQG5c8MDAyYsuqFRQvkbo0NiVFRlR0FHHRUThVqkbnkVMoVaUGunrKCen12tuLFaN6oamlTbVm7bhxbC8GRsaMW7kLW6fSOWdA7mKcVLVP308IAfIJo8heMIU9JkhhFh5pFAUrCGQcgP/66y8ePnxI69at6dChA25ubpw+fTrbPMLDwwkICODixYu8ffuW9evXU716dY4fP54h7cfi4+2rQPp2aE5YSDDN23Vk2YbtyGSyfA/giqJMM7CZmRkJCQnExeUvcBsU/imX3BD29hVzuv/nzKilrUNKchJn7z3H0ip3/gUf8/Ps79m9bRNL1m6laet2maYpjPWS9n563rjKl93as+rPvbg1a5ll+vMnj3HnxlV0dHXR1NTEwNCIBMtSBeYkGvb2FXN7NadF32E07zOM5SN7oqWty9StR9DQ0CDklR9WJZwyjXSbhqJ90KciQIQPiJJIG+gKkxApCqLjQ5TtCwJ58wfJiY/nYn/66Sd8fX1ZtmwZgPzf7DA3N8fc3JyqVasCULVqVQYNGsSBAwcoU6YMzs7OaGtrc8v7bYbt33f9sZGkpESmzF3E/36YRtemdQn096Vm3Qb0GzYC1xq1sbLJ326mSYmJ6Ogqvhogr9y9e5fo6Oh855Nb8VEYB9gPeef3EoBytRrw7PZVUpKT6NZ3YL7FB8C472cT4OfDlJFfcvDirUx3+v34PVBnfSUlJPDy6DYuvHmFrp4eEWGpZYl8H5Htdc3atKdZm/YZjhfUs1jYlaBk+So8uHiahl360qLf1+z63wz8ntzD7/E99v06j+KlyzF4zvIsp78U7YM+FYQAUTIfDnbqECNFTXR8TEGIkNyQlw6gbdu2rF27Vv65YcOGVKtWjQ4dOjBgwACFgmR16NCB8uXL06dPHyDVH0RP34D4uFicXcpRqowLUZGROJUuw8lD++jYvTf9h43EzNyC29eu0L5rd/bt2M6Eof0xKmZMRddqFDM2plvfQRzbvwd/n5fExcYik8mQyVJI+dfBceW2vzM44P44eRz//PUHpmbmnLr9BL2P5puV6QxXqlQpAFJSUvJkwfmUrB4fkvxv3JNnt69SuWFzXnpeY+iYb5WSt56+PlY2dsTHx/HT1G/5fdvuHK9RlyBpWsqCBdO/Y9fWDVSqWp3ExESMjIrh3rs/jVvkfmPHtDwLqvwDZv7Mqm8HMbdXM/kxY3NL7MukvmNvvJ+xaFAHarXuQv8Z/8vVkt9PETEFowCKTMHkhLr9G4oS6p6Kgdz5g0RHR3P69GkCAgLQ09MjJSWFK1eucPjwYeLj49m5cyfu7u455peYmMiLFy+IjIzE484jwkNDMTE148mDe7wO9MeomDFPH9zDoZQzi37fgKl5el8AmUzG60B//li7kvfhYVy9fImE+Fjio6NwrVGbEo5OABw/sFd+TY+BX3L76mU2/H1IbjUZPaAHl8+dxtmlHH8cPImJqVmWz64MfvzxRxYtWsSDBw9wcVF8Az9VWj32/74w1QrxzYwMJvScrGxR4aEc3bCctz7PqdGiA427D8zR4Vgmk3F+1yYsiefLMeMxzmX8j5wY2e8Lrl44S6Wq1fl25lxq1G2ATj62D1D2gP7h+7dm2WLWLl3MAY9bODor5k+hCAUlQhLiYvlnxU9cPbSLyg2bM+LnjQD4PLzDyvED5MHU+s/4mXodumeaR079z6cyBSMEiAIoQ4B8SE4D7KcsLhRF3YItr/4gH7Jx40bGjh3LoUOHaNmyZY6DThrKCjS26q+9rJ08LMNxPX19KrpWp8+Q4ZiYmjF70lh+27qTiq7VgdTBLy42BqNixhmuTUOZAmTIkCGcPXuWK1eu4OCQ/X4aoHqrhyRJzOvbkuAAXxYdu8OpF1lPGX38PZPJZPw2ti8v792UH5u27ViGgGOZkV9TfFZtFB0dzbYDJ5g4fID82KJVG2nvnvlgmFfyUueZPXNsbAzujevQoGlz5i5dqYyiySkoEeLz8A47F39Pm0GjqdW6i/z4/Yun2Pj9SHm0V9fGrRk0e1mGmCxCgAjkKFuACHKmqFhB0sissz937hwdO3ZEkiS0tLSwtLSkePHi1KpVC3d3d9q0aZPhGmVGOT3vE8qWH8Zx9/xxVv+5h9iYaLS0tKlcrUY6v5K8+nuoOiaBsoVHSnIy7/xeYO3gjI5e6rOEvg4g8NkjqjX7zznzgOcrkuNjSYwKx9Base9Q2ndt08wx3D13DABn11q4de1H7TbuOa5cyqv4yK5NgoKC+O677/jnn3/kU3AAbm5unDx5MkOZlPFd3LrmNzb9voyTtx6jp69PYkICO05fpoRLRXmdp5HdM2/8bSmrflnIvOWrad+1R77L9SGqmk4KfR2AsYUVL+/dYtfPMwh7EwjAmBXbKF/bDUgVuw8uncbU0oZ+bRqjncWmfJ+KABE+IIJCibp9QSB3/iAfdtZpg0Dz5s158uQJt27dIjQ0lNDQUAIDA7l8+TKbNm2idevWdO3alWrVqqX+Ul6/Be/nT7Gzd0BPXx/b4va41qhNleq1Mky3KFJ2DQ0NarXpwp2zR/hhykRat2mLuaUV92/fJNDflzs3rlG6XHkGfT2Ghs0Ut9CoGmWGUX/n95J9v87DzNaeZ7euEPLKD4Bv1+7BsUJVfuzZFIBfL3unu05b3xBt/YyRQ1MS4tDU1c+07u5fPMXdc8eo36kXd84epWyNetRt1y3HcudFfOQkBuPi4mjTpg3h4eEsXryYRo0a4eHhwZQpU/D09MxUEH2YZ17bIOr9eyLCw6hbxo6Js35i7bL/ERMdhZ6+PlVr1mH97oMKfe8GjRjLC68nTBsznLDQEPoPy3tE2I8pSJ+QNEJe+TOvb0tkKSl8u3YPc/Z4EPLKn/B3r3GpUU+eLj4mig3TRgBw1LUaSzdsw95B8Y0WixrCAqIAwgKiHoqaFeRjshsU9u3bx9KlS/H09JRvmGVjZ0/Neg0I9PdFkskI9PPl/b/RL8tXqkLH7r3p3n8wxRSMsJjWqfo89OTl6b3cuXmN6KgoDAwMsLV3oHLV6njeuMrj+3dZsfkvmrXpoNRnzC/53TjuY1KSk5nYrHymG9elzcdfP7IHh/KVc9x19YDnK955nuXhljkYWJWg7tSNaOsZpvt+/bVwGtcO70bfqBhm1sX55vc/cwxMVRDiA1JXav3888/cuHGDChVSV2DcuHGDpk2bUqVKFTw8PDD4dzdoSZI4duwYTZs2xcjIKENeuWmXsNAQmlf9z6/H0bkMHbv34tFdTzxOn8DUzJzylV1p2aEz9g6O1KzXIMvvtyRJLJ8/my2rf+XLMRMYPPIbzC0sFS5LThSkCPkwrotLzfpoaWrRccR3GBgZY+2Qfmnu6T/XcnDVYgCKGZswfNwkeg78Ml29fCoWECFAFEAIEPWhbl8QKLi5eIDY2FiOX7tHRFgo1evUS9fJSJKEv4839z1vcvHMSc4cO4S+vgHd+w+mQ7eelK/smu2vR0W2/ZYkCbcKjtRu4MbIidNITEhg55b1VKhSlY5f9MqwBDizZwsNDeXq1at4enpiYGBAnz59KFmypDzN/fv3cXBwwMIi99akDOceP+TMsUP0HDg03VJjSZLkdfHnyUvERkVgZGKOnqERlvYl0dDQ4OnNS6yaMAgAc1t7IkODKVm+CiOWbMTIxCz9fW5fwf/pAxzKVqJ8nUaZ1vPNE/vZNnciAHP2XsTC7r/vVkJcLBumjcDr1mX0DIvxw+5zGJtnP1jm9numqPgLCwujbNmyjBo1innz5gGpcWjc3Nzw8Untw4yMjDh9+jSXLl3i559/JigoiBMnTtCkSZNs834WlkBYaAi6uroZhMP5k8cY/2Vf+eej1+5RvERJubXF8/oVbl29jOeNq1y/eB6ZTEYxYxPce/Xj21k/ZeoUK0kSm1etYOXP8zEwMGDOkt9o1TFnB29FKSgRkpSQwKQWFdE3LIZ+MWMigt5gUdyBsDeBVHFrydf/Wy9PK0kSZ/5aJxchAIZGxfhu9ny+6DcIDQ0NIUA+J4QAUR+FQYBAwYmQ3PyafPfmNTs2r+Pg7r8IDQ7C2MQEx9IuWFhYUa5SFSytrdHR1UNfXx8rWzve6VljbmtPWe1oTh85SFhIMI1btqFWfTf5gBr09g2ta6X/tW9jZ8/7iDBMTM2Yu2wVDZu24PzJY2xeuZz4+DhadejC0LHfkpiYQFhIMB3qV5Nfq6enR+nSpWnevDlhYWGYmJjg6emJra0te/bskadLSEhg1apVXLhwAZlMRuPGjalTpw42lepkOe8N0KCcA7Ex0ZRwdMLJuQzhYaEE+vkQFRlJ87YdefLgHm9fB6a7pnbbrtRo3oH1076mw/AJtOw3Ah09PZKTEtHQ0CAlOZlHV89hXaIUxUuXQ0tbmxVj+vDy7g0ga6dRSZK4cmAHugaG1GnbVX48bbBJY8KavyntWivbts2vv1F2LFmyhDlz5nDnzh1Kly7N3bt36dSpExERERnS6uvrEx8fD6RuI5CTaAwMDKRs2bIAOJYqTTETEzp+0YtAf18unDzO60B/XCpUYty0H7IMegaQmJDAm1eBHNz9F5tWLqP/8FF8N3t+lulDQ4L54dvR3Lt9g3P3XuRrBU9mKFuIpCQn823TchQvU576HXpwYOUiZLL//HC6fTOD5n3SO4w/vnaB0+t/5sXTx/JjrTp0Ye6ylTQol+qsfebMGd6/f0/Lli0xMzMTAuRTRAgQ9VEYpmEg/wIkDWXMqyfEx3P7+hWe3L9LgJ8PIUFBPH10n6j370lMiJdP6UDqFudJCfHo6xtgbGZG8Ns3lK9UhZ6DhtG2czcC/X3p276ZPL1LhUps3X+c2JgYWteqiJWNLT/+8jtjB/X6N7aICTcue9C9/xDOHjtETEw0iQn/PYe5pRXhoSFYW1sTHBwMgLa2Njt37mTHjh20bdsWLy8vNm/eTFRUFM2aNSM8PFw+FeVYqjR9vvyKmvUacOfmdbyfeVGuYmU69ejNt8MHcs3jXK7rq2qTNnQYNoFFgzvQauAoNP8VXwlxsURHhPH0xkVi3qdOdTlVqs6k9f8Q9vYVl/b9iZGJGS36fZUr/5gn1z1YPXEINo6lGbV0C5bFs1/Zo4wVV1mhF3iXFgPGcP66J5AaXybNWiRJEhqA58E/SEhMJC4+gZqdB/D06VPat2+Pubk5e/fupXz5rFfspKSkMHLkSLZv355lmk17j1CrvpvCZd665jeW/jSLncfPy1dmZcbDu57079iCLfuPU6NOfYXzB7h8/gxLfpzBqu1/U7xEyUzTKFuEvPF+hqGxKabWtlza/ye7f56V7nyfaQup3cY9XXj4lORkQq4cZvUvCwgLCQFg8Mhv2LL6V6KjozE2Tl2p9v3337Nw4UIhQD5FchIgn0LkusIcnOlTsYKoiqTERILeveHF0yf4+7ykeAkHGjRtgaFRMa5dPM9fG9dw6ewpAOxKOPA6wB/7ko606dSVHZvXoaGhia6uLlGR7xkwfBRxcXEc27+HS0/82LxqBb8t/glJJqN1R3fKV3bl8vnT3LlxLV0Zpv60GBtbOy6ePcX+ndsZOnQomzZtkp83NjbGw8MDTRtnIHXjvMf377Jj01qO7d+DJElo6+hgbmlF8Ns32T6vlY0tX/QbxLrlP2NR3IHydRpRzNQcKwcnkCQ89m7j1fPUX5EGxiYYFEt9h/X0DdEvZoy5bXHehwTx8u4NmnQfRI+Jc/JV/zKZjLio99nu2ZJGQYsPgFsPnnDz/hOsLEyJiIzG1NiIymVLc/vhU2wszWnXpEGGa1/6BeI+cgqBb4M4fPQYderUyfZe/v7+JCUlERwczLp169ixY4f83Mptf9MoF0HDkhIT6duhGbExMew8fiHTODSQajVpXNkZp9Jl+G3LzkwjumbFV726cOOyB+t2HaBeo6ZZpiuofvHIuqWc2Po7JpY2RIYGyY/XaduVgT8sTZe2aSkLrlw4y9hBvUhJTmbIqHFsXrUCAGdnZ3x9feVphQD5BMlKgNx//V6NpVI96hIpQoAon+B3b7lw6jgP795m345tAGzcc5gHd26zfP5sLK1tCQ1+R123Jty47AHAj0t/Z/bEsRQzNqFe46YsXZ96nSRJjBnYk8vnst7/pkX7Tpw9dpguvfpxcPdfABgYGlHcoSTJiYm4VKxE647uyGQy1i5djL+vN/WbNOdNYAB+3i/k+bTu6E7xEiXp/eVXxMVE8/ThfRo2a4mltQ3/XL2PiWXqNBRAzPtwlgzvhp6hIW0GjqZUlRqY29rLf/2/83vJ9nnf4f/kProGhnQZNYXGX+QcJExZFJT4+HjH4bwSGRVD+2ET8PLx5/HxHZhWa6HwtStWrGDatGnY2tqye/du6tatmyuL36sAP3q2aoR7735Mnbs4y3T3bt1g7OBedOjWk+/n/axw/ot/mMpfG9dmuZ+MJEkkxMejq6fHRf8IhfNVlPB3r5n9RSP5Z00tLWT/Lo2ef/hmOn+htO+JJEm8Dw9HV1+P+i72AIwbN47ffvtNnlYIkE8QIUCyp6CFSWGZhoFPS4SkERocxPMnj6nXuCkP73ryy9yZjJ8+B+9nTynuUJJR/b5Il97Kxg4DQwM6de/NwzueBPr74vPiGQDFSzhQyqUc8XFxGJuYoKenT7/hI6lWqy4+L57h7FKOfTu2cfv6FcqULU9I8Du0tXW4f/sm926n+lzo6etTtmJl3r4KpGbdBvQaPAxLaxssLK0xy8In4cPvoCRJ3Di6l0NrfyYlOZkJq/+W70ga+iYQzzOHOb9rE1FhIVjal6TL6KlUqNNIbhkpaArS30NZ4iONwDdBNO47AgM9PfauXET50o7EJySiVTbrKY8rV66wdOlSjhw5goeHR6bWE0XEyIZff2H10kX0GzqCum5NaNwyY9wcgEWzpnD0n78ZPm4Sj+7dISwkmIk//ETFKtUyTQ+pVpYDu/+ifdfumQbcmzVhFAf/TrXi/LL+D3QqNcqQJr+kJCfj8+A20RFhlKlel8dXzxP2NpA2g8agpa2NTCbjjx8nEPjsMbuPnJKv+Dm2fw/Txgxnzpw5NGnShBYtWqCnp0dCQoIQIJ8iQoDkTFETIUKA5I6UlBRCgt5hbGLClQtn+W3RT7wK8KNm3QbYl3SkZfvOlClfgeIlSmZrQUhKSiI+LpZAf98MA8SbVwHoGxhiaGiUYf+ZnLjgG4bPwzvcOrGf+xdP8T74LbVad6bLqKkYmZrjsfcPbp3Yz+uXXmhoatKwSx8q1G1MhbqNM0ShLCgKapULKF94fMgzH3+6jpyCd8BrjAz1iYyOpXrFVMfTkKg4goODqV27NoMGDWLXrl2cOnUKFxcXJk2axJAhQxS7RyaCJCkxkYUzp7D3zy2Uq1iZv09fzvTaVwF+jOz7BW9eBVCxSjWePrpPuy5f8NPy1UDqVM2iWVMoW7EyXXr1w8ioWI7l+WfHH/z43TgAtLS08PQPVbkFOC4mihmd6pCcmMiRK3fxefGM6Ogo3gT4s2LhjwBcvHiRb775hoiICHx9fYUAyQseHh78/PPP3L59mzdv3rBv3z66du0qPy9JEj/++CPr1q0jPDycevXqsXLlSipXrixP4+XlxdChQ/Hz8+Prr7/mhx9+kJ+7c+cOs2bN4saNG0RGRmJnZyfPw8oq+3X5IARIbiiol1RYQQofMpksx4ieke8jWDbvBy6cOk50VCQJ8fFoaWmRkpLC+OlzGPj1mHyvYDjz/C27l8zi2uG/MbG0oXabLlRp1AqX6nXxe3yPLbPH8z7kLVWbtKFG8w44VqyKua19vu6ZGwoqtkcaBSk+0oiNi+d/67cTFhGJi5MD971eoK2lhbmpMRamJuw+eobbD59SpkwZfvrpJ9zdc472qigDBw7Ew8ODv//+m7p162Y4/6F4kclk1C1jx6CvxzLu+9Qx4MZlD77q9V849MrVajB45Djadsk+KNyje3f4e9smqtepR9feqWHrVS1CEuJikaUkU8UYOjasDqTGBLKztiQ5OZktW7YgSRLt2rXD29tbCJC8cOzYMS5fvkzNmjXp3r17BgGyePFi5s+fz5YtWyhXrhzz5s3Dw8MDLy8vuRdwq1at6NGjB3Xq1GHkyJEsX74cNzc3goKCqFixIp07d2b8+PGYmZnh4+PDwYMHmThxokI7lQoBkjuKiggRAqTg2b5+FT/PmY577/6Ur+yKoZERkRERPLxzm5OH91O7QSNGfDuFum7Zx5vIivM+oWyaMZqHV87Rc+KP1O/UUz7w+Ty8w69j+uBQrjIDf/gFm5LOyny0HCmIcOofkhvhEXvjVJ7KYlhXMedRmUzGc98ASpUoDmUyioT88ObNG3r27Cn/ITlt2rRs0zdv3pwbN25QvXp1bG1tqVSpEteuXePy5fQWlOsv3qD/b/C13KAOX7jQ1wH82LMpbbt8QUx0FOZG+nh6ehIeHs6KFSto3bo1pUqVEgIkv2hoaKQTIJIkYW9vz4QJE5g6dSqQGkPA1taWxYsXM2JEatja2rVrs3LlSmrWrEmPHj0YMWIEHTp0YP/+/fTs2ZO4uLhs4wtkR34FSEFFi1TmviHKpiBe0sIiQECIEEXx9/GmT7umxERHYWltg4mpGWOnzKBVR3fWr1jCtnUriXwfwdIN22jRrlOu8//z5CX+92UnBs9Znm7Tr3d+L1k+ujfFTM2ZsuWw3DFVFRRU9NwPUUR85FV0ZIaiQuRjEhyqK+X+ycnJLFq0iPnz57Np0yb69u2bZdrY2Fh27NjB5cuX5atxFixYgJaWFjNmzCA5ORmAI1fvUrxESbQ+2t1YEdQhQvb99A1XL5yjQZNmlLC2wNzcnCdPnnD69GlOnz5Nq1athADJLx8LEG9vb8qUKYOnpyc1atSQp3N3d8fMzIytW7cCcPToUfr06UNcXBydOnViz549aGlpce3aNRo0aMDu3bvp0aOHQh7uCQkJJHwQ2yAyMpKSJUtmK0BUvTGXIhQGgaLsF7WwiBAhQBQn+N1brl+6gL/PSx7fu8vFsyep69aEFVt2oK9vwI+Tx7F/53Y27ztGzboZl4RmxQXfME7+sYrDa5ew8JinPJqp3+N7rJv6FcVMLRi3codCy2GVQUFGzE1DUauHMsXHx3woRhITk4iMjsHKwizba5QlRPr06cOFCxdYtmwZDRs2xMDAAGtr60zThoaGyndXPn/+PHXr1kVDQ4NGzVtx+1qqNcTYxIQDHrewtLbJdVlULULq2OixYcUvPH10H62URO7du8f796lj0I4dO+jbt2+REyCFfjO6t2/fAmBra5vuuK2tLX5+fvLPHTp0IDg4mMjIyHRfyPr16zN9+nT69evHyJEjqVu3Li1atGDQoEEZ8kxj4cKF/PjjjzmWrTCKjg9JK586hYiyN3pKEwz5FSL5sX4Icoe1rR2duvcGUi2a508eZdro4Xw7tD+tOrpj9q93/+N7d3IlQF4e+YMj634BIPzmSV7HxHDh1HGePLxH5ao1WLpxO5ZWmQ9OhQ1l9iUFKT7S8k8TIW2GjMPj5l0mDu3Lku/HZXmNXuBdpYiQVatWMWjQIL788kv5sapVq6KpqUmJEiXo1q0btra2FC9enAoVKrBx40bGjh1Ls2bNqFSpEhUrVqSEo5NcgERFRmKQyX43hZGbQQlyv5aq9qZER0dz/fp1rK2tKVWqlHoLl0cKvQXkypUruLm58fr1a4oXLy5P99VXXxEQEMDx48cVyjc0NJSzZ89y7do19u/fT1hYGB4eHri6umZIq6gFJC1kcVFBnUKksPiFKEt4ZPZr9+2rQK5fukA79+65XsXxuXH53GkW/zANP+8XGBga0apDZ2YuWpZuTv7dm9ecPX6Y5m06YFciYzTRaiXM0n3W1tGhVYcuVHStRu8hwzFQ0eqW/KJsn4+CFiBpGNZtza4jpxk4aQ5jB/Vk6fTx2aZXlhVEkiRevXqFp6cnUVFRnDhxAj09Pe7cucOjR4/k6fT19bG3t2fixIk4ODik8yssW7Eynbr3RlNTk0Ejxua6DOoM3Ni0lIXYC6agyOsUTG5ITEykRo0a1K5dW6Hrs2rcoiZAPkQdYkTdS3ULUnwAfDt8AGePHeaX9X/QqkOXTNMI0hMWGoK+gQGGhul/hQb6+9KxQXUAho2dKP/ll8ahv3cwc8Io6ro1oXOPPoSHhdK6k3uR2rq8MDmb5pVXNhWIT0jA2cEeA329HP0plCVCsiI2Npbg4GD8/f25d+8e165dY+/evQwePJiAoFDOHjsMQJ2Gjfn9j91Fxgn1Y75pmN6huqgKkEI/BePs7IydnR2nTp2SC5DExEQuXLjA4sVZR8jLDl1dXcqUKUNMTIwyi1qkUMf0jLKnYz4mq+kZVU23jJ82G+cy5bIN7SxIj4Vl5svgTUzMqFytBsWMTeg9ZLj8+H3PW0wd9SWvAwOAVP+SLr36qaSsyqAgA4upWnwAzJ4zn52X72FkqI+pcTHuHtyWrT+IsqZissLQ0BAnJyecnJxo3LgxY8eOpWrVqqz47XfCQoIpZmxCRddqPL5/F5kkyznDjygM4uNTolAIkOjoaF68+C/cso+PD3fv3sXCwgJHR0cmTJjAggULKFu2LGXLlmXBggUYGhrSr1/OHc/hw4fZuXMnffr0oVy5ckiSxKFDhzh69CibN28uyMcqEqhaiBS0CIGCFRzZORqWcimb4Ze6IG+YmJnx19GMG895nDouFx/1Gzdj8apNGdKoG0VERlhYGIsXL2b06NE4OTllmiYv8T0CQ99z2/sV7nUq5fravNChZnkO3HxETGw8MbHxHDjjwbCe2Vv/ClqEfEzX4eNxHzaOqPfvMTI2RktLS74hn0C9FAoBcuvWLZo3by7/PHHiRAAGDx7Mli1bmDJlCnFxcYwePVoeiOzkyZPyGCDZUalSJQwNDZk0aRIBAQHo6elRtmxZNmzYwMCBAwvsmYoaqhQiqhAhBYFY+aJ++g0fiX1JR2rUrY+zSzml5p1fR1B/f3+2bt3KN998g5mZGUlJSfz9999UrFiRGjVq8OzZM3bu3EmVKlX4559/2Lt3LyYmJsyYMSNdPnkRHmnWj2qTVpCQlEzEH7PRzsPy0tzi9ToYfR0dPH4ayaJ95xk3dyndWjfFwsw02+tUJULS+jMNDQ1MzMzkx/MiPopin1XYKXQ+IIWRT9EHJDtUZQ0pai+0ECCfDspewRYdHU2HDh24efMmdnZ2VKxYkfv37xMaGgrAoUOHGDRoEOHh4emu69ixIy1btqRv376YmZnlS3z8efEOI9bsSy3Pn3Pz9Bz+p26m++zYOvtdcMes388dn9dcWTCaV6HvKT/uF/5c+iN9O2e+b8uHqFKA5Affly8YP/prKjdoRvO+w9HR1WPn4ulcPbSLrxatw7VxKyWUVHGSkxL5tmn5dMeKqg+IcmLlCj4pylnoqWSJcVEa0ItSWQXpSfs+f/inbJYuXcrNm6mD99u3b4mLi8Pd3Z0DBw4AMH78eH799dcM1x05coSJEycyaNCgPIdUlySJgb/ukouPR8u/zXUe/qduZhAfacezw+OxD/XLpTr+lrA0xdrEiCdXLih0z4IOIa+sH1KSJMP3oSdH1i/luxaV8Dx9mKuHdgEQHOirlHsoyjs/byY2q4C1tTXXrl1T6b0LgkIxBSMonJSz0Ctwa0hRmI4R4qNooqo4PXFxcSxcuFD+WVNTk+nTp1OlShVGjhwJwKRJk+jRowc1a9bkzJkzGBkZMWzYMAD++usv+vXrRy13P7q3a07V8i6UsLWmeqVyOU4V3D+4k3u+r9l3PXX56dUFo3CyVjzwWk4CIy1NZpYQr9fB+ASF09LVRX5MR0uLpJSUdLFCsqOgpmKU2W/5a1vRsv/XnPlzHQDXj+1l2YVnyGQpKo2wC2Dw7869ISEhNGjQgK5du7J3716VlkGZiCkYBVDWFEx+Fb8qHbc+pqCFSGEWIUKAFC1UHSAwIiIiXYwiDQ0NJElCX18fY2Nj1q5dS/v27TNc17RpUyqUsGTL/35g857DHPe4yj8nL5CSkgJA1QouTB81mMa1q3PzwRNqVS5PCbvUiJ0JCYmMn7eMdTv306lWBQY1rckdn1eULW5NL7eqOZZZEeHxMR+LkFZz1nPteQAhm2ehr5u6oWCH+Zt54PeWXm5VWb70f+jp6SqUtzL7NmX2VR/2S5IkER0RSjEzS7U6sKYkJ1M64gnu7u4ABAUFoaenVySnYIQAUYC8CpCCNDGqQ4yowjeksAkRIT6KDsoQHnl9Z8PfR6Kro0NUTCwaGnD26m2OXbjK66AQXJwcWPPTVMItUlfhPX/+nKtXrzJx4kRKFrfFz2O/PJ/IqBiiY2N59NyHBau3cOHGHfk5WysLFn43mjfBIazavpdX74IBaFSxFBbFDDl48zE6WlrsmzqQhuUd0c1k76u8CI+PcWxdh0tPfGk3L3UF0of+JgEhETSauYbQqFie/fYdLu26K5SnsvozZfdRha0/SuObhs5ERUWRmJiIpaVlkfUBEQJEARQVIKrYFjszVC1GPhdriBAfRYP8Cg9lv7e+gW84e/UWw6cvkB+zsTQnIjKapORkPuxyJ3zZJ8sIopIk4eXtx72nLyhZ3Ib5q7Zw7MJVNDU1GdysJtsv3CHpX2sJQBlbC5JlMvyCI3CvU4k/J/SRn1OG8PiQyfef4+nzimMzh+JiZ5nu3PhNh9h56R6PV0zE0thQ4Y3s8tuPfS7iA0QgMsG/qEt0ZFUGVYiRgvYNKQp+IQL1kx/hUVDv7Uu/QCq07SOfRnl6chdXPB8Q+DYIk2JGaGpqYGtlwdvgMNo2rkc556wjt2poaFChTCkqlCkFwJENSwkODScxKQlz/3vM7N4c3+Bwui7aRlR8At0buPJFvcrU/34V7yKiAOULjzQuPHiBa2l7SlpmXG7bx60qOy7dZeyGA+z4tq9K/EE+J/HxKSEEiCBPFHTckDTrg6o7AmH1KBrkVXwU5A+GR8+9ce3QHwBdHR3WzptKOWfHbEVGbrG2THUwjfUHWzNjbM2MubF4DC/ehuJiZ0m7eZtwsbPkz29Tt6t3bF2nQERIV5eSbH/iw8J955nTK/0y1AblnVg6uBMj1+3j4hMfGld0ziIX5SDER9FFCJB8kqbYC4MlRB1+IaqwhkDBdQpCcOSNzASAquLHFEbx8S4kjNE//Iy1hTnzJo5gaI9OOe6LoixKWplR0sqMyX8cxS84gicrJmJrWqzA7heblMzDkAgAXodFZpqml5srU7cf45inV4ELEGUixIdqEQJESahTiKhzdQyoJopqdkJB0U5DiI2cyc+0xofXFtR3IS/lU8U7+dPKTVy9+4CDa3+mXZMGBX4/w7qt5QHIouMTOHXvBf7BEQCYGaXfYE3ZVpB7weHcDQ5n05gedKhZPtM0utradK5dkfOPvJV238woqBUvAtUgBIiSSXCorlIRom7x8SHq2OAOhLBQFspcvqpMMVIYfT0+JikpGQDXcmVUcr80jnl6MWr9fkIiUzfW7F6/CsYGGetLmSLEVC91yW1pWwuK6WfdNpVL2rDv+iMkSVLYD0RdCPGhHoQAKQBUYQ0pTMLjY9QlRAR5pyBjZ+RGjCizHHl9/7LbVfbjQVSSJLYfOM7VOw9ITk4hIipaHqujoDGs25o1i7ZS3MyYYzO+5NbLwGw3oVOWCLkfHIGmBmg98oUyDlmmq+RgS0xCIvf93lKtVPEs06kbIT7UhxAgBUhBCZHCLD4+RAiRooEqA3ep6l65eefeBIXw3DeA6invctzA7WNxcuT2UwYv/Qu3Ck78Pak/lcuWzktx84ymhgZmRvr8evQyEzs35qc9ZyllbcaQ5rUx0lcsCFhuOewdSOMSNlhmYmn5ECsTI4B0S4ULG0J8qBchQFSAsoRIUREeH6OKkO4CQRo5vWfRMbHExMVja2XB+6hoqnToR/j7KBqUd2Rq16a0dHVRONLlUc+nuNhZcmJWalh1VU81VHSwYc3J61x84ovHYx/8/vUDufnyFVvG9syQPr9WkGSZjPshEUyunbWlJY3o+NR3vqBCTeW3TxHiQ/0IAaJCiqqAUAbCGlI4UXXY8oJGEZHfY+x0Tl66DkCt0iUIfx/F163rcvGJL10Xb6Nd9XKsHfkFlsaG2eZz7uFLtp735Dv3JumOp1lJVCFEXsv0KG1jQaOKpdhw5iYudpa8eBtK66ouWV6THxGipaGBsY4Oz8Ojckxbx8UBB0tTtpy7TR2Xknm6X0EhxEfhQOyGK1ApBbkjqSop6N1VVUFRLXdWZCc+UlJS+H7JKk5dusGb4BD58dver+hcuyJLBnXg5uKx7JrYjxsvAmg0YzVvwjNfYgrgGxROn6U7aFXVhYmdGmWaJjtfEmVw4uI19p/2oH+T6jjbpsYHefE2FIB5e85me21mm8spgoaGBt3LOXLS702OaXW1tendsCqHbz9FJpOxf91Khn0/nyFT5pKQkJjpNapwGhbio/AgLCACtaGKZZt5JbeDc1Gz8Hwu4sPL248te4/gVKI4i9duY/HabQAMb1WHOb1aERoVS2lbC/mUS8daFbg8fxQt5qxnxJp97JncP9M9Vbacv01MQiJzerXCxFA/y3IV1JRM4Jsg+k74gdZudflu5kzuHdrF+areBEfGcNf3Db0bVVP6PdMIio3HIQfrUBrta5bnl0MXaTRzDff93uJgZ0Pg2yBsrSxZPGVMnsuQ1/dMiI/ChdgLRgGUtRuuQHFUMZAX5CBcmIXIpyQ+cvrF3Lz/6HQbuqVxcNogWrhmPU1x5v4Leiz5k5ql7dk+vjfFzdPvr/HA7y0Npq8C4I9xvfiiXpUcy6osIZKUlEzrwd/wwj+Q+4e3Y2FmmmdrS16mYkadvk6yTGJ9m/oKWVJ2XrrH7iv36VKnEqOmTGX2ivXMW7mZgV3b8fvs7zAuZpQuvSJT1Xl5vz4l8fGp7AUjBIgCCAGifvIzoKtzwC1sQuRzEh8AM35ZzcI1fzDl64FMqFOS0w9eoKOlRefaFXO89sbzAFrMWY++jjZG+rroaGnRoLwjbhVKoautxdNXQaw6fg2AV+unY5qNJSQNZYiQXUdO03fCLM5tX0nTejXlx1UlQn6748XOp75c6tMGpzZ1c3WtYd3WSJLEtv3H+ObHX7C1smDDguk0qVtDnqYgBMinJD7g0xEgYgpGUCQoqgNnYZqaKap1mBmKiA+fgNecuXILgM07/2Ga2ySFLBVp2Pwbzjw+KZnGFUtR1ak4l5/68t3WI+nS1XC2R7E1M8qZkild0h6ATXsO4eLkkO+4I7l1Si1vbkx4QiIRCYk45eF+GhoaDOrWgXrVKtNj7HTaD/uWkJvHMdDPWcCBEB+fEsIJVSAQfFLcf/qCVdv3UKZFd27cfwxATEIiySmyXOVz2/uV/P//TBnIj31ac3rOV1R0SB3wm1VOjfmx49u+2fqBKJs6VSuxfsH3HL1wlXKte7Hx74NIkpQvYZMbp9SoxGQ0QOGlyllRvrQTw3t1IS4+AW2t/34L5yQucyukRaTkwosQIAKBCigM1ofCYIVRFtmZ6TsOn8jYH3+Rf549bjgPlk7AUC/vgbk+HGyPzxzKhbkj2DdlIDcXj8Uhky3pC5phPbvw8sxe+nRqzVfTF9Kk70iiomPQqdE8z3nmJEIcW9fBsXUdrsTF0aC8E1U7ueX5XmmUckiNkBoa8T5X1wkR8mkgpmAEAsEnw7U7D3n1LhhtbW3GDOjOii27cKvpirNb3Vz7SHSuXYFb//sGJ2uzdMctjQ3lMULSrCGKoswVMSbGRmxcOIO+nVrT6avvcOv9Ne9CwilmaICFuQlbhrbD2SZ3A29OIiQ6PoGzD735sXer/BRdjkyWapWKi08vjvUC7+boC5LbAIcFvbO2IPcIC4hAIPhkuPngCQAD3Nsyc/SXyJ5fpZVb7hwl09DV1qZCCWsMdHWUWUSl08qtLpsWzcD/zTuCw8IJDgvn9oOnrPUMVPoS4NsvX5GQlJztCqLc0LJBHXR0tDnucS1P1+fFsti0lIWwiBQShAARCASfDG0b1wNgy94jPH7hk+6cundjLcj79+vSlqBrx2jbuB7RsXEAnLx4Hc9HXhjWba20e3u9DkFLU5Py9lZKyc/E2IiKZUpx/vrtDOcUDUqW1+lNIUTUjxAg+UBVW30LPg2EH4jy8Ql4zcBJczhx8RqXbt3D//Vb+blGtQsuGFduUYX40dXV4ejGZdw/sp3dv85HW1ub2l2H0HLgWI6cu6yUMsQmJKKZT+fTj+nZviVHzl/JVx75ebeEEFEfQoDkEyFCBALVcujQIXx9fQHYfuA4fx48Qfuh39Kk70jaDBkvTzdkytwM16rbClLQaGhoUKVcGXq0b8Gdg3/w59IfSUhMxH3kFA6fvZSpNUQmk3HxiQ87Lt7l0hPfbPM/cfcZLV3LoKWpvKEjMSmJYoYGmZ7LTf+aX4EvRIjqEQJEIBAUGc6cOUOvXr348ssvSUpKZtHaPwDo1aEl6xd8T492/60Cye8yUWWhLNGT4FBd/qcIOjra9O3cBo8da3Bv2Zhe42aw68jpDEt2v/vjKO3nbearNf/Qbt4mouIyt5KFRMVw7VkAraqVVcbjyDEpZkR4ZBQ+Aa/znZcyRIgQIqpDCBCBQFAkCAsLY+bMmQBcu3aNwLdBdGvdFIDOLRozrGcXdv+2ANnzq8ieX2XL/37INJ+iaAX5WHTkRoxoamry57IfcW/VhL4TZlGjyyC+mrGQ9Y/DCHFwZd2pGwAY6emycXR3iulnvlx58b4LaGlq0L2+4sHcFGFEn66UsLXmi9HTiI3LGF06t1ZmZUx1pgkRIUYKFhGKXQGyCnMrvUj13Fb0F4lAUBh8MAqDL0puOX78OOPGjSMyMpJdu3bRv39/WtWvwf+mjsWpSVcA7h3ehmt5xVZnFPROtWnkV+zkpm/JaaCWJIljF66y8/Ap7j19zpOXviQnp1CrSnk6V3agRRUXKpSwzjReyrmHL+m8cCv/G9iB0e3q5/Ip/iOr+njg9YLa3b5EV0eHSzvXUq1ieitLXvrYgnrX1LGM92MhVNU+fewZEYr9M0aRNesCAeQ+dkFB8CwsoUiJkNOnT9O9e3fc3NxYu3Ytzs7OLFmyhC+//BLvgP+ilZoXso5XleLj4/SZiRENDQ06NGtIh2YNAXgXEsafB0/w3cJfsTI3Y86utVkKjCUHPahXtiQjc7n3i6K4lnfhyPpfaDNkPPe9XmQQIHnpYwvqXcvMKqJMUfI5WV2EBUQBcrKAgLCCfAqkddoF3ZbqFiBQtKwg1atXx87OjiNHjqClpQWk/pqvX7Mq95++AGDxlDF8N7x/rvw+CtoKklcBouzvX3aWkZSUFMq16gVIuJYvw6ofp2Bva52ubt5FRFHum19YMrgDX7XKnwDJqU6a9h1FQmIiV/dsyNCWea2XwvC+KZtPxQIifEAEnz16gXfTddIffxZkT0HWV1xcHF5eXgwcOFAuPiD11/xvP0wCwNHejslfDSg0TqdQeMRHTnlqaWmxfekcSjnYc/DMJbmjqn7tlujWbM7ZBy9oN28TRno6Svf9yIyJw/py4/5jnr70y3Aur9+xoiS2PzeEAFESYsAqmoh2K9zo6elhZmaGn1/GAalxner8/dsCNi6cnqe8C8oZNS/55mZ1S17ILv8GNVw5s+13zmz7HZlMou+EWTg3+wLruu3psugPLG2Lc33/ViyKGRZY+dJo/W/U2sue9zM9nx8R8uGfoHAgpmAUQJEpmDTEVEzRIqcOrSDas7CYhItKR+zu7k5QUBCXL19GM5P4E8oQkcqajsmr+FA12dXZheueHDhzEQtTE1o0qEX96lUy1Htu6is3deL/+i2lmnbj0LoldGye82Z3yqq7wvJOKsqnMgUjnFCVjHBIFRQVioozao0aNVi8eDHbtm1j8ODBGc4nOFTPtwgxrNs63yKkqIiPD++bWb01rVeTpvVqZnt92rNmVWd5tS7defwMgNIlSyiU/sPy56cuP34PipogKaoIAVIAqMqZUVDwCEGpXu7du8fWrVspUaIEjRo1yjKdskSIKikM36v81puy6+zpS18AKrfvy5MTOylf2knha5XZ72YlzIUwUS7CB6QAEf4FgsJOYe5Q582bR8OGDbGzs+Py5cuUKVMm2/QF7UehTApTOQtTvXVv21w+3bN5z+E85ZHmFF0Q/e/HviTCpyR/CAFSwAgRUngRbZNKYRQhDx48YMGCBYwfP55z585ha2ur8LWFZTDNjPwO9s/CEtL9KZPCIERcSpVk96/zgdRQ8vmlIMXIhwhhkjfEFIwKEGb8oo1oP9Uze/ZsXFxcmDNnDrq6mYcGz47sfBzURX6/Q5kJDkVESG4HQnXXXbsmqYHQ7G2slZpvZs9T0O91dnVfGIW/qhECREWIQUyQXzKLtqisqImFySH1zp07HDt2jA0bNuRJfHyIugfTj8uRV/IzWKVdW1SEiKGBPm0b12P2ivUUt7Gkc4tG6WLAKJOPn02VfXRe/ExCg4O4dPYUVb8dXVDFUiliGa4C5GYZbk4IEVJ4yE3Hqsx2y8tgkptQz/kRJeoWITExMTRt2hRJkrh+/Tra2sr9jaQOIaJO8ZEZeW1jVdZdaPh7+k6YxekrN7EyN6NBjSqsnDMZQwM9LMxMc85AiRSWPvtZWAKzJ41l/87tGcaioroMV+0+IAsXLqROnToYGxtjY2ND165d8fLySpdGkiTmzJmDvb09BgYGNGvWjEePHqVL4+XlhZubGw4ODsydOzfduTt37tCpUydsbGzQ19enVKlS9O7dm5CQkAJ/vo9R9y8xQd4oSu12wTdM/leUCAoK4osvvsDX15etW7cqXXyAav0clOXvoWzymq8qB2JLc1NObv2Vq39vYETfrly7+wjHJu5Y1WnHXwdPqKwckN6PRJ39QDkLPTq3bo6NjQ3FihVTWzmUidotIO3ataNPnz7UqVOH5ORkZsyYwYMHD3j8+DFGRkYALF68mPnz57NlyxbKlSvHvHnz8PDwwMvLC2NjYwBatWpFjx49qFOnDiNHjmT58uW4ubkRFBRExYoV6dy5M+PHj8fMzAwfHx8OHjzIxIkTcXR0zLGMyrSApFFYVPXnSl46EnUGPcqrmMiLNUTVVpCAgAC2bt3K6tWr0dLSYseOHbi55RyEShkU1IBS2KweOZHbNlf1QPzs2B7OP/Rm6/nbeAeFcXzmUMoWt0qXRtXLqD9E1f25vr5+us9F1QKidgHyMcHBwdjY2HDhwgWaNGmCJEnY29szYcIEpk6dCkBCQgK2trYsXryYESNGAFC7dm1WrlxJzZo16dGjByNGjKBDhw7s37+fnj17EhcXl+dfVAUhQECIEHWiLgGiSvGRRmESITKZjEePHuHv78/Lly85ffo0Z86cwcDAgP79+zN9+vRcrXhRFsocUIua+PiQwiREMgty9joskvbzNuEdFM7AJjUY0rwWdcuWVDhPVYmUgu7bhQApIF68eEHZsmV58OABVapUwdvbmzJlyuDp6UmNGjXk6dzd3TEzM2Pr1q0AHD16lD59+hAXF0enTp3Ys2cPWlpaXLt2jQYNGrB792569Oih0IZVCQkJJCT81wlERkZSsmRJAgIC0guQlzfz/bwJJVzznYcg9+i9epCn6/LbXi/Ccz+4XPIPz9c9ARo5muf6Ghfz/IsQX19fRo8ezfPnz7G0tCQpKYnAwEAAdHR0qFevHl26dKF79+6Fwqyc1+9FGur4fhQEuWn7/NbZh8TePptjmojYeFYeu8LfVx8S9D6agU1r0rFmORpXdM71hoSGtVrktagKUxB9fGYCpGTJkkVOgCAVImQymdS5c2epUaNG8mOXL1+WAOnVq1fp0n711VdSmzZt0h2Lj4+XgoKCMuQ7ffp0SVtbW7KwsJDatWsn/e9//5Pevn2bZTlmz54tAen+ihUrluGY+BN/4k/8iT/xVxj+7OzspLi4uHyOwqqlUFlAxowZw5EjR7h06RIODg4AXLlyBTc3N16/fk3x4sXlab/66isCAgI4fvy4QnmHhoZy9uxZrl27xv79+wkLC8PDwwNX14zq9GMLCIAkSRnUdVaWEYH6EW1TuBHtU3gRbVO4yap9dHV1M1hGCjuFJg7IN998w8GDB/Hw8JCLDwA7OzsA3r59m06ABAUF5Wqu2NLSkp49e9KzZ08WLlxIjRo1WLJkiXwK50P09PTQ01PcBGliYiJe1EKKaJvCjWifwotom8LNp9A+al+GK0kSY8eO5Z9//uHs2bM4OzunO+/s7IydnR2nTv3nkJSYmMiFCxdo2LBhnu6pq6tLmTJliImJyVfZBQKBQCAQ5A21W0DGjBnDX3/9xYEDBzA2Nubt27cAmJqaYmBggIaGBhMmTGDBggWULVuWsmXLsmDBAgwNDenXr1+O+R8+fJidO3fSp08fypUrhyRJHDp0iKNHj7J58+aCfjyBQCAQCASZoHYBsnr1agCaNWuW7vjmzZsZMmQIAFOmTCEuLo7Ro0cTHh5OvXr1OHnypDwGSHZUqlQJQ0NDJk2aREBAAHp6epQtW5YNGzYwcODAfJVdT0+P2bNn52q6RqAaRNsUbkT7FF5E2xRuPqX2KVROqAKBQCAQCD4P1O4DIhAIBAKB4PNDCBCBQCAQCAQqRwgQgUAgEAgEKkcIEIFAIBAIBCrnsxcgycnJzJw5E2dnZwwMDChdujRz585FJpPJ00iSxJw5c7C3t8fAwIBmzZrx6NGjdPl4eXnh5uaGg4MDc+fOTXeuVKlSaGhoZPhbtGiRSp6xqODh4UHnzp2xt7dHQ0OD/fv3pzuvSDskJCTwzTffYGVlhZGREV26dJHvPZLG1atXqV69Ok5OTqxfvz7duczaSUNDg507dxbIMxclsmufpKQkpk6diqurK0ZGRtjb2zNo0CBev36dLg/RPgVDTu/Oh4wYMQINDQ2WL1+e7rhom4JDkfZ58uQJXbp0wdTUFGNjY+rXr4+/v7/8/CfZPmoLAl9ImDdvnmRpaSkdPnxY8vHxkf7++2+pWLFi0vLly+VpFi1aJBkbG0t79+6VHjx4IPXu3VsqXry4FBkZKU/TsmVLafXq1dKtW7ek2rVrS5cuXZKfc3JykubOnSu9efMm3V90dLRKn7Wwc/ToUWnGjBnS3r17JUDat29fuvOKtMPIkSOlEiVKSKdOnZI8PT2l5s2bS9WqVZOSk5PlaSpUqCDt2bNHunz5slSmTBnJz89Pfg6QNm/enKGtitoeCwVBdu0TEREhtWrVStq1a5f09OlT6erVq1K9evWkWrVqpctDtE/BkNO7k8a+ffukatWqSfb29tKyZcvSnRNtU3Dk1D4vXryQLCwspMmTJ0uenp7Sy5cvpcOHD0vv3r2Tp/kU2+ezFyAdO3aUhg4dmu7YF198IQ0YMECSpNQN8uzs7KRFixbJz8fHx0umpqbSmjVr5Mdq1aolXbt2TUpMTJS6dOkiHTlyRH7Oyckpw8suyJ6PX1JF2iEiIkLS0dGRdu7cKU/z6tUrSVNTUzp+/Lj8mKOjo+Tt7S1FR0dLtWvXlh49epTlfQWZo0g93bhxQwLknaBoH9WQVR0FBgZKJUqUkB4+fJihTxJtozoyq6fevXvLx5zM+FTb57OfgmnUqBFnzpzh2bNnANy7d49Lly7RoUMHAHx8fHj79i1t2rSRX6Onp0fTpk25cuWK/NjcuXNp3bo1hoaGaGpq0rZtW9U+yCeOIu1w+/ZtkpKS0qWxt7enSpUq6drqhx9+oGLFipiamlK/fn0qVaqkugf5jHj//j0aGhqYmZkBon3UiUwmY+DAgUyePJnKlStnOC/aRn3IZDKOHDlCuXLlaNu2LTY2NtSrVy/dNM2n2j5qj4SqbqZOncr79++pUKECWlpapKSkMH/+fPr27QsgDw3/8cZ3tra2+Pn5yT936NCB4OBgIiMjsba2zvQ+M2fOTHfs8OHDGSLACjJHkXZ4+/Yturq6mJubZ0iTdj3AsGHD6NOnD4mJiRnSAvTt2xctLa10x+7fv0/p0qWV8iyfA/Hx8UybNo1+/frJN8wS7aM+Fi9ejLa2NuPGjcv0vGgb9REUFER0dDSLFi1i3rx5LF68mOPHj/PFF19w7tw5mjZt+sm2z2cvQHbt2sX27dv566+/qFy5Mnfv3mXChAnY29szePBgeToNDY1010mSlOGYnp5epuIDYPLkyfLQ8mmUKFFCOQ/xGaFIO3xMZmmMjIwwMjLKNP2yZcto1apVumMlS5bMQ2k/T5KSkujTpw8ymYxVq1blmF60T8Fy+/ZtVqxYgaenZ47vyseItil40hY8uLu78+233wJQvXp1rly5wpo1a2jatGmW1xb19vnsBcjkyZOZNm0affr0AcDV1RU/Pz8WLlzI4MGDsbOzA1J/IRQvXlx+XVBQUIZf49lhZWWFi4uLcgv/GaFIO9jZ2ZGYmEh4eHg69R8UFJSrnZPt7OxEW+WRpKQkevXqhY+PD2fPnk23XbhoH/Vw8eJFgoKCcHR0lB9LSUlh0qRJLF++HF9fX9E2asTKygptbe0M0yUVK1bk0qVLwKf77nz2PiCxsbFoaqavBi0tLbkqdXZ2xs7OjlOnTsnPJyYmcuHChVw1vCB/KNIOtWrVQkdHJ12aN2/e8PDhQ9FWKiBNfDx//pzTp09jaWmZ7rxoH/UwcOBA7t+/z927d+V/9vb2TJ48mRMnTgCibdSJrq4uderUwcvLK93xZ8+e4eTkBHy67fPZW0A6d+7M/PnzcXR0pHLlyty5c4elS5cydOhQINXkP2HCBBYsWEDZsmUpW7YsCxYswNDQkH79+il8n6ioqHRzdQCGhobpfiF+7kRHR/PixQv5Zx8fH+7evYuFhQWOjo45toOpqSnDhg1j0qRJWFpaYmFhwXfffYerq2sGs2N2REREZGgrY2PjLM2anwvZtY+9vT09evTA09OTw4cPk5KSIq9DCwsLdHV1RfsUIDm9Ox+LQR0dHezs7Chfvjwg3p2CJqf2mTx5Mr1796ZJkyY0b96c48ePc+jQIc6fPw98wu2jziU4hYHIyEhp/PjxkqOjo6Svry+VLl1amjFjhpSQkCBPI5PJpNmzZ0t2dnaSnp6e1KRJE+nBgwcK38PJyUkCMvyNGDGiIB6pyHLu3LlM62nw4MGSJCnWDnFxcdLYsWMlCwsLycDAQOrUqZPk7++vcBkyuz8gLVy4UJmPWiTJrn18fHyyrLtz587J8xDtUzDk9O58TGahAUTbFByKtM/GjRslFxcXSV9fX6pWrZq0f//+dHl8iu2j8W/BBAKBQCAQCFTGZ+8DIhAIBAKBQPUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlaKu7AKpEkiTu3bvH/fv31V0UgUAgEAjUStmyZalfvz4aGhpquf9nIUBev35NyTruyMJeQmIU+rblAPVUeF7RL6ar7iLkGqtieuouQq4x0y96r4ShTtE0ZGomRKu7CLkmJTJM3UXINQnhUeouQq6JC4tTdxFyTWhiirqLkCskIJQk9NGkHEbs9r6Ds7OzSsugIUmSpNI7qojY2Fj279/PgJFTkKJeo1HMDk0LFzRMnSjZoKu6i5drSrvaqrsIuca9Zgl1FyHXNC1loe4i5JpyFkVP6AHoBd5VdxFyTeyNU+ouQq7xP3VT3UXINS+Oe6u7CLnmyNuiJ6iTkfAnlmfEEEAcNujx0/rf6dmzJ6ampgV+/6L50ykLZDIZ586dQ9OyLEbGpvQfOhqNYnZoV+qJtku7VAGipaPuYgoEAoFAoHa00aA0RrTDhgE4UBpDpn81Bkszc1w0jDhy5AhJSUkFeP9PgKdPn1K5We/UKRZZMprmpdFyaQ8Glmqb2xIIBAKBoKhggBaumOCKCeEk8owYendyR4aEC0Zs9bxA9erVlTqmFlkBEhISgm31zkjhL5DiwtEwKYmWQ300TBzQ0PikDDsCgUAgEKgMc3Sphy51MOM18TwnhO8m6wAAC7tJREFUhro1a2GCNtP+N5/+/ftjb2+f7/sUqZE6ISGBf/75B01TJ6xtbJEivNG0KId25d5oOzdH09RRiA+BQCAQCJSAJho4YEBzrBiEA9UwYcWUHyhZogQlNQzYvn07MTExec6/0FtAJEni+vXruHX6ElmEN2jpomnuglaJOmjomai7eAKBQCAQfPLooEk5ilGOYkSTzAtiGDdwKEMZhDOGrD5zkGbNmqGpqbgRoNAKEH9/f5zrdUUW/hKS4tEwL4WWcys0jGyEX4dAIBAIBGqiGNpUx5RqmBDyr79Ix5at0UYDF4zY8eQ6FSpUyDGfQitASlVvgRT+Eo1idmiVaYeGrpG6iyQQCAQCgeBfNNDAGj2s0aMWplwglLtE0rJidV5J8TleX2gdJsK8b7F+/XqQJJKf7CHZ+zSyCF8kWdEK9iIQCAQCwaeIDAl/4jhNMNt5RTQprFixgjvv/BW6vtBaQMzMzBg+fDjDhw/H29ubsm49SHl9CwIuo2nmjIaFCxqG1mI6RiAQCAQCFRJKIs+I5jkxaKJBWYy49/ABlStXzlU+hVaAfEjp0qVJeeOJJElcvXqVxl2GkuJ9CrT00LRwQdO8DBp6xuoupkAgEAgEnyQx/zqePiOGSJIpjSEHT52gefPmaGlp5SnPIiFA0tDQ0KBhw4akhDwlPj6ew4cP02vYRJLf3UPD0Do10qlZKTS0it6+KQKBQCAQFCaSkOFLHM+I5jXxFEef5X9spFu3bhQrVizf+RcpAfIh+vr69OjRA1mPHgQHB2NXozOyEC+kwGtomDqiaVEGDeMSIi6IQCAQCAQKIiHxhgSeEY03sRRDm3IYcTXgOQ4ODkq9V5EVIB9ibW1NSuA1AB4/foxr8z6kBFwBSYameRk0zcuAgYXwFxEIBAKBIBMiSJL7dST/G3796q2b1KxZs8DGzk9CgHxIpUqVSHl3n5SUFC5cuECrHiNIfnEUdIvJ/UUEAoFAIPjciSeFF8TynGhCScQJQ3Yc2k/btm3R0Sn4jVs1JEmSCvwuaiYmJoZ9+/YxaPRUpKg36JjZQxGzhujqFT2taKxf9HYeNtTNmzOVOtHTKlrf5TQ0knKOE1DYkMUVvS3Xk2Li1F2EXJMYXXA7sBYU0ckydRchV0hAJEnYoMePa3+lZ8+emJubq7QMn4UA+ZBXr16xYMECunTpou6iKExSUhI7d+6kT58+KlGlyuLgwYOinlVAUatnEHWtKkQ9q4aiWs9Xr15lzpw5arv/ZydAIHWa5vHjx+ouhsJERkZiamrK+/fvMTEpOvvfiHpWDUWtnkHUtaoQ9awaRD3nDbFERCAQCAQCgcr5LAXImDFj1F2EzwJRz6pB1LPqEHWtGkQ9qwZ11/NnOQVT1Ciq5r2ihqhn1SHqWjWIelYNop7zxmdpASlq6OnpMXv2bPT09NRdlE8aUc+qQ9S1ahD1rBpEPecNYQERCAQCgUCgcoQFRCAQCAQCgcoRAkQgEAgEAoHKEQJEIBAIBAKByhECRCAQCAQCgcoRAqSQM3/+fBo2bIihoSFmZmZZptuyZQtVq1ZFX18fOzs7xo4dq7pCfqI8e/YMd3d3rKysMDExwc3NjXPnzqm7WEWeVatW4ezsjL6+PrVq1eLixYvqLtInRXJyMjNnzsTZ2RkDAwNKly7N3LlzkcmK1l4lhREPDw86d+6Mvb09Ghoa7N+/P0OaJ0+e0KVLF0xNTTE2NqZ+/fr4+/urvrBFACFACjmJiYn07NmTUaNGZZlm6dKlzJgxg2nTpvHo0SPOnDlD27ZtVVjKT5OOHTuSnJzM2bNnuX37NtWrV6dTp068fftW3UUrsuzatYsJEyYwY8YM7ty5Q+PGjWnfvr3ooJXI4sWLWbNmDb///jtPnjzhf//7Hz///DO//fabuotW5ImJiaFatWr8/vvvmZ5/+fIljRo1okKFCpw/f5579+4xa9Ys9PX1VVzSooFYhltE2LJlCxMmTCAiIiLd8fDwcEqUKMGhQ4do2bKlegr3CRISEoK1tTUeHh40btwYgKioKExMTDh9+rSo6zxSr149atasyerVq+XHKlasSNeuXVm4cKEaS/bp0KlTJ2xtbdm4caP8WPfu3TE0NGTbtm1qLNmnhYaGBvv27aNr167yY2mb0Yl6VgxhASninDp1CplMxqtXr6hYsSIODg706tWLgIAAdRetSGNpaUnFihX5448/iImJITk5mbVr12Jra0utWrXUXbwiSWJiIrdv36ZNmzbpjrdp04YrV66oqVSfHo0aNeLMmTM8e/YMgHv37nHp0iU6dOig5pJ92shkMo4cOUK5cuVo27YtNjY21KtXL9NpGkEqQoAUcby9vZHJZCxYsIDly5ezZ88ewsLCaN26NYmJieouXpFFQ0ODU6dOcefOHYyNjdHX12fZsmUcP348W18cQdaEhISQkpKCra1tuuO2trZiWkuJTJ06lb59+1KhQgV0dHSoUaMGEyZMoG/fvuou2idNUFAQ0dHRLFq0iHbt2nHy5Em6devGF198wYULF9RdvEKJECBqYM6cOWhoaGT7d+vWLYXykslkJCUl8euvv9K2bVvq16/Pjh07eP78uXCYzARF616SJEaPHo2NjQ0XL17kxo0buLu706lTJ968eaPuxyjSaGhopPssSVKGY4K8s2vXLrZv385ff/2Fp6cnW7duZcmSJWzdulXdRfukSXPydXd359tvv6V69epMmzaNTp06sWbNGjWXrnCire4CfI6MHTuWPn36ZJumVKlSCuVVvHhxACpVqiQ/Zm1tjZWVlXDsywRF6/7s2bMcPnyY8PBw+eZSq1at4tSpU2zdupVp06aporifFFZWVmhpaWWwdgQFBWWwigjyzuTJk5k2bZr8e+7q6oqfnx8LFy5k8ODBai7dp4uVlRXa2trp+mJI9XG6dOmSmkpVuBECRA1YWVlhZWWllLzc3NwA8PLywsHBAYCwsDBCQkJwcnJSyj0+JRSt+9jYWAA0NdMbCTU1NcVyxjyiq6tLrVq1OHXqFN26dZMfP3XqFO7u7mos2adFbGxshu+tlpaW+N4WMLq6utSpUwcvL690x589eyb64iwQAqSQ4+/vT1hYGP7+/qSkpHD37l0AXFxcKFasGOXKlcPd3Z3x48ezbt06TExM+P7776lQoQLNmzdXb+GLMA0aNMDc3JzBgwfzww8/YGBgwPr16/Hx8aFjx47qLl6RZeLEiQwcOJDatWvToEED1q1bh7+/PyNHjlR30T4ZOnfuzPz583F0dKRy5crcuXOHpUuXMnToUHUXrcgTHR3Nixcv5J99fHy4e/cuFhYWODo6MnnyZHr37k2TJk1o3rw5x48f59ChQ5w/f159hS7MSIJCzeDBgyUgw9+5c+fkad6/fy8NHTpUMjMzkywsLKRu3bpJ/v7+6iv0J8LNmzelNm3aSBYWFpKxsbFUv3596ejRo+ouVpFn5cqVkpOTk6SrqyvVrFlTunDhgrqL9EkRGRkpjR8/XnJ0dJT09fWl0qVLSzNmzJASEhLUXbQiz7lz5zLtjwcPHixPs3HjRsnFxUXS19eXqlWrJu3fv199BS7kiDggAoFAIBAIVI5YBSMQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDl/B+vXUZt9d3fUwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import cmaps\n", "\n", "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "vorm = vorm * 10e5\n", "vorPlot = (vorm.plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(-20,24,4), \n", " cmap=cmaps.CBR_coldhot, \n", " add_colorbar=True, \n", " extend='both', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': ' '}) #設定color bar\n", " )\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(-20,40,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines()\n", " \n", "ax.set_title(' ')\n", "ax.set_title('850-hPa Vorticity, December 2017', loc='left')\n", "ax.set_ylabel(' ') # 設定坐標軸名稱。\n", "ax.set_xlabel(' ')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "694c3d97", "metadata": {}, "source": [ "```{admonition} Exercise\n", ":class: tip\n", "同Example 5,但計算散度 [metpy.calc.divergence](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.divergence.html)。\n", "```" ] }, { "attachments": {}, "cell_type": "markdown", "id": "28ba7b47", "metadata": {}, "source": [ "## 計算流函數(streamfunction)、速度位(velocity potential)\n", "\n", "使用`windspharm`套件,範例請見[官方網站](https://ajdawson.github.io/windspharm/latest/examples/sfvp_xarray.html)。\n", "\n", "```{note}\n", "`windspharm`套件上次更新時間為2018年,目前Windows和MacOS都無法透過conda-forge安裝,若有需要請在Linux主機上使用。\n", "```\n", "\n", "`windspharm`也可以用來計算\n", "* divergence\n", "* vorticity (relative and absolute)\n", "* streamfunction\n", "* velocity potential\n", "* irrotational and non-divergent components of the wind (Helmholtz decomposition)\n", "* vector gradient of a scalar function\n", "* triangular truncation of a scalar field\n", "* magnitude (wind speed)\n", "\n", "可以試著比較用`MetPy`計算渦度、散度和用`windspharm`計算有沒有什麼不同。" ] }, { "attachments": {}, "cell_type": "markdown", "id": "8480a701", "metadata": {}, "source": [ "## 計算經驗正交函數 (EOF)\n", "\n", "使用`eofs`套件,範例請見[官方網站](https://ajdawson.github.io/eofs/latest/examples/xarray_examples_index.html)。" ] }, { "cell_type": "code", "execution_count": 17, "id": "cafa8af7", "metadata": {}, "outputs": [], "source": [ "from eofs.xarray import Eof" ] }, { "attachments": {}, "cell_type": "markdown", "id": "3e8dbf60", "metadata": {}, "source": [ "用法是\n", "```\n", "solver = Eof(data_array)\n", "```\n", "然後`solver`會有幾個methods: \n", "- `solver.eofs()`: 計算EOF的主模態。若給定`neofs`引數,可以得到對應的模態數量。\n", "- `solver.pcs()`: 計算rincipal component的時間序列。\n", "- `solver.varianceFraction()`: 計算各個模態變異度佔全部的比例,也就是各個模態能夠解釋原始DataArray的程度之比例。\n", "- `solver.reconstructedField()`: 利用EOF模態和時間序列重建得到的變數場。\n", "- `solver.projectField()`: 將變數投影到EOF主模態上。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }