{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 不規則形狀的網格選擇\n", "\n", "本節內容由加州大學戴維斯分校王冠筠博士生提供,特此感謝。" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 非直線的剖面 (cross-section) 繪製\n", "\n", "本節學習如何使用xarray繪製「不是沿著相同經緯線」的cross section,這裡提供的範例是繪製渤海、黃海、東海到南海這個曲折線段上的 $V$ 風垂直剖面。\n", "\n", "首先引入需要的packages,以及讀取2016年1月份的V-wind資料,並取1月份平均。" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import xarray as xr\n", "import matplotlib.pyplot as plt\n", "import cartopy.crs as ccrs\n", "import cmaps\n", "\n", "v = xr.open_dataset('data/vwnd.2016.nc').vwnd\n", "v_jan = v.sel(time=(v.time.dt.month.isin([1]))).mean('time')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "接下來讀取渤海、黃海、東海到南海這個曲折線段的經緯度,並選擇要繪製的經緯度範圍 (以[文字檔](https://wyhtsai.github.io/pyaos-wks/docs/sellatlon_EA.txt)儲存,其中第一欄為經度,第二欄為緯度)。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "y_pos, x_pos= np.loadtxt('sellatlon_EA.txt', dtype=float, unpack=True)\n", "x_pos = x_pos[y_pos <= 50]\n", "y_pos = y_pos[y_pos <= 50]\n", "x_pos = x_pos[y_pos >= 0]\n", "y_pos = y_pos[y_pos >= 0]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "為`x_pos`、`y_pos`建立新的DataArray,並設定擁有相同的dimension。接著,使用`xr.interp`函數對 $V$ 風場資料內插到所選的經緯度(x_pos, y_pos)上。" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'vwnd' (level: 17, lat: 500)>\n",
       "array([[-3.68268522, -3.66213074, -3.64047876, ..., -3.11352991,\n",
       "        -3.05033255, -2.98713519],\n",
       "       [-3.64299498, -3.61555066, -3.58706748, ..., -3.33184726,\n",
       "        -3.2842215 , -3.23659573],\n",
       "       [-7.25529253, -7.23878454, -7.22188098, ..., -1.58555811,\n",
       "        -1.56942647, -1.55329484],\n",
       "       ...,\n",
       "       [ 4.52398556,  4.62559524,  4.72667311, ...,  0.30175616,\n",
       "         0.31368649,  0.32561683],\n",
       "       [11.18332733, 11.25741096, 11.33039131, ..., -0.15216129,\n",
       "        -0.15066706, -0.14917283],\n",
       "       [20.89200851, 20.86511519, 20.83686176, ...,  1.41306749,\n",
       "         1.41367915,  1.41429081]])\n",
       "Coordinates:\n",
       "  * level    (level) float32 1e+03 925.0 850.0 700.0 ... 50.0 30.0 20.0 10.0\n",
       "  * lat      (lat) float64 50.0 49.9 49.8 49.7 49.6 49.5 ... 0.5 0.4 0.3 0.2 0.1\n",
       "    lon      (lat) float64 114.4 114.5 114.6 114.6 ... 108.0 108.0 108.0 108.0
" ], "text/plain": [ "\n", "array([[-3.68268522, -3.66213074, -3.64047876, ..., -3.11352991,\n", " -3.05033255, -2.98713519],\n", " [-3.64299498, -3.61555066, -3.58706748, ..., -3.33184726,\n", " -3.2842215 , -3.23659573],\n", " [-7.25529253, -7.23878454, -7.22188098, ..., -1.58555811,\n", " -1.56942647, -1.55329484],\n", " ...,\n", " [ 4.52398556, 4.62559524, 4.72667311, ..., 0.30175616,\n", " 0.31368649, 0.32561683],\n", " [11.18332733, 11.25741096, 11.33039131, ..., -0.15216129,\n", " -0.15066706, -0.14917283],\n", " [20.89200851, 20.86511519, 20.83686176, ..., 1.41306749,\n", " 1.41367915, 1.41429081]])\n", "Coordinates:\n", " * level (level) float32 1e+03 925.0 850.0 700.0 ... 50.0 30.0 20.0 10.0\n", " * lat (lat) float64 50.0 49.9 49.8 49.7 49.6 49.5 ... 0.5 0.4 0.3 0.2 0.1\n", " lon (lat) float64 114.4 114.5 114.6 114.6 ... 108.0 108.0 108.0 108.0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "da_lons = xr.DataArray(x_pos, dims='lat')\n", "da_lats = xr.DataArray(y_pos, dims='lat')\n", "v_cro = v_jan.interp(lat=da_lats, lon=da_lons)\n", "v_cro" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "`v_cro`的維度是 $N_{\\text{lat}} \\times N_{\\text{level}}$ ;另外精度位置是`lat`緯度的函數。\n", "\n", "最後就是用`xarray.plot.contourf`作圖,結果如下:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAAIkCAYAAADMA+lMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk50lEQVR4nOzdeVxU5eIG8GfYBhABAQXccC0jJY1IW0xQcUn9aahds3JLK8Xr1oaJCOaSZWUZefNmkZWZmlpZ6cVEu5UWRt4wrpm5dS1QQQQXcIDz+4NmYpgBZjlnzjLP9/OZj3LmzDnvO2d75n3PohMEQQARERERkcw85C4AERERERHAYEpERERECsFgSkRERESKwGBKRERERIrAYEpEREREisBgSkRERESKwGBKRERERIrAYEpEREREisBgSkRERESKwGBKLrFnzx5MmTIF3bp1Q7NmzdCmTRuMHDkS33//vdXx8/LyMHDgQAQEBCA4OBhJSUk4fvy4xXirVq1CUlISOnbsCJ1Oh/j4+EbL8dFHH6Ffv34IDAxEs2bNcOONN2Lt2rU210OqchnNnTsXOp0OR44caXCcBQsWQKfTIS8vz+Zy2+LkyZPQ6XTIysoSdbo6nQ7p6emiTa9Dhw6YNGmSaNOTQnx8PHQ6ndVXhw4dJJlnQUEB0tPTcfLkSbs/+8orr0Cn06F79+4Oz3/v3r3Q6XTYu3evw9NQi9dee83qdmJtG8rKyoJOp3NouRC5IwZTcok1a9bg5MmTmD17Nj777DO8/PLLOHv2LPr06YM9e/aYjXvkyBHEx8fj2rVr2LRpE958800cPXoUffv2xblz58zG/cc//oFTp06hf//+aNmyZaNlePbZZ5GUlITu3btj06ZN+PjjjzFjxgxcu3bNpjpIVa66HnroIQDAm2++afX9mpoarF+/Hj179sTNN99s83RtERkZif3792PYsGGiTtddderUCfv377d4bdu2TZL5FRQUICMjw6EAZFzffvrpJ3z77bcOzf/mm2/G/v37RV8vlaihYGrNsGHDsH//fkRGRkpbKCKtEIhcoKioyGJYeXm5EB4eLgwYMMBs+NixY4WwsDDh4sWLpmEnT54UvL29hSeffNJs3OrqatP/b7zxRqFfv35W53/w4EHBw8NDWLFihcN1kKJc1tx6661CRESEYDAYLN77/PPPBQDC6tWr7a+ATAAIixYtEm16UVFRwsSJE0WbnhT69esn3HjjjS6d5+bNmwUAQk5Ojl2fy83NFQAIw4YNEwAI06ZNk6aAGtLQNn3ixAkBgPDWW2+5vExEWsEWU3KJVq1aWQwLCAhAdHQ0fvvtN9Owqqoq7NixA6NHj0ZgYKBpeFRUFBISEixamzw8bFuFX331Vej1evz97393qPxSlcuahx56CIWFhfj8888t3nvrrbeg1+tx//33N/j5J554AkFBQaiurjYN+/vf/w6dTofnn3/eNKy4uBgeHh5YvXo1AOvdkOnp6dDpdPjpp59w3333ISgoCOHh4ZgyZQouXrxoNt+ysjJMmzYNoaGhCAgIwJAhQ3D06FGb6lxRUYHHHnsMPXv2RFBQEEJCQnDbbbfho48+sunzp0+fxgMPPIBWrVpBr9fjhhtuwAsvvICamhrTOMb6rVy5Ei+++CI6duyIgIAA3HbbbThw4IDFNP/5z3/iuuuug16vR3R0NDZs2IBJkyaJ2hV/7tw5zJgxA9HR0QgICECrVq3Qv39//Pvf/7YYd82aNbjpppsQEBCA5s2bo1u3bnj66acB1HYXjx07FgCQkJBgOm3Alla9devWAajtUbj99tuxceNGXLlyxa75A9a78g8ePIhx48ahQ4cO8PPzQ4cOHXDffffh1KlTNn0/lZWVWLx4MW644Qb4+voiNDQUCQkJ+Oabb0zjVFRUYP78+ejYsSN8fHzQpk0bJCcno7S01GxaH3zwAQYNGoTIyEj4+fnhhhtuQEpKCi5fvmw23vHjxzFu3Di0bt0aer0e4eHhGDBgAA4dOgSg9lSSn376Cfv27bPp9AxrXfnx8fHo3r07cnNz0bdvX/j7+6NTp0549tlnzdZZoHa7evzxx83qN2fOHItyb968Gb1790ZQUJBpelOmTLHpeyZSEgZTks3FixeRl5eHG2+80TTs119/xdWrVxETE2MxfkxMDI4dO4aKigq75/Xll1/ihhtuwIcffojrr78enp6eaNu2LVJSUmzqypeqXNbcd9998Pf3t+jOv3DhAj766CPcc889aNGiRYOfHzhwIMrKyvDdd9+Zhu3evRt+fn7Izs42Dfviiy8gCAIGDhzYZJlGjx6N6667Dh9++CFSUlKwYcMGzJ071/S+IAgYNWoU3nnnHTz22GPYtm0b+vTpg6FDh9pU58rKSpSUlODxxx/H9u3b8f777+POO+9EUlIS1q9f3+hnz507h9tvvx3/+te/8Mwzz+Djjz/GwIED8fjjj2PmzJkW42dmZiI7OxurVq3Ce++9h8uXL+Puu+82C9pr167Fww8/jJiYGGzduhWpqanIyMiw+/zJqqoqi1fd4FFSUgIAWLRoET799FO89dZb6NSpE+Lj483mtXHjRsyYMQP9+vXDtm3bsH37dsydO9cUToYNG4Zly5aZ6mc8baCp0zKuXr2K999/H3FxcejevTumTJmC8vJybN682Wy8pubfkJMnT+L666/HqlWrsGvXLqxYsQJ//PEH4uLicP78+Sa/u6FDh+KZZ57B8OHDsW3bNmRlZeH222/H6dOnAfy13q1cuRIPPvggPv30U8ybNw9vv/02+vfvj8rKStP0fvnlF9x9991Yt24ddu7ciTlz5mDTpk0YMWKE2XzvvvtufP/993juueeQnZ2NNWvWoFevXqagu23bNnTq1Am9evVy6vSMwsJC3H///XjggQfw8ccfY+jQoZg/fz7effdd0zhXrlxBv3798Pbbb2PWrFn4/PPP8dRTTyErKwv/93//B0EQAAD79+/H3/72N3Tq1AkbN27Ep59+irS0NFRVVdldLiLZydtgS+7s/vvvF7y8vISDBw+ahn399dcCAOH999+3GH/ZsmUCAOH333+3Or3Gusz1er3QvHlzoUWLFsKrr74q7NmzR1iwYIHg6ekpjB8/vsmySlWuhkycOFHw9vY2OwVi9erVAgAhOzu70c9evnxZ8PHxERYvXiwIgiD873//EwAITz31lODn5ydUVFQIgiAI06ZNE1q3bm36nLVuyEWLFgkAhOeee85sHjNmzBB8fX2FmpoaQRD+OsXg5ZdfNhtv6dKlDnXlV1VVCQaDQXjooYeEXr16mb1Xvys/JSVFACB8++23ZuNNnz5d0Ol0ws8//2xWvx49eghVVVWm8b777juzZVtdXS1EREQIvXv3NpveqVOnBG9vbyEqKqrJ8vfr108AYPX10EMPNVnvAQMGCPfcc49p+MyZM4Xg4OBG5+lIV/769esFAMI//vEPQRBqT68JCAgQ+vbtazaeLfPPyclpcv5VVVXCpUuXhGbNmlmsKw2V7Z///GeD4+zcudPq+vnBBx8IAIS1a9da/VxNTY1gMBiEffv2CQCE//znP4IgCML58+cFAMKqVasaLZs9XflvvfWWAEA4ceKEaZhx/ai/zkZHRwuDBw82/b18+XLBw8NDyM3NNRtvy5YtAgDhs88+EwRBEFauXCkAEEpLSxstN5EasMWUZLFw4UK89957eOmllxAbG2vxvk6na/Czjb3XkJqaGpSXl+O1115DcnIyEhISsGTJEvz973/Hhg0bcOzYMdN4dVu36naHS1Guhjz00EMwGAx45513TMPeeustREVFYcCAAY2W1d/fH7fddht2794NAMjOzkZwcDCeeOIJXLt2DV999RWA2lZUW1pLAeD//u//zP6OiYlBRUUFzp49CwDIyckBAItTDMaPH29znTdv3ow77rgDAQEB8PLygre3N9atW4f//ve/jX5uz549iI6Oxq233mo2fNKkSRAEweLiumHDhsHT09OsLgBM3cs///wzCgsLce+995p9rn379rjjjjtsrk/nzp2Rm5tr8Vq4cKHZeP/4xz9w8803w9fX11TvL774wqzet956K0pLS3Hffffho48+arK10Vbr1q2Dn58fxo0bB6D29JqxY8fi3//+N3755Ren53/p0iU89dRT6NKlC7y8vODl5YWAgABcvny5yeX6+eefw9fXt9HuaOOyrX+XhrFjx6JZs2b44osvTMOOHz+O8ePHIyIiAp6envD29ka/fv0AwFSWkJAQdO7cGc8//zxefPFF/PDDDxZd62KJiIiwWGdjYmLMTnPYsWMHunfvjp49e5pt64MHDzY7bSIuLg4AcO+992LTpk04c+aMJGUmcgUGU3K5jIwMLFmyBEuXLrXoag0NDQVQe/5jfSUlJdDpdAgODrZ7nsbpDh482Gy4savZeOulKVOmwNvb2/QyhkCpytWQvn374rrrrsNbb70FAPjxxx+Rl5eHyZMnmwJwQ2UFarvzDxw4gMuXL2P37t3o378/QkNDERsbi927d+PEiRM4ceKEzcHUWH8jvV4PoLYrGKj9Xry8vCzGi4iIsGn6W7duxb333os2bdrg3Xffxf79+5Gbm4spU6Y0eYpEcXGx1SueW7dubXrf3roAQHh4uMU0rQ1riK+vL2655RaLV1RUlGmcF198EdOnT0fv3r3x4Ycf4sCBA8jNzcWQIUNM5QGABx98EG+++SZOnTqF0aNHo1WrVujdu7fZqRn2OnbsGL788ksMGzYMgiCgtLQUpaWlGDNmDADzO0M4Ov/x48fj1VdfxdSpU7Fr1y589913yM3NRcuWLc3qZ825c+fQunXrRs/XNq539e98odPpEBERYVqWly5dQt++ffHtt99iyZIl2Lt3L3Jzc7F161YAfy17nU6HL774AoMHD8Zzzz2Hm2++GS1btsSsWbNQXl7eaHntVX89BGrXxbrfS1FREX788Uez7dzb2xvNmzeHIAimHwh33XUXtm/fjqqqKkyYMAFt27ZF9+7d8f7774taZiJX8JK7AOReMjIykJ6ejvT0dLMLJ4w6d+4MPz8/5OfnW7yXn5+PLl26wNfX1+75xsTEoLCw0GK48Oc5WsaDX3p6ullYbt68uaTlasyUKVOQkpKC7777Dhs2bICHh4dZy1BDZQWAAQMGYOHChfjyyy/xxRdfYNGiRabh//rXv9CxY0fT32IIDQ1FVVUViouLzQ641r5za95991107NgRH3zwgVnLc91zBBub9x9//GEx/PfffwcAhIWF2VSGutMDakNBfbbWx1bvvvsu4uPjsWbNGrPh1kLQ5MmTMXnyZFy+fBlffvklFi1ahOHDh+Po0aNmYddWb775JgRBwJYtW7BlyxaL999++20sWbLE1Lps7/wvXryIHTt2YNGiRUhJSTENN55P3JSWLVviq6++Qk1NTYPh1LjenTt3ziycCoKAwsJCU0vinj178Pvvv2Pv3r2mVlIAFhdIAbUXNBovCDt69Cg2bdqE9PR0XLt2Df/4xz+aLLeYwsLC4Ofn1+Dt4+qu2yNHjsTIkSNRWVmJAwcOYPny5Rg/fjw6dOiA2267zVVFJnIaW0zJZZ555hmkp6cjNTXVFJTq8/LywogRI7B161azg/Pp06eRk5ODpKQkh+Y9evRoALC40v2zzz6Dh4eH6QDWoUMHs9at66+/XtJyNWbixInw8vLC66+/jvfeew8DBgwwCwANlRWo7XoNDAzEqlWrUFhYiMTERAC1Lak//PADNm3ahOjoaFOrorMSEhIAAO+9957Z8A0bNtj0eZ1OBx8fH7NQWlhYaNNV+QMGDEBBQYHFAwfWr18PnU5nKputrr/+ekRERGDTpk1mw0+fPm12NbgYdDqdqcXW6Mcff8T+/fsb/EyzZs0wdOhQLFiwANeuXcNPP/0EwLLltzHV1dV4++230blzZ+Tk5Fi8HnvsMfzxxx9W7wzR0Pyt1U0QBIv6vfHGGxanyFgzdOhQVFRUNHpnAeMPq7oXDAHAhx9+iMuXL5veN65X9cvy+uuvN1qG6667DqmpqejRo4fZ+lW/ZVMqw4cPx6+//orQ0FCrre/W7gag1+vRr18/rFixAgDwww8/SF5OIjGxxZRc4oUXXkBaWhqGDBmCYcOGWdyep0+fPqb/Z2RkIC4uDsOHD0dKSgoqKiqQlpaGsLAwPPbYY2afO3jwoOk2LGVlZaYWIKD2vCtjkJs8eTJef/11zJgxA+fPn0d0dDR2796NzMxMzJgxw6YWJynK1ZiIiAjcfffdeOuttyAIgunm+7bw9PREv3798Mknn6Bjx47o3LkzAOCOO+6AXq/HF198gVmzZtk8vaYMGjQId911F5588klcvnwZt9xyC77++muzc2QbM3z4cGzduhUzZszAmDFj8Ntvv+GZZ55BZGSk2bmO1sydOxfr16/HsGHDsHjxYkRFReHTTz/Fa6+9hunTp+O6666zqy4eHh7IyMjAI488gjFjxmDKlCkoLS1FRkYGIiMjbb4V2NWrV63ehgr4a30fPnw4nnnmGSxatAj9+vXDzz//jMWLF6Njx45mV1RPmzYNfn5+uOOOOxAZGYnCwkIsX74cQUFBph9Vxqc2rV27Fs2bN4evry86duxotcv4888/x++//44VK1ZYfSpZ9+7d8eqrr2LdunUYPny4TfOvLzAwEHfddReef/55hIWFoUOHDti3bx/WrVtn02kv9913H9566y08+uij+Pnnn5GQkICamhp8++23uOGGGzBu3DgkJiZi8ODBeOqpp1BWVoY77rgDP/74IxYtWoRevXrhwQcfBADcfvvtaNGiBR599FEsWrQI3t7eeO+99/Cf//zHbJ4//vgjZs6cibFjx6Jr167w8fHBnj178OOPP5q1+vbo0QMbN27EBx98gE6dOsHX1xc9evRosk72mjNnDj788EPcddddmDt3LmJiYlBTU4PTp0/jX//6Fx577DH07t0baWlp+N///ocBAwagbdu2KC0txcsvv2x2Hi2Rash11RW5l8auUra2Gh48eFAYMGCA4O/vLwQGBgqjRo0Sjh07ZjHexIkTG5xm/ZtcFxcXC4888ogQHh4ueHt7C9ddd53w/PPPm90MvylSlKsxH330kQBACAkJMV1Nb6uXX37Z6g3TExMTBQDCxx9/bDa8savyz507ZzautSuNS0tLhSlTpgjBwcGCv7+/kJiYKBw5csTmq/KfffZZoUOHDoJerxduuOEG4Z///Kdp/nVZu8H+qVOnhPHjxwuhoaGCt7e3cP3111ssW2P9nn/+eYt5Wyvj2rVrhS5dugg+Pj7CddddJ7z55pvCyJEjLe4SYE1T67vx4QmVlZXC448/LrRp00bw9fUVbr75ZmH79u3CxIkTza7+f/vtt4WEhAQhPDxc8PHxEVq3bi3ce++9wo8//mg231WrVgkdO3YUPD09G13XRo0aJfj4+Ahnz55tsA7jxo0TvLy8hMLCQpvmb+2q/P/973/C6NGjhRYtWgjNmzcXhgwZIhw+fNjmhyRcvXpVSEtLE7p27Sr4+PgIoaGhQv/+/YVvvvnGbJynnnpKiIqKEry9vYXIyEhh+vTpwoULF8ym9c033wi33Xab4O/vL7Rs2VKYOnWqkJeXZ/Y9FRUVCZMmTRK6desmNGvWTAgICBBiYmKEl156yexODidPnhQGDRokNG/eXABgWlb2XJVv7QEM9Ze7IAjCpUuXhNTUVOH6668XfHx8hKCgIKFHjx7C3LlzhcLCQkEQBGHHjh3C0KFDhTZt2gg+Pj5Cq1athLvvvlv497//3eR3TKQ0OkH48yQ7IiJqUGlpKa677jqMGjUKa9eulbs4RESaxK58IqJ6CgsLsXTpUiQkJCA0NBSnTp3CSy+9hPLycsyePVvu4hERaZZqLn4qLy/Hk08+iUGDBqFly5bQ6XRIT0+3Om5eXh4GDhyIgIAABAcHIykpCcePH7c67urVq9GtWzfo9Xp07NgRGRkZMBgMEtaEiJROr9fj5MmTmDFjBhITEzFr1iyEh4dj7969Zk8qIyIicakmmBYXF2Pt2rWorKzEqFGjGhzvyJEjiI+Px7Vr17Bp0ya8+eabOHr0KPr27Ytz586Zjbt06VLMnj0bSUlJ2LVrF2bMmIFly5YhOTlZ4toQkZK1aNECn3zyCQoLC3Ht2jWUlpZi586d6N27t9xFIyLSNNWcY2ospk6nw/nz59GyZUssWrTIotX03nvvRU5ODn799VcEBgYCqH2iS9euXTF37lzTLTSKi4vRtm1bTJgwweyWIcuWLUNqaioOHz6M6Oho11SOiIiIiNTTYqrT6Zp85GNVVRV27NiB0aNHm0IpUHvD5ISEBGzbts00bOfOnaioqMDkyZPNpjF58mQIgoDt27eLWn4iIiIiapxqgqktfv31V1y9etX07Ou6YmJicOzYMdPjDQ8fPgwAFveei4yMRFhYmOl9IiIiInINTV2Vb3wuckhIiMV7ISEhEAQBFy5cQGRkJIqLi6HX69GsWTOr41p7JrpRZWWl2aMSa2pqUFJSgtDQ0CZbdYmIiEgZBEFAeXk5WrdubfPDM0hamgqmRo2Fw7rv2TpefcuXL0dGRoZjhSMiIiJF+e2339C2bVu5i0HQWDA1PnrPWmtnSUkJdDqd6VF4oaGhqKiowJUrV+Dv728xbmxsbIPzmT9/PubNm2f6++LFi2jfvj0OHTqK4GDL1lolChDKzf42VFUhJzcXCXFx8PZS72ohej3OnnV+Gg4wVFcj5+RJJHToAG9PT8cnVO9OFK5kEATklJcjoXlzeIvVkyDD8jAAyPH1RUJFBbxt/dD58xKWyH4GnQ45bdog4cwZeLvqetewMNEnadeyaNVK9Pk3qWVLm0aze/sWuS6XdM2dnkZhoQHHj+egU6cEeHravGUAEGe3JMau4OxZoLKyBAsXXofmzZ3/Tkgc6k0gVnTu3Bl+fn7Iz8+3eC8/Px9dunSBr68vgL/OLc3Pzze7BUxhYSHOnz9veu60NXq9Hnq93mJ4cHAIQkIsn0vtKs1rLtoxdguzvwxVVfD390doixaqD6ai1KOwsPbfoCBxCmYnQ3V1bT2CghwPpoWFQECAuAWzg0EQ4F9djdCAAHGCaWEhUO9HpCsYAPj7+iLUw8O2YHr2LPDnfkYpDDpd7frk6+u6YHrpUu2/IoYqu5bFpUtARIRo87aJjfsLu7fvFi2aHscOPh7O7dcKC4GgIAP8/f0RFBRqdzC9etWp2YuyKygsNN9MeRqecmjqhAovLy+MGDECW7duRXn5Xy2Cp0+fRk5ODpKSkkzDhgwZAl9fX2RlZZlNIysrCzqdrtF7pbpC85qLdr9IBIWFf4VSNdNCHdRIphZ2RTt7Vr7vRSvbs4jKnQylznJ2cYixOLlKKJuqmsY+//xzXL582RQ6CwoKsGXLFgDA3XffDX9/f2RkZCAuLg7Dhw9HSkoKKioqkJaWhrCwMDz22GOmaYWEhCA1NRULFy5ESEgIBg0ahNzcXKSnp2Pq1Kmi3sOUoVEFtLSn0lJdjNRQJ4bSxp09K0/3OlC7/rii9dRV85GRM5siQynZQlXBdPr06Th16pTp782bN2Pz5s0AgBMnTqBDhw7o1q0b9u7di6eeegpjxoyBl5cX+vfvj5UrV6JlvfN/FixYgObNmyMzMxMrV65EREQEUlJSsGDBAofKFyCUo3mNqr5S0tpeSmv1IW0xhnc5AqpaQ6OIZXa2tVTO3QtDqftQVYo6efKkTePFxsZi9+7dNo07a9YszJo1y4lSkepoce+kxToZqaFubC21j1wBVa3hVAPkbGklddHUOaZEjdLq+WZarJORGurGUOo4Ob47NaxTEpCztVQJX7kSykC2UVWLKZFDtLxH0nLd1ICh1Hlydu+T4rEL3/2wxZS0qahIuy2kRlquG6D8+jGUisuVV+9LuW4pcL1Va2spQ6l7YjAlbSkqkrsE0tN64Cb3poVwKhYFnA/LUEquxq58Ujd32vOwrsrB1lJpuap73w0uhpL7vqVE9mIwJfVRemiRgjvVWel1ZSh1HVfc+9QNwqmj2FpKcmAwdUJmZiYyMzNRXV0td1G0zZ33MGfPAnxUHjmrsBBo16723/BwuUtjH14c5TA1tpYylBKDqROSk5ORnJyMsrIyBMn0THVNcve9SmEh4KrnmSuN0pe9mlpLf//9r//XfR573eEA0Lq1a8rjLClbT9lqakHuFk81zpvEwWBK8uJe5C/8LpTt3Dm5S2Cb+sHTkfGVGlbPnatt+ZWCmOFUjGmpNCir/ZGlJD8GU3IN7jEaxu+mFr8Hx9kbRh2ZnpLC6rlzQL1HTJM5Z7rx5dgUGUrJiMFUC8TYIo3nyRYVmXf7kXS4J/0LvwvHiB1IHZmXXIFViq59duk7hZsxiYHBVKm4hWsXly05y5WBtClynrPqiqv2VUiO1lJ24ZNYGEyVgluW9nEZW6f070XK8xrtpaRA2hBjGV0VUMUOp2w1dSmGUqqPwVQu3JrcB5c1OUsNgbS+339X1nmp9nDTcCpHa6kzuGvVJgZTV+JW5F64vJum9O9ICfeRVWMoNXJV66nWuvSdCMVqunepEm5JpaY7wLkLD7kLoHnG55or/QBM4uDy1g65j1i//67uUFqXK+oh9vJysz5mR4vr6NeuhK9HLZtXXl4eNsj9A9mF2GIqBSVsceQ6XN6O4ffWMLUcMe3hitZTrbWcklVi7DrUsolVV1djYmwsfgIQfegQevbsKXeRJMcWUzGdPcuDrbtgy6hzlP69ydVaqqVW0oZIXT8xl53S19N6HO3Gd3U15e7CV9MmluXlhasA/g7giV69ILjBUwEZTJ2QmZmJ6OhoxMXFyV0UciWVHazITnKEUncIpHW5W301SI4ufHcLpZcvX8ZCAMsBpAP4HsCuXbtkLZMrMJg6ITk5GQUFBcjNzZW7KOQqDKUkNjUdKcUmVd3lPj9YRdSyS1NLOcX0YkAA2gMYA6AFgFQATwwdimrjA3E0isGUiMjI1YHGnUOpEb8DUbjyany13VbKSE2rWlFREZ4DsBKA8bKnZACXAaz30vblQQymRLaSe69K0nJlKGVXtvTEWp7c7mXnbl34AJAREYGBAO6sM0wPYBlqW06vXLkiS7lcgcGUiMjVoZTM8TuRhSOBz9Wtpe4YSo8cOYK3ADxr5b2/AWgD4KVmzVxbKBdiMCWyBVtNtIuhVBmk+G7UeK6pBp84JefuU42bXMoNN2AKgOutvKdDbff+CgBn1bh+24DBlKgpDKUkBjUeIV2N35FDHDm/1JWtpY5ydn5qXJ3+/e9/Yw+ARY2McxeABAAZ4eGuKZSLMZgSkftyVYuDGo+QcuF3pSlqvVBKDoIg4PG77sKTAJp6TMSzANYB+Pnnn6UvmIsxmBI1xh33ju7CFaGUFzk5RszvTIzlzP2A6r4CNW52mzdvxv8AzLNh3BsATAIwv1s3ScskBwZTooaobU9MyqKUI2NhIVBUVPv/oiL1PLVMKd+fBrlq0cvVWqrGVaeyshLz//Y3PAPA38bPpAPIBvDVV19JVi45aPtmWERE1kjdWqqEI6MtR3dr42jw4hstc+X9S13BHUMpAKzx9UUzABPt+EwEgCcAPNG3L76pqYFOp2vqI6rAFlMia5TemkTKJfeR0dnW0LotqnK3rIr1XWr06mVXUcOFUmpWWlqKZwA8B8DTzs8+BuAUgC1btoheLrmwxZSoPu5RtU3KkCJnKJVyvZWzZfX334HWrV0zLzfgit0bu/Dts6xFC9wMYLADn20GYDGA+ffei5GVlfDx8RG3cDJgi6kTMjMzER0djbi4OLmLQmKQu3WI1E2uo6Jc660rW1XF+G7ZauoQtewS1RpKT506hVdR21rqaEf8JNQ+Feofer1YxZIVg6kTkpOTUVBQgNzcXLmLQs5Sy96XnKOlcKK0H1JKK4/YtFw3EcnRWqrWUAoAqR06YAyAXk5Mwwu1wXYxak8LUDt25ZP74oGGxOLKI6PS19vCQmm6+X//HWjTRvzpKomd35u9Fz7Zu+oo/ep9tcvLy8OHAI6IMK27AcQAeLZFCzwrCCJMUT4MpqQuTe3BWrZ0/LOkbVK1lroqlKpp/ZUqnBYWAu3aOf75s2eBVk3dupwcJccqqubW0sWxsZgJoL0I0zI+qvQOAE+WlCAkJESEqcqDwZRq9ybGX1hnzwJqvuWEMXyovR6kDq44KqopkNYlVTglTZG7C//8eeen4aiiPn1w/5EjgK+vKNO7GcC1wkK8+uqr2LhxI4DaUw6Tk5NFmb6rMJi6G7Ue5IicIUVrqdShVAvbKsOpYkjdje/q1ZXXwzVswoQJSEtLk7sYDmMw1TotHNyIlEbKUKq1bZbhlBog56qu1VCqBQymWqO1gxqRs9RyBNLytit2OC0sBMLDHfusRs4zlfKJT65oLZWzC18tuwR3pYrbRe3ZswdTpkxBt27d0KxZM7Rp0wYjR47E999/bzFuXl4eBg4ciICAAAQHByMpKQnHjx+3Ot3Vq1ejW7du0Ov16NixIzIyMmAwGKSujviU8IQWInchdmupu2y7WqijSuug0mJbxVCqfaoIpmvWrMHJkycxe/ZsfPbZZ3j55Zdx9uxZ9OnTB3v27DGNd+TIEcTHx+PatWvYtGkT3nzzTRw9ehR9+/bFuXPnzKa5dOlSzJ49G0lJSdi1axdmzJiBZcuWqeckYYZRIteTIpSSY9RwObYbLN+iIvs/4+jXooZFTs5TRVd+ZmYmWtXrehkyZAi6dOmCZcuWoX///gCAtLQ06PV67NixA4GBgQCA2NhYdO3aFStXrsSKFSsAAMXFxViyZAmmTZuGZcuWAQDi4+NhMBiQmpqKOXPmIDo62oU1tJEb7OSIRCVm84jY2587bs9KOd9UI935UtDyasnWUnVQRYtp/VAKAAEBAYiOjsZvv/0GAKiqqsKOHTswevRoUygFgKioKCQkJGDbtm2mYTt37kRFRQUmT55sNs3JkydDEARs375dmoo4Q8t7CyJyH2Luy9iE1iSlHTrkai1lKFUPVbSYWnPx4kXk5eWZWkt//fVXXL16FTExMRbjxsTEIDs7GxUVFfD19cXhw4cBAD169DAbLzIyEmFhYab3G1JZWYnKykrT32VlZQAAQ3U1DNXVTtXLKhdsUYY/72NqUPkTI1gP5ZC9DufOiXIvW8Of0zB4iPg7vqgI8HLd7tfw57wMLpxno86fd+jiJeMyMFsWrr5fsb3rs5VjgvE4YXG8qKqyebJVHrZdD2HPIcmeQ40gGOdv+3UZRUWOLa7CQsDT0/7PGZ071/DmVlOjwutKNE4heyn7JScn4/Lly1iwYAGA2u55AFafdhASEgJBEHDhwgVERkaiuLgYer0ezZo1szqucVoNWb58OTIyMiyG55w8CX9/f0eqoxjZf4ZstWM9lMNqHUS6oXSjnHlCkBXZsbGiTk8O2UOGyF0EUci6LC5eFG387PoX5v7yiwMFkpePT7bN4zq6SYq8KZu5cuUK3nhDuumT/VQZTBcuXIj33nsPq1evRmy9HZSukZ9jdd+zdTxr5s+fj3nz5pn+LisrQ7t27ZDQoQNCgyS6hYfEraYGQUB2WRkSAwPhreInJrEeytFoHRy5YsJe9S54dJRBp0N227ZI/P57eNfUOD9BV9S9HoOXF7KHDEHizp3wtqNVTlIOtphmx8aaLwtHz1lt7PHFjbGn3A2cx2qorkb28eNI7NQJ3samQDume8kjsOmRYP+qZs9hpqjIAB+fbFy7lgjAW/SyGDl7KkJTu4GamsYbosj1VBdMMzIysGTJEixduhQzZ840DQ8NDQUAq62dJSUl0Ol0CA4ONo1bUVGBK1euWLRwlpSUWITd+vR6PfR6vcVwb0/Pv3YyYouM/Ov/Ep405K3TqTYI1cV6KIdsdRD5FALvmhp4i3GqjozB0LuqSjnB1Inv0mxZuPpUEXvW5SaOB2bHDBtPsyj3CLL5wG3P4aiw0PaqmR+CvGFLMHVkMbnivNKamqbLTq6lqmCakZGB9PR0pKen4+mnnzZ7r3PnzvDz80N+fr7F5/Lz89GlSxf4/tl9aDy3ND8/H7179zaNV1hYiPPnz6N79+4S1kIE9VsIlHZ2u9LJeVUwl1WtiAh+F6Q+Uu07JJiuPZuX1JsiN3Wyh2qC6TPPPIP09HSkpqZi0aJFFu97eXlhxIgR2Lp1K5577jk0b94cAHD69Gnk5ORg7ty5pnGHDBkCX19fZGVlmQXTrKws6HQ6jBo1SvL6iIpB1VKrVs6dLS8VWw9Af/whbTnIdoWF0p7kRtokQdiU8mlPtnLV4YVX4bsvVQTTF154AWlpaRgyZAiGDRuGAwcOmL3fp08fALUtqnFxcRg+fDhSUlJQUVGBtLQ0hIWF4bHHHjONHxISgtTUVCxcuBAhISEYNGgQcnNzkZ6ejqlTpyrzHqb2qLtDdJeQaqxzdbX9FycoUatWtfWoH7DdZXkSSUlJ9zBla6noGErVTRXB9JNPPgFQe//RnTt3Wrwv/HnySrdu3bB371489dRTGDNmDLy8vNC/f3+sXLkSLeud6L5gwQI0b94cmZmZWLlyJSIiIpCSkmK6yl8ztNKaqoSbciuBte9BrcvUHXFZuQe2ljqFt6d1nS+//BLPP/88vv/+e/zxxx/Ytm2bWa/xpUuXkJKSgu3bt6O4uBgdOnTArFmzMH36dMnKpIpgunfvXpvHjY2Nxe7du20ad9asWZg1a5aDpVIppbemMoDaT+nLtCE8z5TURIp9kwN3JmgKW0tdP081u3z5Mm666SZMnjwZo0ePtnh/7ty5yMnJwbvvvosOHTrgX//6F2bMmIHWrVtj5MiRkpRJFcGUJFJ3RytXFziDqLi00kJORCZsLSWpDB06FEOHDm3w/f3792PixImIj48HADz88MN4/fXXcfDgQQZTchGlXjREjlFrayppX2Ehf5iKjK2lrp+nElVWVpqeSGnU0G0um3LnnXfi448/xpQpU9C6dWvs3bsXR48excsvvyxWcS0wmBK5C2MIUFJAZXc+OaN1a7lLYEkFYdveTU7q8Y2caS1VbSgNDq59iaWwEGvWrLEIjosWLUJ6errdk3vllVcwbdo0tG3bFl5eXvDw8MAbb7yBO++8U6QCW2IwJXI3SgyoRK7iyBX5MoZNW7vxuTmT0fTp07F48WKzYY60lgK1wfTAgQP4+OOPERUVhS+//BIzZsxAZGQkBg4cKEZxLTCYErkrtla6lpzftfF5kEVFwJ9PySMZhYcDv/wiy6zZWqp9er0egYG2Pba2MVevXsXTTz+Nbdu2YdiwYQCAmJgYHDp0CCtXrpQsmHpIMlU3kZmZiejoaMTFxcldFCLHRESoouuRSBVE3pbkbi11hwue+Nu8YQaDAQaDAR4e5lHR09MTNTU1ks2XLaZOSE5ORnJyMsrKyhAUJP9Vk0QOk7P1VMktt7//rr2LAXnRkdviBU9U36VLl3Ds2DHT3ydOnMChQ4cQEhKC9u3bo1+/fnjiiSfg5+eHqKgo7Nu3D+vXr8eLL74oWZkYTMXUqhVQWSl3KYgco+SA6IhWrXjUAmqXqbe35TCGU9uI/T1FRABVVU2OxtbSpjm7efPWVMDBgweRkJBg+nvevHkAgIkTJyIrKwsbN27E/Pnzcf/996OkpARRUVFYunQpHn30UcnKxGAqNl5YQkTkfhQe9LXYWuoMhtJa8fHxpqdnWhMREYG33nrLhSXiOabSUfhOisgqrrfa0lhaUFuScCNit5bygidSEwZTKfEgT2okx3qr9W2FIVAZHLlVlJi0vp67CLvwtY3BVGq86pnUiOuse2BgVi2ltJYa70RmL7nCIUOp8jGYugoP9KQ2XGfVTark4k5s3QZE3FZs7cZXM3bhU2MYTF2JB3pSG66zROIQcVtSSmupq7EL3z0wmLoaD/RE1nHbkI/SE4mbkLO1lF34pBS8XZQceEsp9bAlLGl9OWrt/qbugMvL7WltFWAXvvtgMJUTD/jK4UxrXVOf1cIy5rqqfbzpvjkxzy+1YRw5b6jvSJe/Tmf/fBxttWQXvnthMJUbD/iupbRbIXHZS0cpRzMuY3IxJa5yDIdkKwZTJ2RmZiIzMxPV1dXOTYhd+9JRegtQ/fJxHSCShtz3MBWBUlpLXUkpvy/JdXjxkxOSk5NRUFCA3NxccSbIe56KJzxcnd+lUsvsiqMRQ7m8lLruNaR1a+mmLeZ3IWI3vi24GZHaMZgqEQOqYyIiagMpqY/YR1N3b2axd/+htFNcxCZVa6nK99OuCrFq35zItdiVr2Q8/9Q2Kj84KJ7a1kFevmsfNYbSiAhAEMQpi0ooYTNUWze+KgQHi74Nrl+/Hhs3bgRQ27ObnJws6vSlxmCqdDz/tGFaDaQREcCZM3KXwnW0vG7LWTdbfthqdRuqy97WUhV345M5d22pnTBhAtLS0uQuhsMYTNXC2g5Oywf0hrjDgVRJ1LaOidHE4i5HM7m2Ja1sw1qph8TcZXMi8TCYqpm7XNHNA4B2aXWdVYqGWk3dZZuSs7VUBvZsTtz0SKkYTLVEK0FV5QcHzVDb+sPWUusiIoDiYvO/5SyLnJ8Xi0g31b/kEWjTQVgJmyLPLyVXYTDVMjUFVaUccKgWbw/lPCXWLzwcqKqSuxSOkfL2UAD3QRqjxd+Y7oLB1J3IfZ4qd/xkpLTbQ2mdEm6j5urtXwM31LeHErvxGQ7JEQym7s54sKiqAn75pfYA5sXVwq0psaXPFXgUlY6zoVRJraUuDtjuujmS++IN9onItdhaSvZwJJTK3Vqqsd4hnl9KrsRgSqREcnW9umvzjNitpe76PVqj9JCm9PKJjN34pHQMpk7IzMxEdHQ04uLi5C4KkTqwtZTsobTWUpFC7CWPQFGmY8TfQeYYitWNwdQJycnJKCgoQG5urtxFIVI+pR49eRSTjtJbI6Uon4jTVMImw258cjUGUxFd0jXn4+VIvZRwFLSHUo9gavselUppraVkM/7WI2cwmEqg3COIAZWoLoY19+NMy6HUV+ED9pdP6a2/NuBmSGrAYCohhlNSDbUdscRqLWXTjnYoobXUhvBq63HB1k1SbZuu1LhJqx+DqcTYekpur6hI7hK4DlNCLbaWaoIjq7MzwVCpZ+eQazGYuggDKimW2sIUW0upPiW0liqc2jZzcl+qCKaHDh3CsGHD0L59e/j5+SEkJAS33XYb3n33XYtx8/LyMHDgQAQEBCA4OBhJSUk4fvy41emuXr0a3bp1g16vR8eOHZGRkQGDwSBpXRhQiZzAJhXlc9fWUhm68ckcf2tqgyqePVlaWop27drhvvvuQ5s2bXD58mW89957ePDBB3Hy5EmkpqYCAI4cOYL4+Hj07NkTmzZtQkVFBdLS0tC3b18cOnQILVu2NE1z6dKlWLhwIVJSUjBo0CDk5uYiNTUVZ86cwdq1ayWvk3EH1bzmouTzIqJ6pDiCMU04x9FQ6satpVKucuzGd5HgYHFPFdHpsH79emzcuBFA7W0tk5OTxZu+C6gimMbHxyM+Pt5s2PDhw3HixAmsXbvWFEzT0tKg1+uxY8cOBAbW3sA4NjYWXbt2xcqVK7FixQoAQHFxMZYsWYJp06Zh2bJlpnkYDAakpqZizpw5iI6OdkndGFBJVlIe2YqKAF9f8abntkcuFVH6uZgytpYSucqECROQlpYmdzEcpoqu/IaEhYXBy6s2W1dVVWHHjh0YPXq0KZQCQFRUFBISErBt2zbTsJ07d6KiogKTJ082m97kyZMhCAK2b9/ukvLXxS5+0hQltx6ytVQacnThq6i1VM5ufK6epCaqaDE1qqmpQU1NDS5cuIDNmzdj165dePXVVwEAv/76K65evYqYmBiLz8XExCA7OxsVFRXw9fXF4cOHAQA9evQwGy8yMhJhYWGm9xtSWVmJyspK099lZWUAgOpqA6qqnDtH9QL8AQABNWVOTcdehqoqs3/VSnP1qK6WdkaCINmkDfX+dcq5c4BOJ8aUAE9Pu0Y3eHiY/WuVl7J3pYY/y2eQqpzh4c593sZla/hzPIMj60J4uH3re6tWgK3bnw37myqPv7YE43HC2vHC1llK3YHQ1Fes0xnM/i0stHvTMuPsqvnHH4C3tyOflPa6ErKfsvem9cyYMQOvv/46AMDHxwevvPIKHnnkEQC13fMAEBISYvG5kJAQCIKACxcuIDIyEsXFxdDr9WjWrJnVcY3Tasjy5cuRkZFhMfzbb3Pg7+9vd72UJPvAAbmLIArN1KOBC/cUr04XfrYY3fnt2jk/DSenlR0bK14ZZJI9ZIjcRRBFdtu29n/oop2nS9kz/i+/2DftP33zTbZDn7OXj4/9n7F1M2nbNtuu8ZXmypUr+OQTuUtBdakqmD799NOYOnUqzp49i08++QQzZ87E5cuX8fjjj5vG0TXyM6/ue7aOZ838+fMxb948099lZWVo164devdOQIsWobZUxS6uaD01VFUh+8ABJPbpA2+Ft/40RnP16NQJ3s40QzRGqiaXP+9bakBtKE2sqIBDDRl1nTvn7BRqOdCnafDwQHZsLBK//x7eNTXWR1L4vVoNXl7IHjIEiTt3wlvM3gRnW0oBu04BMOh0yG7bFon/+x+8w8Jsn4e95bTnFAEbpn3JI9Ds76oqA775Jhu3354ILy/zrcPWVcnWzdeRVdOWz+h0BrRtm43//S8RguDt1OkCYmzef/zh6Ccbb4gi11PVkbt9+/Zo3749AODuu+8GUBsSJ06ciNDQ2kBorbWzpKQEOp0OwcHBAIDQ0FBUVFTgypUrFi2cJSUliG2iZUSv10Ov11sM9/T0ttjJiMG7xnWLydvLS9WBzkj19fjzyODt6SlNMC0sFK9rvAnef76cItYpB+HhDp9j6l1TA++G+lnDwlRxIp93VZU4wdQYJp091aR1a4eWrXdYmH3rlL3ruj3bnA37GS8P66X18jI/ZtjTHS7l5mvPIhEEbwiCt1OrghirpON3ehT/mE3OUfXFT7feeiuqqqpw/PhxdO7cGX5+fsjPz7cYLz8/H126dIHvn12KxnNL649bWFiI8+fPo3v37tIXnqghKgg4DVJz2ck2Yl2B7op7lgLSPuWJV+MTiU7VwTQnJwceHh7o1KkTvLy8MGLECGzduhXl5eWmcU6fPo2cnBwkJSWZhg0ZMgS+vr7Iysoym15WVhZ0Oh1GjRrlohrYhlfruxFXBDu1hUe13CbKHUKK2kIpuQ2uUtqhir7Ohx9+GIGBgbj11lsRHh6O8+fPY/Pmzfjggw/wxBNPmG6cn5GRgbi4OAwfPhwpKSmmG+yHhYXhscceM00vJCQEqampWLhwIUJCQkw32E9PT8fUqVNddg9TIpdT2h25ST2UELzrPCTFJlK2ltqIDQtE9lFFML3tttvw1ltv4e2330ZpaSkCAgJw00034Z133sEDDzxgGq9bt27Yu3cvnnrqKYwZMwZeXl7o378/Vq5cafbUJwBYsGABmjdvjszMTKxcuRIRERFISUnBggULXF09oloMduoXEaHN5ShmYNPKPUtFDrH2rDZaXMWIjFQRTCdPnmxxM/yGxMbGYvfu3TaNO2vWLMyaNcuZohGJg1342qGlcCp2C6Ir+1sV0FpKRPZT9Tmm7oTdQRqmhRCjhTqQOSUFNaW1lpKouHipLgZTInfA4PgXV7TaKSnUOUKK8ruyC1/q1lIbx2eDApH9GExVhDs5DdJCYNRCHegvSgqlROR2GEyJ5OKqQMfgKA81tpoqrcxKbC2VADdRcfD3j/2+/PJLjBgxAq1bt4ZOp8P27dtN7xkMBjz11FPo0aMHmjVrhtatW2PChAn43cGHlNiKwVRl2GqqETwS2UYt9zBtiAJCj82kKquSu/AdoaZlStSEy5cv46abbsKrr75q8d6VK1eQl5eHhQsXIi8vD1u3bsXRo0fxf//3f5KWSRVX5StVZmYmMjMzUe3sY/nIvbgylEo9LwbspqnhKn0thFJHSBgypWpE4G2lSExDhw7F0KFDrb4XFBSE7Oxss2GrV6/GrbfeitOnT5seES82tpg6ITk5GQUFBcjNzXXpfNlqSkSiUVoodRRbMokAAJWVlSgrKzN7VVZWijLtixcvQqfTITg4WJTpWcMWU5Uq9whC85qLcheD7MXWUvek1FZTJYY5JbeWSvB9KXG1IBcKDhZ9vVqzZg1efvlls2GLFi1Cenq6U9OtqKhASkoKxo8fj8DAQKem1RgGUyJX0VIoVbvWrQGJT+C3oLRwKmUodXUXvhIDNpFMpk+fjsWLF5sN0+v1Tk3TYDBg3LhxqKmpwWuvvebUtJrCYKpibDVVESUFEjForT6uopRwqsRQ6ihXtXza8RmebkVy0uv1orZoGgwG3HvvvThx4gT27NkjaWspwHNMibRHCcFHDGq/Ir8hcrfuyT3/hvDxPyQC3jJKXMZQ+ssvv2D37t0IDQ2VfJ5sMVU5tpqqgFaCopHW6uNOwsMBKe8iooYufIWcWwoARUWAp6ckkyayyaVLl3Ds2DHT3ydOnMChQ4cQEhKC1q1bY8yYMcjLy8OOHTtQXV2Nwj/3/yEhIfDx8ZGkTAymGsBwqmCuDnEMjeogZZe+tRDlivTDpioA0nbju2Lz5i7EvRw8eBAJCQmmv+fNmwcAmDhxItLT0/Hxxx8DAHr27Gn2uZycHMTHx0tSJgZTjWA4JZfQ0lFLjgug6nI0nCqtK97ZQOqmraVEShAfHw9BEBp8v7H3pMJgSiQVtpZSUxoLp2oIRHKF0vBw+z+jhu+TiBhMtYStpgqixZDoyjpp9cIna9QamNyh697OZcOr8Ymcx6vyNYY7RjelxSBMyiVGKHXlVfhqDf9EbojBVIMYTmWmxS58Bl8ykjOUOtKF7yiVh1l33mTdoTFfyxhMnZCZmYno6GjExcXJXRQLDKcyceejgRrxCGYftbWUAi674EnqfS53LeQuGEydkJycjIKCAuTm5spdFKsYTt0AW0vJVeQO8Rq6or6oSO4SECkXg6nGMZy6EAOcONzpwie1ECuUuvLWUI5SaJglchcMpm6A4dQF5AilbC0lV1BrKHVhwOQ+1nl8Ii0ZMZi6Ce44iRogdxe1krnbd+OCMMvfekSNYzB1IwynEmFrKVHj2FrqFG6K9nO331RawmDqZhhONUDLRymeX6oc7taFz3NLiRSBwdQNMZyKSKshUav1agibV8y52/fBUEqkGHwkqZvi40tFoNUufHJvYoZStbSWOsjeH/ncfMlCixai/xBcv349Nm7cCKD2tpbJycmiTl9qDKZuzLhTZUAlMzx6ui93DKVsLSWNmTBhAtLS0uQuhsPYlU/s2neEVltL5Qylcp9f6m7d1/W5e/3t5Kr9piObJH9bkpoxmBIA4JJHoNxFICK5iB1K2VpKCsDfWurEYEpmGFBtwNZS0hJ3DaVOcKS1lJsXkW0YTJ2QmZmJ6OhoxMXFyV0UUZV7BLF7vyFaDaVyk7sb34hNLO6DraVEisRg6oTk5GQUFBQgNzdX7qJIguG0Hi0HRC3XjRrmrq2lDKVEisVgSo1i66nMXNGSyFBqzl1aTd01lDrJld343DTJHTGYkk3cPpzyCCEdpXTjuxOlhFI5sLW0QVrczbnL70wtYTAlm7ltONXi3tpIy3VzBo9mtnMmlDoaEl3dOvsnt90HErkQgynZhV37LsJWRJKKEm6iD7hNyyV/+xHZh8GUHOI24VTLRxUl1E3JAVyLraZihkE5uu9lDMKu3ucpYfMkkoNqg+kbb7wBnU6HgIAAi/fy8vIwcOBABAQEIDg4GElJSTh+/LjV6axevRrdunWDXq9Hx44dkZGRAYPBIHXxNUHz4VSuIwPvWUpiE7t10tlQqrLWUjXt67hpk9qpMpieOXMGjz/+OFpbadE4cuQI4uPjce3aNWzatAlvvvkmjh49ir59++LcuXNm4y5duhSzZ89GUlISdu3ahRkzZmDZsmVITk52VVVUT007bFIYJbeWGqm91bR1a+Vd6CTHVfgyBWGGRPtI1Qiv9s3Y3XjJXQBHPProo7jrrrsQEhKCLVu2mL2XlpYGvV6PHTt2IDCw9ilGsbGx6Nq1K1auXIkVK1YAAIqLi7FkyRJMmzYNy5YtAwDEx8fDYDAgNTUVc+bMQXR0tGsrplLlHkFoXnNR7mKIi62lpGZaOxLLGEr545vItVTXYvruu+9i3759eO211yzeq6qqwo4dOzB69GhTKAWAqKgoJCQkYNu2baZhO3fuREVFBSZPnmw2jcmTJ0MQBGzfvl2yOmgRd96kWWrqdpaihbQutXXhyxhKnfn9x9+O5M5UFUzPnj2LOXPm4Nlnn0Xbtm0t3v/1119x9epVxMTEWLwXExODY8eOoaKiAgBw+PBhAECPHj3MxouMjERYWJjpfXJDbC2Vnhq68etTckCVOpAC6uzCdwJ/bBPJQ1Vd+TNmzMD111+P6dOnW32/uLgYABASEmLxXkhICARBwIULFxAZGYni4mLo9Xo0a9bM6rjGaVlTWVmJyspK099lZWUAgOpqA6qq1HnhlLHczpT/AvwRUFMmVpEcYqiqMvvXIdXVIpXGToJg+q/hz/8b6gxTG0O9f83odC4siXMMf5bVoNMBbdooJ9wDNoc2szo4omVLxz5XlyPrcqtWZtuj4c//G2zZRsPDAQf3A5c8AoEa5/bljRWxutpg9m99cm329qweOp3B7F9PT3HK4CVRKvH2bugddR6ztUw1wfTDDz/EJ598gh9++AG6Jraext6v+56t49W3fPlyZGRkWAz/9tsc+Pv7N1o2pfvmm2y5iyCK7AMH5C6CKLLLRA76vr7iTs8G2dbm2a6dy8vhrGxjL40Ky26UbaWnyWUuOnAeegOfyW7gLitmfvnF/vm52LFj4u9vfXwc/6wjq3bbttkOf1YJrly5gk8+kbsUVJcqgumlS5eQnJyMv//972jdujVKS0sBANeuXQMAlJaWwtvbG6GhoQBgtbWzpKQEOp0OwcHBAIDQ0FBUVFTgypUrFmGypKQEsbGxDZZn/vz5mDdvnunvsrIytGvXDr17J6BFi1BnqiqbqioDvvkmG7ffnggvrwZ/WpqRu3XUGkNVFbIPHEBinz7wdvSnd1GRuIWyVZ3ubYMgILusDImBgfAWs3XRhXUzoDaUJlZUwOoaVe8uGUpl0OmQ3bYtEv/3P3g31JTlqlZUB7u1bapDQ5xtLQ0Pd+xzVk4dMFRXI/v4cSR26gTvxproHJ3nny55BDY9UiOa2syqqw04diwbXbokwtPTcutw5kwXZzZxez6r0xnQtm02/ve/RAiCt2ibgJS7hT/+sDa04d5RlwgKEv12BOvXr8fGjRsBAMnJyaq705Aqgun58+dRVFSEF154AS+88ILF+y1atMDIkSOxZcsW+Pn5IT8/32Kc/Px8dOnSBb5/tt4Yzy3Nz89H7969TeMVFhbi/Pnz6N69e4Pl0ev10Ov1FsM9Pb1tDnVK5eXVeB3Mrr73UO7q4+3l5XgwFatPyl5WAqi3TiduMI2IcHlXtPefLwstW6rqXFNvQWg41NUNQr//Lv7MjeePOtnH22gdrBHjgOno+tvIdujt6dl4MHWiP7jcI8jpA6OtuxBPT2+LYFpYKN+ZLo6sXoLgDUHwFu0MKGfOwmpKy5bWNk91H7OtmTBhAtLS0uQuhsOUmyzqiIiIQE5OjsXwZ599Fvv27cPnn3+OsLAweHl5YcSIEdi6dSuee+45NG/eHABw+vRp5OTkYO7cuabPDhkyBL6+vsjKyjILpllZWdDpdBg1apTk9VILzd0KipSjVStVhVOb1L0ISYyQKtetn8QIpW50z1IShxZ3CWQfVQRTX19fxMfHWwzPysqCp6en2XsZGRmIi4vD8OHDkZKSgoqKCqSlpSEsLAyPPfaYabyQkBCkpqZi4cKFCAkJwaBBg5Cbm4v09HRMnTqV9zAFAym5iJaPRM6EVK3di5RIAVq3lqZTg8SjqttF2aJbt27Yu3cvvL29MWbMGEyaNAldunTBl19+iZb1zpVasGABVq1ahS1btmDQoEFYvXo1UlJSkJmZKVPp5RdQU4bmNRcZSuXgqpYeJbYoyfHcdVcz3tKpqcDpils/NUXO1lIZiXGLKCXdtIFIjVTRYtqQrKwsZGVlWQyPjY3F7t27bZrGrFmzMGvWLJFLpi7Nay7CUCPhiT1EttByy2l99YPn77/LH0aN5P6RwG58VVJTS6SayuqONNdiSrYxtoqyZZQURe5QJBethVIGRFlopbXWXXcDVIvB1I0wjJKJkoMDj0rui62l5CJK+S1IllTdlU+2YRAl1TGGU3fp2lcCN28t5SNIiZSBLaYaxtZRapQaAgRbT11DCd+zBlpLne1K10pXvFqw1VSZGEw1iIGUNEUJoYlso5CASOrHzd59MZhqCAOpBrj6wK6WINGqFY9UUlFCF77M6yG78d2XWnaB7oTB1AmZmZmIjo5GXFycrOVgICW3wXAqLi18n0wWisGucRIDg6kTkpOTUVBQgNzcXNnKwEBKTlPbgZ2tp8qj4tZSIlIWBlOVYispuT2GU+cooQtfAfMWqxufFy6Jj5u4e2IwVSEGUhKdWluteORyjFK+N7WudxrFxeF+zpw5gwceeAChoaHw9/dHz5498f3338taJt7HVGUYSonq4T1P7SNmKFV5a6mSsMWVXO3ChQu44447kJCQgM8//xytWrXCr7/+iuDgYFnLxWCqIgylJKmICHUfHVu1Yjh1JWeDoQKCJa/GJ3e2YsUKtGvXDm+99ZZpWIcOHeQr0J/Yla8SDKVuRAEHbNXihVGNa9lS7hKIIzxc7hKYUfPvOaXj5my/yspKlJWVmb0qKystxvv4449xyy23YOzYsWjVqhV69eqFf/7znzKU2ByDqQowlJLLaCUU82hmTuxAytZSagBvGWWn4ODa7UGsl06HNWvWICgoyOy1fPlyi1kfP34ca9asQdeuXbFr1y48+uijmDVrFtavX+/676EOduUrHEMpuZzau/SNeO5pLbFDugJCJbkXnqVjn+nTp2Px4sVmw/R6vcV4NTU1uOWWW7Bs2TIAQK9evfDTTz9hzZo1mDBhgkvKag1bTIlI29y19VSK0xrECKUMtkSS0uv1CAwMNHtZC6aRkZGIjo42G3bDDTfg9OnTriqqVQymCsbWUpKN1sKDu517qtW6inRuqZjd+FroXFADra7Scrrjjjvw888/mw07evQooqKiZCpRLQZTInIfWj+6SRnA2VoqGYZbksPcuXNx4MABLFu2DMeOHcOGDRuwdu1aJCcny1ouBlMnZGZmIjo6GnFxcaJPm62lbk4JAUqrIUKLradS10kJ64JIZeBFT0S14uLisG3bNrz//vvo3r07nnnmGaxatQr333+/rOUSJZiWlpaKMRnVSU5ORkFBAXJzc+UuCpE0lBBIpKKVcKqWemh5XSIzUl2Zr5ZVXU2GDx+O/Px8VFRU4L///S+mTZsmd5HsD6YrVqzABx98YPr73nvvRWhoKNq0aYP//Oc/ohbOXbG1lBRFy4FCza2nriq7Epa/EspgBbvgicRndzB9/fXX0a5dOwBAdnY2srOz8fnnn2Po0KF44oknRC8gEZHk1BZOXVVesQKhQoKllrvx3SUkq21TJfvZfR/TP/74wxRMd+zYgXvvvReDBg1Chw4d0Lt3b9EL6G7YWkqKpJV7mzZGDfc9VeNRWSGhlIjUwe4W0xYtWuC3334DAOzcuRMDBw4EAAiCgOrqanFLR0TK4S4BQ6nhz9XlUsry5kVPVI9SN1ESh90tpklJSRg/fjy6du2K4uJiDB06FABw6NAhdOnSRfQCuhO2lpLiuUPLKaCs1lM5jsIa68KXglibgTtsTkT2sDuYvvTSS+jQoQN+++03PPfccwgICABQ28U/Y8YM0QtIRArjLuEUkL9pRs2hVAxKKgspCh9Tql12B1Nvb288/vjjFsPnzJkjRnncFltLSVXcKZwatWxpOUzKI6PcodhZCgqV7MZ3vdatgd9/l7sUpEY2BdOPP/7Y5gn+3//9n8OFIaJ6WrUCzp2TuxTWuWM4ra+x8OhoaJUzkCooTCqqLETkMjYF01GjRtk0MZ1OxwugiNwJw2nDHAmtWgmlCgqVUrSWcpVXBnbna5NNwbSmpkbqcrg1duOTqjGc2k/t3fSNESOUKijYEpFrOfVI0oqKCrHKQURqxiChbkpafiKWRennlrK1z3la/o3nruwOptXV1XjmmWfQpk0bBAQE4Pjx4wCAhQsXYt26daIXUMkyMzMRHR2NuLg4h6fB1lIFUtJBGlBeeRoSEaGestJfNNqFLxV2DtiudWu5S0BqZHcwXbp0KbKysvDcc8/Bx8fHNLxHjx544403RC2c0iUnJ6OgoAC5ublyF4VIOdwgnGiG0kKpG7WWknhU3WoaHPzXj3oxXgDWr1+P6OhoREdHIzMzU976OcDuYLp+/XqsXbsW999/Pzw9PU3DY2JicOTIEVELR0QqFREBhIfLXQoiIrczYcIEFBQUoKCgAMnJyXIXx252B9MzZ85YfcJTTU0NDAaDKIVyF+zGJyLZsLXUbuzGVy5Vt5qSGbuD6Y033oh///vfFsM3b96MXr16iVIoIqpHzd3jbDlVHqWFUiKiP9n95KdFixbhwQcfxJkzZ1BTU4OtW7fi559/xvr167Fjxw4pykhEasdbSimHEkOpClpL3YXYm6ornwDF+5pqg90tpiNGjMAHH3yAzz77DDqdDmlpafjvf/+LTz75BImJiVKUkYi0gFftk4rxdxWRa9jdYgoAgwcPxuDBg8Uui1vh+aVkN620OmqlHmok5mkVbC1VDG5OpCV2t5hOnjwZX3zxBQRBkKI8Vu3duxc6nc7q68CBA2bj5uXlYeDAgQgICEBwcDCSkpJM91qtb/Xq1ejWrRv0ej06duyIjIwMXsBF5ApsPVU3hlJSKF4EpX52t5gWFxdj2LBhCA0Nxbhx4/DAAw+47KKnZcuWISEhwWxY9+7dTf8/cuQI4uPj0bNnT2zatAkVFRVIS0tD3759cejQIbRs2dI07tKlS7Fw4UKkpKRg0KBByM3NRWpqKs6cOYO1a9e6pD5Ebs8YTNjkI52ICEAQgIvspXEUV08i17E7mH788ccoLS3Fpk2bsGHDBqxatQrXX389HnjgAYwfPx4dOnSQoJi1unbtij59+jT4flpaGvR6PXbs2IHAwEAAQGxsLLp27YqVK1dixYoVAGrD9ZIlSzBt2jQsW7YMABAfHw+DwYDU1FTMmTMH0dHRktWD3fhE9TCgSkOKVmm2ljrN3S7QceUFUAAvglI7u7vyASA4OBgPP/ww9u7di1OnTmHy5Ml45513rN7f1FWqqqqwY8cOjB492hRKASAqKgoJCQnYtm2badjOnTtRUVGByZMnm01j8uTJEAQB27dvd1Wxieyj9e5vdvGLR8mhVEX4W4nItRy6+MnIYDDg4MGD+Pbbb3Hy5EmES3y/wuTkZIwbNw7+/v647bbbsHDhQtx5550AgF9//RVXr15FTEyMxediYmKQnZ2NiooK+Pr64vDhwwBqH6NaV2RkJMLCwkzvN6SyshKVlZWmv8vKygAA1dUGVFU1fY6qoaaqyXFczVBVZfavWolWj+pqEUrjOMOf8zdYK4cLz+92huHPchocKa9xX1JUJGKJHGOo96/iGb+7Ot+7U8vCqFUr8baL8HDAgW3U2vZ9ySMQqJFu6UixKxAEg9m/SqPT2TKOwezfptR5UKRLREYC5841PV6NhOsOOcahYJqTk4MNGzbgww8/RHV1NZKSkvDJJ5+gf//+YpcPABAUFITZs2cjPj4eoaGhOHbsGJ5//nnEx8fj008/xeDBg1FcXAwACAkJsfh8SEgIBEHAhQsXEBkZieLiYuj1ejRr1szquMZpNWT58uXIyMiwGP7ttznw9/d3sJbKkF3vYjK10kw9GrhwT02y//zh5hBfX/EK4qRsBZWlUY2cS+rUshDzHNVffnHq41rZvktLs0WZjo+PKJMxadfO9nHbtrWtDvZM05WuXLmCN96QuxRUl93BtG3btiguLsbgwYPx+uuvY8SIEfCVeIfdq1cvswus+vbti3vuuQc9evTAk08+aXbrKl0jP/XqvmfreNbMnz8f8+bNM/1dVlaGdu3aoXfvBLRoEdroZwEgoMaJg4NEDFVVyD5wAIl9+sDby6mGdFmJVg+ZW+oM1dXIPn4ciZ06wdtaU4MKTqAyCAKyy8qQGBgIb1uaYGzl4mVjQG0oTayogLdL52ynRnqsnF4WYl7q7ETPWv3t+5JHYNMfcoJUq1pRkQGlpdkIDk6ETuf8WiV2OW2Znk5nQNu22fjf/xIhCE3XQa5TIppqNa2pabwhilzP7iN3Wloaxo4dixYtWkhRHpsFBwdj+PDh+Mc//oGrV68iNLQ2EFpr7SwpKYFOp0NwcDAAIDQ0FBUVFbhy5YpFC2dJSQliY2Mbnbder4der7cY7unpDS+vpjdQ7xrlBj9vLy9VB1Mjp+vh6n6nBnh7eloPpmIGPYl563TiBlOZ7oPq/edLkWw899PhZSHm9iDC/sW4fXt5SLdECgul2Q0UFv61+ep03qIEU7HZc8aHIHjbFEzDw117AZRRU2eM1NQo7/t3d3Zf/PTwww+jRYsWOHbsGHbt2oWrV68CgEvva2pknKdOp0Pnzp3h5+eH/Px8i/Hy8/PRpUsXU8uu8dzS+uMWFhbi/PnzZregIjflhhd5qAqXz1+k/i6U+AhTqO9KfCKyjd3BtLi4GAMGDMB1112Hu+++G3/88QcAYOrUqXjsscdEL2BDLly4gB07dqBnz57w9fWFl5cXRowYga1bt6K8vNw03unTp5GTk4OkpCTTsCFDhsDX1xdZWVlm08zKyoJOp8OoUaNcVAsichiv4CeJ8Ep87eAN99XH7j6VuXPnwtvbG6dPn8YNN9xgGv63v/0Nc+fOxQsvvCBqAQFg/PjxaN++PW655RaEhYXhl19+wQsvvICioiKzcJmRkYG4uDgMHz4cKSkpphvsh4WFmYXmkJAQpKamYuHChQgJCTHdYD89PR1Tp06V9B6mQO0vfd7LlEgk7vyIUzcN5pc8Ap27pQzJwtX3MyV1snvb/te//oVdu3ahbdu2ZsO7du2KU6dOiVawumJiYvDBBx/gH//4By5duoSQkBDceeedeOeddxAXF2car1u3bti7dy+eeuopjBkzBl5eXujfvz9Wrlxp9tQnAFiwYAGaN2+OzMxMrFy5EhEREUhJScGCBQskqQMRScgdb9DvilCq0G58kpY7/9Yj+dkdTC9fvmz1lkjnz5+3ekGQGFJSUpCSkmLTuLGxsdi9e7dN486aNQuzZs1ypmikZdw7q4+7BFSGPMlofdVxR4p+ElRwsOjb8/r167Fx40YAtfd/T05OFnX6UrP7HNO77roL69evN/2t0+lQU1OD559/3uI59kREstDy+aeuqpdWvz8ZMfTWdueTtCZMmICCggIUFBSoLpQCDrSYGm9sf/DgQVy7dg1PPvkkfvrpJ5SUlODrr7+WooxERI7RWguqWsOiWstNmqHoVlMyY3eLaXR0NH788UfceuutSExMxOXLl5GUlIQffvgBnTt3lqKMRETO0XILqhT4XRGRTBy6sDEiIsLqIzmJNEep55kqtVxKp+bvTa1hUcRyS/2kJ7WuGmoj19X5bDVVB5uC6Y8//mjzBGNiYhwujDvhLaOIZKLGcOrKUKrWAExEmmBTMO3Zsyd0Ol2TT3fS6XSorq4WpWBqkJmZiczMTLeqM5EmqCmcMigSiYatpspnUzA9ceKE1OVQJeNtGMrKyhAUxMfjEamKGsKpq0Op2PMT+xGkNQbRplef1KuC0le1+qTePHizfWqITcE0KipK6nIQEbmeGsIpEYmKrabKZvdV+URuh12p2qbU5avUctlK7eVXCf6uIq1hMJVRuQe7/4kUQWkhSo7yKO07cCGGO3nIebP9Vq3kmzc1jsGUiAhQTjBTSjkUhD/iidwHgykRkZHcN+KXa94KvuhJC9giq0xsNVUmh4JpaWkp3njjDcyfPx8lJSUAgLy8PJw5c0bUwhERyYLBym0wNMpLzu58Uia7n/z0448/YuDAgQgKCsLJkycxbdo0hISEYNu2bTh16hTWr18vRTk1izfaVwleve1+pFjmSgy8Cm8tZTe+fNxhtxcWJncJqD67W0znzZuHSZMm4ZdffoGvr69p+NChQ/Hll1+KWjgiaoQSQ47WWPuOjd39jryIiBTmtddeQ8eOHeHr64vY2Fj8+9//lrU8dgfT3NxcPPLIIxbD27Rpg0Kt/7QiIvcTHv7Xv1oLl1qrj514yFIGdufL54MPPsCcOXOwYMEC/PDDD+jbty+GDh2K06dPy1Ymu4Opr68vysrKLIb//PPPaNmypSiFIiIiFWI3vgWGX1KyF198EQ899BCmTp2KG264AatWrUK7du2wZs0a2cpkdzAdOXIkFi9eDIOh9tFwOp0Op0+fRkpKCkaPHi16Ad2BFna+RKQybt5aSqRVlZWVKCsrM3tVVlZajHft2jV8//33GDRokNnwQYMG4ZtvvnFVcS3YHUxXrlyJc+fOoVWrVrh69Sr69euHLl26oHnz5li6dKkUZVSszMxMREdHIy4uTu6iEBHJS2VBly2ZyuKu3flXdf4o9wgS7QUAa9asQVBQkNlr+fLlFvM+f/48qqurEW48XelP4eHhsp6aafdV+YGBgfjqq6+wZ88e5OXloaamBjfffDMGDhwoRfkULTk5GcnJySgrK0NQEFs9Nc8dLlEl96CCEMmeJCLHTJ8+HYsXLzYbptfrGxxfp9OZ/S0IgsUwV7IrmFZVVcHX1xeHDh1C//790b9/f6nK5XZ42ygiIm3Rwu9Y/h5XH71ej8DAwCbHCwsLg6enp0Xr6NmzZy1aUV3Jrq58Ly8vREVFobq6WqryEBGRlKRoLVXZRU8MWsrkrt35cvHx8UFsbCyys7PNhmdnZ+P222+XqVQOnGOamppq9sQnEg+7roiIiMhV5s2bhzfeeANvvvkm/vvf/2Lu3Lk4ffo0Hn30UdnKZPc5pq+88gqOHTuG1q1bIyoqCs2aNTN7Py8vT7TCEVET2M9G9pDi4eAqOF+1Lm4uRH/529/+huLiYixevBh//PEHunfvjs8++wxRUVGylcnuYDpq1CgJikFGPNeUiNwZe47cW+vWwO+/y10K9zJjxgzMmDFD7mKY2B1MFy1aJEU5iIhIbVTWWupKbJklcozd55iS9NhioGA8EJMaSdGFr0IMi47hbo9cye5g6uHhAU9PzwZfJA6GUyIShVSpQoLpcr9HAK/Od3d2d+Vv27bN7G+DwYAffvgBb7/9NjIyMkQrGBERERG5F7uD6ciRIy2GjRkzBjfeeCM++OADPPTQQ6IUjHghFBE5SUWtpVJzZTc+Txkgcpxo55j27t0bu3fvFmty9Cd2bRGRQ1QWHrmvo7rYne++RAmmV69exerVq9G2bVsxJqcamZmZiI6ORlxcnKTz4Q6biOyislBKjmHLLGmR3V35LVq0gE6nM/0tCALKy8vh7++Pd999V9TCKV1ycjKSk5NRVlaGoCBpwyO79YnIJlKHUhVe9MQA5zw+y4Ncxe5g+tJLL5kFUw8PD7Rs2RK9e/dGixYtRC0ckSIpbQ+ttPIQuTFuiuLhzfbdk93BdNKkSRIUg2zBVlMiapQKW0ulxqBIpC52n2O6c+dOfPXVV6a/MzMz0bNnT4wfPx4XLlwQtXBkieebEpFVKgyNAPdpRGTO7mD6xBNPoKysDACQn5+PefPm4e6778bx48cxb9480QtIlrgjJyIzrgilKg2+pG68Ot/92N2Vf+LECURHRwMAPvzwQ4wYMQLLli1DXl4e7r77btELSNaxW5+IAKg6MGrtoietnzbA09nFV1oq/ne6fv16bNy4EcBfF2mrid0tpj4+Prhy5QoAYPfu3Rg0aBAAICQkxNSSKpWvvvoKd999N1q0aAE/Pz907doVzzzzjNk4eXl5GDhwIAICAhAcHIykpCQcP37c6vRWr16Nbt26Qa/Xo2PHjsjIyIDBYJC0DkREqqPi8Evqx1ZT+0yYMAEFBQUoKChQXSgFHAimd955J+bNm4dnnnkG3333HYYNGwYAOHr0qKT3Md2wYQP69euHoKAgrF+/Hp999hmeeuopCIJgGufIkSOIj4/HtWvXsGnTJrz55ps4evQo+vbti3PnzplNb+nSpZg9ezaSkpKwa9cuzJgxA8uWLVPVQmSXPpGbY2BsEFv2iNTJ7q78V199FTNmzMCWLVuwZs0atGnTBgDw+eefY8iQIaIXEADOnDmDhx9+GI888ghee+010/CEhASz8dLS0qDX67Fjxw4EBgYCAGJjY9G1a1esXLkSK1asAAAUFxdjyZIlmDZtGpYtWwYAiI+Ph8FgQGpqKubMmWM6XUHp2KVP5KZcFUolmg9/WJM9eOso92F3i2n79u2xY8cO/Oc//8FDDz1kGv7SSy/hlVdeEbVwRm+88QYuX76Mp556qsFxqqqqsGPHDowePdoUSgEgKioKCQkJ2LZtm2nYzp07UVFRgcmTJ5tNY/LkyRAEAdu3bxe9DlLiDp7YcuZmuLwVhy20ROKwu8U0Ly8P3t7e6NGjBwDgo48+wltvvYXo6Gikp6fDx8dH9EJ++eWXCAkJwZEjRzBy5EgcPnwYISEhSEpKwnPPPYfAwED8+uuvuHr1KmJiYiw+HxMTg+zsbFRUVMDX1xeHDx8GAFMdjCIjIxEWFmZ6vyGVlZWorKw0/W08t7a62oCqKnnOUb0AfwTUOH6Or6GqyuxftXJZPcLCgKIiySZvqK42+9cmdU5rUQLDn+UxKKxc9lJkPexZL+Dg+gQA4eGABNvSJY9AoMb+faVx/9rUflbCTbNB9qwegmAw+1dNIiJqv1+drrbsxn9doU0b8X8A1DiwHpK07A6mjzzyCFJSUtCjRw8cP34c48aNwz333IPNmzfjypUrWLVqleiFPHPmDK5cuYKxY8di/vz5WLVqFXJzc7Fo0SIcPnwY//73v1FcXAyg9iKs+kJCQiAIAi5cuIDIyEgUFxdDr9ejWbNmVsc1Tqshy5cvR0ZGhsXwb7/Ngb+/v4O1VIbsAwfkLoIoNFOPBi7cU5NsiS+KdBVF1eOiY6fv2L0+/fKLQ/OR2jffZMtdBFGUljpXDwnagWzSrt1f/2/b1rXLou68xWC8mJuUw+5gevToUfTs2RMAsHnzZtx1113YsGEDvv76a4wbN06SYFpTU4OKigosWrQIKSkpAGrPCfXx8cGcOXPwxRdfmAJh3cel1lf3PVvHs2b+/Plm92wtKytDu3bt0Lt3Alq0CLWpTlJxtNXUUFWF7AMHkNinD7y97F4tFMOl9ZC4xTT7+HEkduoEb09P2z509qxk5XGEQRCQXVaGxMBAeDexTSmZourRqpVDH3NofQoPd2hetrjkEdj0SFZUVRnwzTfZuP32RHh5eVsdR47WUsC+zU8QDCgtzUZwcCJ0Ouv1sIVcdTW2mLZtm43//S8RguB4HRwhZqupwdB4QxS5nt1HbkEQUFNTA6D2dlHDhw8HALRr1w7nz58Xt3R/Cg0NxS+//ILBgwebDR86dCjmzJmDvLw8jBw5EgCstnaWlJRAp9MhODjYNL2KigpcuXLFooWzpKQEsbGxjZZHr9dDr9dbDPf09G5wZ+kq3jXOhTFvLy9VB1Mjl9TD1gO8E7w9PW0PEpGRijzRzVunkz/QiUAR9XBynbNrfZJo+yn3CLL/wFOPl1fD+1oXbJYWCgsBR1YNnc7bqWAql7qnLQiCt8uDqb1npDSmpkZ937/W2X3x0y233IIlS5bgnXfewb59+0y3izpx4gTCJfqFbe28UQCmW0V5eHigc+fO8PPzQ35+vsV4+fn56NKlC3x9fQH8dW5p/XELCwtx/vx5dO/eXczik1bxAhRyJa5vRAB4X1OtszuYrlq1Cnl5eZg5cyYWLFiALl26AAC2bNmC22+/XfQCAsDo0aMB1N6Sqq7PPvsMANCnTx94eXlhxIgR2Lp1K8rLy03jnD59Gjk5OUhKSjINGzJkCHx9fZGVlWU2vaysLOh0OowaNUqSehBJjuGFxKDSW0QpsMNAk7ibISnZ3aMSExNjtVXy+eefh6dEfSiDBg3CiBEjsHjxYtTU1KBPnz44ePAgMjIyMHz4cNx5550AgIyMDMTFxWH48OFISUlBRUUF0tLSEBYWhscee8w0vZCQEKSmpmLhwoUICQnBoEGDkJubi/T0dEydOlU19zAlBeAz+sgVmASIzPC+ptpld4spAJSWluKNN97A/PnzUVJSAgAoKCjAWQkvvvjggw8wZ84crF27FkOHDsWaNWswd+5cbNmyxTROt27dsHfvXnh7e2PMmDGYNGkSunTpgi+//BItW7Y0m96CBQuwatUqbNmyBYMGDcLq1auRkpKCzMxMyepA5BIMMeQMrj9EJCO7W0x//PFHDBgwAMHBwTh58iSmTZuGkJAQbNu2DadOncL69eulKCf8/Pzw7LPP4tlnn210vNjYWOzevdumac6aNQuzZs0So3hERNLQSFDUajc+O0yIxGV3i+m8efMwefJk/PLLL6aLiYDaK+S//PJLUQtHpApKDA5KLBMRkYh4EZQ22R1Mc3Nz8cgjj1gMb9OmDQr505FIORhO1c/Vy5AXPZGNJLzNLbk5u4Opr6+v6RGcdf38888W53ESuQ2GQCIil2OrqfbYHUxHjhyJxYsXw2AwPidXh9OnTyMlJcV0WyciUggGZiIiUhG7g+nKlStx7tw5tGrVClevXkW/fv3QpUsXNG/eHEuXLpWijETkDIZTdWI3vk3k7MbnKQRE4rP7qvzAwEB89dVX2LNnD/Ly8lBTU4Obb74ZAwcOlKJ8ipaZmYnMzExUi/l8NFIv3tPUdvaGIH6vRNQANd/TtLRU/N3b+vXrsXHjRgBAcnIykpOTxZ2BxOwKplVVVfD19cWhQ4fQv39/9O/fX6pyqYJxgZeVlSEoSNpWAVs0r7kodxFIqeQMza1aOf8A8/pBVutBVSOtpVLT+mpA5IgJEyYgLS1N7mI4zK6ufC8vL0RFRbGFkKghSj7AR0S4tnytWkk3bVfXhRwidTc+kREvgtIOu88xTU1NNXviExGpjNShzpWh0Tiv+i81U3v5XUTu1lK550+kVXafY/rKK6/g2LFjaN26NaKiotCsWTOz9/Py8kQrHBFJSKzucSUGqbplYoJonEoveiJlCA/nJkbisjuYjhw5EjqdToqyEGmDWi+CUmLAFIOxXmpcJkRkMzVfBEV/sTuYpqenS1AMIiKJqeEHg0Z+HEjdWlpU5Pz1dESkTDafY3rlyhUkJyejTZs2aNWqFcaPH4/z589LWTYiInFpJPiJht+HQ5T++8ad8SIo9bM5mC5atAhZWVkYNmwYxo0bh+zsbEyfPl3KshGpFw/4ZC+uM6RSXHVJTDZ35W/duhXr1q3DuHHjAAAPPPAA7rjjDlRXV8OTfSpEpBZq6NJ3BV70REQKZHOL6W+//Ya+ffua/r711lvh5eWF33mmMZF1bEZQLiUtGy3c4opIQdidr242B9Pq6mr4+PiYDfPy8kJVVZXohSIikpzcYVCDgdQVFz3JjY3t1mlsVSYZ2dyVLwgCJk2aBL1ebxpWUVGBRx991Oxeplu3bhW3hEREWiP3UVzu+RNJjLeOUi+bg+nEiRMthj3wwAOiFkZtMjMzkZmZyUe0UsN4PqOyuXr5MBA6jJsRkXuwOZi+9dZbUpZDlZKTk5GcnIyysjIEBfGEfyJVckU4dYNAyoueiL/DSQw2n2NKREQOUFooVVp5VIShS114EZT4Pv30U/Tu3Rt+fn4ICwtDUlKS6POw+8lPRGQnNiMonxTLyI0CoNStpdx8iOT34YcfYtq0aVi2bBn69+8PQRCQn58v+nwYTDWiec1FuYtApG5ihlM3CqVEdfF3uPwqKytRVlZmNkyv15tdvG6vqqoqzJ49G88//zweeugh0/Drr7/e4Wk2hMGUiEgsSg+k4eFyl0C1GLbUSelX55eWirtuCQKwZs0avPzyy2bDFy1ahPT0dIenm5eXhzNnzsDDwwO9evVCYWEhevbsiZUrV+LGG290stTmeI4pkSsoPbBQLWeWk5suY3bjEynL9OnTcfHiRbPX/PnznZrm8ePHAQDp6elITU3Fjh070KJFC/Tr1w8lJSViFNuEwZSIqC57A6YGb5RP5AylbQ7udhGUXq9HYGCg2auhbvz09HTodLpGXwcPHkRNTQ0AYMGCBRg9ejRiY2Px1ltvQafTYfPmzaKWn135RESOUtoRmCTBVlvSqpkzZ2LcuHGNjtOhQweUl5cDAKKjo03D9Xo9OnXqhNOnT4taJgZTIlfhVQHqYcuyUlMoDQ8HfvlF9MmyG5/UQunnmsolLCwMYWFhTY4XGxsLvV6Pn3/+GXfeeScAwGAw4OTJk4iKihK1TAymRETWNBRO1RRIyWkMx47h73BtCQwMxKOPPopFixahXbt2iIqKwvPPPw8AGDt2rKjzYjAlIrKVGkNpRARQVSX6ZNlaSuRenn/+eXh5eeHBBx/E1atX0bt3b+zZswctWrQQdT68+InIldQYbNxZ3eXVqpV85SBZMBw7R2m7O3e7CEps3t7eWLlyJYqKilBWVobs7GzRbxUFMJg6JTMzE9HR0YiLi5O7KEQkFQZSIiKXYTB1QnJyMgoKCpCbmyt3UYiILEnUZOUO3fhKKAOJj62mysdgSuRqSuvfIiKSCHd3ZC8GUyIiLVJpImBLJUmNrabKxmBKREQ2k7obXwkYjonkw2BKqlfuEWR6XfIIlLs4tlFpaxapBNcvUhCujmQPBlMNaF5zUe4iKI5qAiqRivCiJ9IKducrl2qC6aRJk6DT6Rp8HThwwDRuXl4eBg4ciICAAAQHByMpKQnHjx+3Ot3Vq1ejW7du0Ov16NixIzIyMmAwGFxVLXJSYwdKd+hyJLLA5ilSIK6WZCvVBNOFCxdi//79Fq+wsDC0adPGdC/RI0eOID4+HteuXcOmTZvw5ptv4ujRo+jbty/OnTtnNs2lS5di9uzZSEpKwq5duzBjxgwsW7YMycnJclSR7GRL8FR0OOWemsiELZXkamw1VSbVPJK0c+fO6Ny5s9mwffv24fz580hNTYWnpycAIC0tDXq9Hjt27EBgYG13bmxsLLp27YqVK1dixYoVAIDi4mIsWbIE06ZNw7JlywAA8fHxMBgMSE1NxZw5cxAdHe3CGpI97Amc5R5BPN2ByEmK/pEnEoZjIvmppsXUmnXr1kGn02HKlCkAgKqqKuzYsQOjR482hVIAiIqKQkJCArZt22YatnPnTlRUVGDy5Mlm05w8eTIEQcD27dtdUgeynyMHSHc4qBKxFZ6UjKsn2UI1Lab1Xbx4EVu2bMGAAQPQsWNHAMCvv/6Kq1evIiYmxmL8mJgYZGdno6KiAr6+vjh8+DAAoEePHmbjRUZGIiwszPQ+aYciW04jIthMQ25PCZuAEspArif3E4dLS8Vf99avX4+NGzcCqH1CpdpOT1RtMH3//fdx9epVPPTQQ6ZhxcXFAICQkBCL8UNCQiAIAi5cuIDIyEgUFxdDr9ejWbNmVsc1TsuayspKVFZWmv4uKysDAFRXG1BV5foLpww1Vc5Po6rK7F+luuQRCNQ0/B0bv/+GlsMF+COgpkySsjmsutpikOHPYQYr76mFFuoAqKge4eFAA9uvs9t3U9uds2z9aqurDWb/ikkQRJ9kI/MymP2rToZ6/9omIgIoKhK/NI7S6dS8DKybMGEC0tLS5C6Gw1QbTNetW4fQ0FDcc889Fu/pdLoGP1f3PVvHq2/58uXIyMiwGP7ttznw9/dv8HNqkF3n7gZq9s032XIXQRTZDdxNQk20UAdABfX45ZcmR9HK9n3smDa279JS5+rh4yNSQZwqg/11aNdOgoI46MqVK3IXgepRZTD98ccfcfDgQcyePRt6vd40PDQ0FACstnaWlJRAp9MhODjYNG5FRQWuXLliESZLSkoQGxvb4Pznz5+PefPmmf4uKytDu3bt0Lt3Alq0CHWmak5xpiXQUFWF7AMHkNinD7y9lLda2Hpf0qoqA775Jhu3354ILy/vJsdXTOtpvSYEQ3U1so8fR2KnTvD+88I+tdFCHQCV1CM8vNG3ndm+pb4nsD2tZ9XVBhw7lo0uXRLh6dn09m2Ps2dFnVyjBMGA0tJsBAcnQqdzrh7ytT4a4OOTjWvXEgHYVwcltZhWVDTcO0ryUF4CscG6desAAFOnTjUb3rlzZ/j5+SE/P9/iM/n5+ejSpQt8fX0B/HVuaX5+Pnr37m0ar7CwEOfPn0f37t0bnL9erzcLxEaent42hSGpVKA2FDtzHqW3l5figmm5R5DdK6qXl23LogKhyjjvtIHA4+3pqdwwZCMt1AFQeD1s3GYd2b69PKTdpznylXp6eosaTAsLgUY6ySSj03k7HUzl5w17g2l4uHLO6RUEtX//2qO6q/IrKyvx7rvv4tZbb7UIj15eXhgxYgS2bt2K8vJy0/DTp08jJycHSUlJpmFDhgyBr68vsrKyzKaRlZUFnU6HUaNGSVkNSRkfz6kFrqiHIr4rXq5KjlLxuqOUcEJEyqGspjEbbN++HSUlJRatpUYZGRmIi4vD8OHDkZKSgoqKCqSlpSEsLAyPPfaYabyQkBCkpqZi4cKFCAkJwaBBg5Cbm4v09HRMnTpVE/cwNQYuRbQIOsCVgVGRV+wTNUXiUKqIH22kSbwhCTVEdS2m69atQ7NmzTBu3Dir73fr1g179+6Ft7c3xowZg0mTJqFLly748ssv0bJlS7NxFyxYgFWrVmHLli0YNGgQVq9ejZSUFGRmZrqiKi6jthZUucqrpu+IiIhIi1TXYvqvf/2ryXFiY2Oxe/dum6Y3a9YszJo1y9liqYIaWlDlDoeytpyyCYHsofLWUq7q4lDzbkPNZSfpqK7FlJyn1BZUpZRJqd8PkYmKzytVGgYjImVhMHVjxgAmdwhTQhmskaVMDBykAGwtJSK5qK4rn6RhvFfhJY9Ai9vDSNm1rcRAWhcviiLF4Y8X0hB251N9DKbUJEfCY1NhTumBlEiRGEqJSOMYTEkSWgqeLm81jYgAzpxx3fyI6mA3vvqovdVR7eUncfEcUyIiNWBrqegYhoiUh8HUCZmZmYiOjkZcXJzcRSGJubwFuIlnn5ObcVEo1VJPB6kLf3eREYOpE5KTk1FQUIDc3Fy5i0JEpHhsoSSipjCYEtmIrUkkC7aWkg200OKohTqQ8xhMiYiUSkNHaraWEpEteFU+kZKFhwPnz8tdCpKDC0OpO7aWMiiTEly4APz+u7jTXL9+PTZu3Aig9pTD5ORkcWcgMQZTIjvwhvtE9mMIJFvx1lHOmzBhAtLS0uQuhsPYlU+kdBrqziUbsbWUHMBdBWkBgymRnXggJ0lpLF2w9YvspbFNgOzEYEqkBtxTkwTc9UcWwzKRcjGYEhEpBX+AEAHgpuDOGEyJ1IJ7am1z8fJ1RWspWyZdj7sJUjsGUyIHyNYFyqOO9kREcLm6EMOyenCzcE+8XZQTMjMzkZmZierqarmLQkRqI+NRl62lRKRUbDF1QnJyMgoKCpCbmyt3UcidsBlB/TQeSonEwt2d+2EwJXIQD/BkNzfptldqa6lSyyU2N1jFSMMYTInUiEcedVFIIL3kESj5PNwl/JHrKGDTIRdiMCVSK+6t1YHLichp3IzcB4MpkRNk787n3lq5FNJK6kpKbi1Vctmk4GarHmkIgykRkZgUGEhd0YVPJDWFbVYkEQZTIrXj3lo5uCxIQbS4OmqxTmqxdOlS3H777fD390dwcLDF+//5z39w3333oV27dvDz88MNN9yAl19+2e758D6mRE4q9whC85qL8hYiIsL9+iqVRMFHy3KPIKDGIPl8lLz6KblsZD/u7uRx7do1jB07FrfddhvWrVtn8f7333+Pli1b4t1330W7du3wzTff4OGHH4anpydmzpxp83wYTIm0gntreSg9lBIRiSAjIwMAkJWVZfX9KVOmmP3dqVMn7N+/H1u3bmUwJXJbSg6ntgQ4pZbdGgUHUldT02JzN0reJThDq/USQ2VlJcrKysyG6fV66PV6l5fl4sWLCAkJseszDKZEWqO0PXZ4OOBl466mfthTUj3qUkEoZWtpLaWuQuQ8pe3qHHHxInD2rLjTXLNmjcW5nYsWLUJ6erq4M2rC/v37sWnTJnz66ad2fY4XPxGJQHEhQM7gZLwqPTxcvGk5W5+60xFjWgrnyvVR7cHAHahglXWYluvmqOnTp+PixYtmr/nz51sdNz09HTqdrtHXwYMH7S7DTz/9hJEjRyItLQ2JiYl2fZYtpk7IzMxEZmYmqqur5S4KkSVXNie44uhgnIctdWqqPA2939i07Wn5lZHifiTJiKGZ3JFer0dgoG23iJs5cybGjRvX6DgdOnSwa/4FBQXo378/pk2bhtTUVLs+CzCYOiU5ORnJyckoKytDUBAPBqRAUoVTuVtkAct6iVEma9OoqgJ++cX5aWsQgx8pgRa69OUSFhaGsLAw0ab3008/oX///pg4cSKWLl3q0DQYTIlEoojbRlljT0tjQ59VIiWXTSZsLf0Lg4o5rYc3rddPCU6fPo2SkhKcPn0a1dXVOHToEACgS5cuCAgIwE8//YSEhAQMGjQI8+bNQ+GfC8TT0xMtW7a0eT4MpkTugkFO01wdShkCSGkYTqWVlpaGt99+2/R3r169AAA5OTmIj4/H5s2bce7cObz33nt47733TONFRUXh5MmTNs+HFz8REZGmMJxYx9+m5IysrCwIgmDxio+PB1B7IZW19+0JpQCDKZGo2JVKcmBrKVEthm/1YzAlIlIx/hgyx9DcOHcIbu5QRy1jMCUiUik5QimDH6kBw6l6MZgSiYwtWETyYGi2jbuENnepp9YwmBIRqRBbS80puWwkH4ZT9WEwJSJSGbbKE9mO4VRdGEyJJMDgQFKRa91ScoukksumVO4W1tytvmrGYEpEpBL8wWOJodRx7hbW3K2+asVg6oTMzExER0cjLi5O7qIQEUmG4Y+0guFU+RhMnZCcnIyCggLk5ubKXRRSILZukZi4PlliYHaeOwY1d6yzmjCYkurx4ERaJ2coVer2pdRykTownCoXgympmvHgVFhY+yoqkrc8RGJjKLV09qzcJdAWdw1p7lpvpfOSuwBEjlLqQbOuco8gNK+5KHcxSKXYfU8krVat5J3/hQuAXi/e9AQBWL9+PTZu3Aig9pTD5ORk8WbgAgympEpqCKVEasZtzL1ERHCZa8WECROQlpYmdzEcxq58Uh1bdp7s0ie1Y2spEbkjBlNSFTX+omfAIHvJvc4odTvjuaXS4jmXpAQMpqQKxoub7P0MkdowlJKcGE5JbgympHjOHCh5kCU1kTuUKhm3ZSL3wGBKiuVIK6lSMXCQGmhleyPnsNWU5MSr8klRpDgwFhZyR0vKpoQfLkoOpUoum1bxKn2SC4MpSY47N6KGKSGUEhEpBYOpEzIzM5GZmYnq6mq5iyI7pYdPJbSa8mb7VJ9SQqmSt18ll03r2GpKcmAwdYLxiQplZWUIClLGAUZqat5JKSGcEhkxlJIaMJySqzGYklXcEUmDraYEKCeUKh33Q0Tuh1flE4C/npRUVKTtg4GW60bKV+4RpKhQyu2BbMGeJnIlBlM3p6VbMtnK3epLyqCkQAoofztQevncDcMpuQq78t0Qd/jyYne++2EotY/Sy+eueL4puQJbTN2IO7aONoTfA7mK0kIpkTPYckpSU00w/eGHHzBq1Ci0bt0a/v7+6NatGxYvXowrV66Yxpk0aRJ0Op3Fq1u3blanuXr1anTr1g16vR4dO3ZERkYGDAaDq6rkMgyk1sn5nTCsuAclLmel7wuUXj5iOCVpqaIrv6CgALfffjuuv/56rFq1CmFhYfjyyy+xePFifP/99/joo49M4/r5+WHPnj1mn/fz87OY5tKlS7Fw4UKkpKRg0KBByM3NRWpqKs6cOYO1a9dKXidX4A6eSD5KDKVFRYCnp9ylaBj3WeoRHg5cuCB3KUiLVBFMN2zYgIqKCnz44Yfo3LkzAKB///74448/sHbtWly4cAEtWrQAAHh4eKBPnz6NTq+4uBhLlizBtGnTsGzZMgBAfHw8DAYDUlNTMWfOHERHR0tbKQlx5247Oe9tynNNtUuJoZSISA1UEUy9vb0BwOIm9sHBwfDw8ICPj49d09u5cycqKiowefJks+GTJ0/GggULsH37dlUGUwZSx/DG+yQmJYZS4+3glIz7L3JHFy8CHiKfVLl+/Xps3LgRwF8PAlITVZxjOnHiRAQHB2P69Ok4fvw4ysvLsWPHDrz++utITk5Gs2bNTONevXoVERER8PT0RNu2bTFz5kyUlJSYTe/w4cMAgB49epgNj4yMRFhYmOl9teA5pETKoMRQqgbcf6lXeLjcJaD6JkyYgIKCAhQUFKgulAIqaTHt0KED9u/fj3vuucfUlQ8As2bNwqpVq0x/33TTTbjpppvQvXt3AMC+ffvw0ksv4YsvvkBubi4CAgIA1Hbl6/V6s0BrFBISguLi4kbLU1lZicrKStPfZWVlAIDqagOqqlx78ZRYLSHV1Qazf9XK0XqcOSPPDvYC/BFQU2Yx3FBVZfavGmmhDoDt9bjkEQjUKG/7KSpS/vYtCLaOZzD7V620UI+6dQgPV0ervHXqXQZapYpgevLkSYwYMQLh4eHYsmULWrZsiW+//RZLlizBpUuXsG7dOgDA3LlzzT6XmJiIXr16YcyYMfjnP/9p9r5Op2twfo29BwDLly9HRkaGxfBvv82Bv7+/PVVTnGPHsuUugigcqcfPP0tQECdlHzggdxGcpoU6ANqoh1a279JS1kMpjHWw84w6xaiqutL0SORSqgimKSkpKCsrw6FDh0ytnHfddRfCwsIwZcoUTJgwAf369bP62XvuuQfNmjXDgToHldDQUFRUVODKlSsWQbKkpASxsbGNlmf+/PmYN2+e6e+ysjK0a9cOvXsnoEWLUEer2Sipf41WVxtw7Fg2unRJhKent7Qzk5AY9ZCra6puy6mhqgrZBw4gsU8feHupYjO1oIU6AI3X45JHoEylalrdfYaSt++zZ20fVxAMKC3NRnBwInQ6ZdXDHlqoh611UHpL6rVrjfeQkuup4mhx6NAhREdHW3S9x8XFAag9Z7ShYAoAgiDAo87ZxcZzS/Pz89G7d2/T8MLCQpw/f950KkBD9Ho99Hq9xXBPT294eYmzk6l/zpWrbvHi6emtuAOXI5ypx/nz8lwMVYFQi6v0vb28VB3qAG3UATCvh/FcUiXWyrjvsLbPUNr2XVgINNFBZZVO563aQFeXFurRVB3q7kuVeS6xur9/LVLFxU+tW7fGTz/9hEuXLpkN379/PwCgbdu2DX52y5YtuHLlitktpIYMGQJfX19kZWWZjZuVlQWdTodRo0aJVnZ7GC9iUubG617kWga8eEbZyj2CFL2M1LTvUFNZSRwREX+9iBqixB/8FubMmYNRo0YhMTERc+fORVhYGA4cOIDly5cjOjoaQ4cOxalTpzB+/HiMGzcOXbp0gU6nw759+7Bq1SrceOONmDp1qml6ISEhSE1NxcKFCxESEmK6wX56ejqmTp3q0ltFceesXHLdRqrcIwhVHjwhX2kueQQqdofJ/QipjfJbUkkuSt3Pmvm///s/fPHFF3j22Wcxe/ZsXLx4Ee3atcMjjzyC+fPnw8fHB4GBgQgPD8eLL76IoqIiVFdXIyoqCrNmzcLTTz9tcRrAggUL0Lx5c2RmZmLlypWIiIhASkoKFixY4JI6cUNUB97j1L2p4UeCGvclaiwzSYchlepSRTAFgISEBCQkJDT4fosWLbB161a7pjlr1izMmjXL2aLZjBucOskZTi95BKIFeNWoKym5q74+Ne5T1Fhmcp36+1quL+5HNcFUzbhhqR8fXap9DKTSU2u5ST4Mqu6HwVRC3IBILMbQxIAqLjWFUSO17lfUWm5SFgZV7WMwlQA3FG1SwvmmDKjiYCB1LTWXnZSNQVV7GExFdO4ccO2a3KUgKSkhnAIMqI5iIHU9tZef1IVBVf0YTIlUjAHVNmoMpID6D6pqLz+pH4Oq+qjiBvtESqLEHZvxxu9KvwG8q6n1+1D7gzbUXn7Srro3+Y+IAFq1krtE6rF06VLcfvvt8Pf3R3BwsNVxcnNzMWDAAAQHB6NFixYYNGgQDh06ZNd8GEydkJmZiejoaNOjUYmUon5QdcfgqsZ6qj3Qqb38RNSwa9euYezYsZg+fbrV98vLyzF48GC0b98e3377Lb766isEBgZi8ODBMBhsvx80u/KdkJycjOTkZJSVlSEoSH0HQXKcUs41dZSjoU0NpwyoNZCqnRbqQEQNy8jIAACLx7kb/fzzz7hw4QIWL16Mdu3aAQAWLVqEmJgYnD59Gp07d7ZpPgymRGQze0KfL4olLIklNQZSQBuBTgt1INKKyspKlJWVmQ3T6/XQ6/WSzvf6669HWFgY1q1bh6effhrV1dVYt24dbrzxRkRFRdk8HQZTIgepvdVUapc8Ak3/enl4y1wa5dFKmNNKPYjkUFoKVFaKO801a9bg5ZdfNhu2aNEipKenizujepo3b469e/di5MiReOaZZwAA1113HXbt2gUvL9vjJs8xJSJyIS2dh6mVehBpyfTp03Hx4kWz1/z5862Om56eDp1O1+jr4MGDNs336tWrmDJlCu644w4cOHAAX3/9NW688UbcfffduHr1qs3lZ4spkRPYakr20EqQ00o9iLRIr9cjMDDQpnFnzpyJcePGNTpOhw4dbJrWhg0bcPLkSezfvx8eHh6mYS1atMBHH33U5HyMGEyJiCSmlSCnlXoQUa2wsDCEhYWJMq0rV67Aw8MDOp3ONMz4d01Njc3TYVc+kZN4sKaGsNueiLTi9OnTOHToEE6fPo3q6mocOnQIhw4dwqVLlwAAiYmJuHDhApKTk/Hf//4XP/30EyZPngwvLy8kJCTYPB+2mBIRSUALQU4LdSAicaSlpeHtt982/d2rVy8AQE5ODuLj49GtWzd88sknyMjIwG233QYPDw/06tULO3fuRGRkpM3zYTAlEgHPNSUjLYQ5LdSBiMSVlZXV4D1MjRITE5GYmOjUfBhMiUTCcOre1B7m1F5+ItIGBlMiIiepNdSptdxEpF0Mpk7IzMxEZmYmqqur5S4KKQRbTd2LGoOdGstMRO6DwdQJycnJSE5ORllZGYKC1Pk4RKD2QCUItf8/exbQ6RiunMFw6h7UFPDOnv3r3zp3ciFyWKtWwIULtf96ejo3LTVtSyQ9BlM3ZMtOoP44DFpEtdR2EFVbeUnZjMcCMTsKbTm+cD12HwymbsLZjbru5xlSm8ZWU21S08FRTWUl5ZN7f1Z//ly/tYvBVKOk3GgZUm3DcKotRUXOd1m6Ag/YJCal7sPqlovrvLYwmGqIHBsnQ2rjGE7Vr6hI7hLYhgdnEpOa9ltsTdUWBlMVU9rGZyyPq3doSg9/Si8fWae07ashaiknqYfa91cMqurGYKoyatjAXNWKWnc+Sg9/Si8f/UVt2xiRWLS6j2JQVRcPuQtgq++++w6DBw9G8+bNERAQgISEBHz99ddm41RXV+PFF1/EkCFD0LZtW/j7++OGG25ASkoKSktLLaap0+msvp599lkX1cp2hYXq3JikKre1aRYW/nVbHCVS4/JzN0pfRmrdD5DyaTWUWhMR8deLlEcVLaa5ubm46667cOutt+Kdd96BIAh47rnnMGDAAOTk5OC2224DAFy9ehXp6em47777MHXqVISFhSEvLw9LlizBJ598goMHD8LPz89s2mPGjMFjjz1mNqx9+/Yuq5sttHAgErObX83fB1tOlUnp65TSy0fq5s77pJYt5Zv3gQM6BAeXiza9mppLAGqgU/nNilURTBcuXIjg4GDs3LkT/v7+AICBAweiU6dOePzxx00tp35+fjhx4gRCQ0NNn42Pj0f79u0xduxYfPjhh3jggQfMph0eHo4+ffq4rjJ20OLByJlgppXvg+FUWZS6Xim1XKQd3A/JS6cbh9LSF3Hx4gTodM7HsZqalQBuxyeffILXXnsNwF8PAlITVQTTr7/+GsOGDTOFUgBo3rw57rrrLmzduhV//PEHIiMj4enpaRZKjW699VYAwG+//eayMjtLywcle1tPHfkuzp4FIiPt/5yryHWhGJlT4namxDKR9nDfI7+Kikeh178CIAvAVKemJQh/AFiJr7/+F26//XbMnDlThBLKQxXB9Nq1a9Dr9RbDjcPy8/MR2UgK2bNnDwDgxhtvtHhvw4YNWLduHWpqatC9e3fMnDkTkydPbrQ8lZWVqKysNP1dVlYGAKiuNqC62tB0hZogx3mSgmAw+9cV/vhD/GnWrccff9Q+Lk/Jzpyp/Tc83Hx4VZXB7F81UnId7LkFlHGbFmPbboyU270c27cUWA9xtGrl/JObXLVdSE3O8vv4+GDTpuW4997ZAO6DTtfM4WkJQjqAwbj99tvFKp5sdIJgfEq6cvXq1QtXrlzBf//7X3h41F6vVVVVheuvvx7Hjx/Hhg0bcN9991n97JkzZxAbG4t27drh22+/NX0eAO6//34MGzYM7dq1w9mzZ7Fu3Tp8/vnnSE1NxTPPPNNgedLT05GRkWExfMOGDWatukRERKRcV65cwfjx43Hx4kUEBga6fP6CIMDD43bodHdDp1vo4DQKIAixOHr0R3Tt2lXkErqeKoLpm2++iYceegjTp0/HggULUFNTg4yMDGRlZaG6uhobN27E3/72N4vPlZSUICEhAYWFhdi/fz86derU5LxGjBiBnTt34vfff0fLBs6KttZi2q5dOxw48AeCgixPJbCVnFeUC4IBpaXZCA5OhE7nLV9BnGStHkpvNa0vPLy2lfGbb7Jx++2J8PJS5/JQYh0cuVl+dbUBx45lo0uXRHh6ilsPV23zWt6+1UjOeoi1P5Ryu3ClixeL0adPpGzBFKg9XfHOO4dApzsGnS686Q/UU1MzAkAHCMJq8QsnA1V05U+ZMgXnzp3DkiVLsGbNGgDAbbfdhscffxwrVqxAmzZtLD5z4cIFJCYm4syZM9izZ49NoRQAHnjgAezYsQMHDx7E0KFDrY6j1+utnlrg6ent1AaqhAvpdDpvVe/wjerWQw2Pkazr/HkgLKz2/15e3ooJdY5SSh0KC51bF5zdvq2Vx9XbvBa3bzWTox5i7w/F3i5cTQllv+OOOwAkQhDSodOtseuzgrAXwJc4e/ZNKYomC9Xcx/Spp57C+fPnkZ+fj5MnT+Kbb77BhQsX0KxZM8TGxpqNe+HCBQwcOBAnTpxAdnY2YmJibJ6PsQG5bpc/kauJ/RhM4/0v677cidLqq7TykHvgBU/K9fPPzwLIgiAcsfkzglADQXgCOl1Kgz28aqSKFlMjvV6P7t27AwBOnz6NDz74ANOmTTO7N6kxlB4/fhzZ2dno1auXXfN455134O3tbRF2ieRQVARY6RCwWWMBSKpwpLSDn9JCoNLKQ+5BadslmbvuuusATIEgpECn227jpz4A8AcuXZotXcFkoIpgevjwYXz44Ye45ZZboNfr8Z///AfPPvssunbtanaR0tWrVzF48GD88MMPWLVqFaqqqnDgwAHT+y1btkTnzp0BAM8//zwKCgowYMAAtG3b1nTx07/+9S+kp6cjzNiXSiQzex7xqoTQYyyD3JuQEr6L+pRYJiJShqKiRQgP7wJB+Dd0ur6NjisIlRCEp/HWW0s0d9G1KoKpj48P9uzZg1deeQWXLl1C+/bt8eijjyIlJQXNmv11e4WioiLk5uYCAGbPtvwFMXHiRGRlZQEAunXrho8//hiffvopLly4AD8/P/Ts2RPvv/8+xo0b55J6EdlLTcHGeDqCs62+jlDi96TEMpF7YGupOrRq1Qo63VMQhMcBHGjiCU6vAgjEgw8+6KLSuY4qgul1112Hffv2NTlehw4dYOtNBkaMGIERI0Y4WzQisoE9rb5izUdJlFou0j6GUnW5dGkumjVbA2ATAMu7DQGAIJRAEJZg164P4Km2q3ttwCt8iMilpLgIS8kXdCm1XESkPP7+/njzzWcgCPMhCJVWxxGEZQBuxaBBg1xbOBdRRYspEWmXloOblutGysfWUnWaMGECpkx5CcAaAHPM3hOEEwAycejQASuf1Aa2mBIRiUzJLbjkHhhK1cvT0xOff/4cBOEZCEKp2XuCsADA33DTTTfJUjZXYDAlIhIRAynJjaFU/QYPHgzg5j+77WsJwkEAH+G335bIVi5XYDAlIhIJQynJjaFUG3Q6HX744XkAr0IQTkEQhD+v1p+Ntm3byl08SfEcUydkZmYiMzMT1dXVcheFiGTGUEpyYiDVnp49ewIYC0FYAJ1uHICfUFr6kcylkh5bTJ2QnJyMgoIC071TSZkYGEhqXMe0KSLC/KVESi4bOe/UqWcAbIUgTMcrr6QhKChI7iJJjsGUiMgJDKXaZC3sKS0AKq08JL727dsDeBJAazzyyCNyF8clGEyJiBzEUKo9TbVAKiEMspXUvQhCOgThW/j4+MhdFJdgMCUicgBDqfuSKxQykJI7YDAlIrITQym5OiAykJK74FX5RER2YCglI2NYlHKdYCAld8MWUyIiGzGUkjVShEd225O7YospEZENzp4FdDq5S0FSciYIitV6yjBK7o4tpkRERCJxpqWToZSIwZSIqFFnz8pdAucVFZn/S9KzJ6Cy257oL+zKJyJqgNrPKbVWfuMwBiHXaKyLv1UrwNPTteUhUjoGUyIiK9QcSm0pe91xGFKl54or+Im0gF35TsjMzER0dDTi4uLkLgo1gQcDsoda15fCQsfK7ujnyH4REbUtpURkHYOpE5KTk1FQUIDc3Fy5i0JEIlFbQDOGSjHKzYBKRHJjVz4RkQpJGSDd8TxUd6orkZIxmBIR/UnprYWuLp87BlQikhe78omIoOxQKncXu5K/GyLSFraYEpHbU2LwUlqZ2HpKRK7AYEpEbk1JAVBJZWlIYSHDKRFJR9au/PLycjz55JMYNGgQWrZsCZ1Oh/T0dKvj5uXlYeDAgQgICEBwcDCSkpJw/Phxq+OuXr0a3bp1g16vR8eOHZGRkQGDwWAx3tmzZzFp0iSEhYXB398ft912G7744gsxq0hECqaUICh3V7291FZeIlIPWYNpcXEx1q5di8rKSowaNarB8Y4cOYL4+Hhcu3YNmzZtwptvvomjR4+ib9++OHfunNm4S5cuxezZs5GUlIRdu3ZhxowZWLZsGZKTk83Gq6ysxIABA/DFF1/g5ZdfxkcffYTw8HAMGTIE+/btk6K6RKQgSglWSimHI9RcdiJSJlm78qOionDhwgXodDqcP38eb7zxhtXx0tLSoNfrsWPHDgQGBgIAYmNj0bVrV6xcuRIrVqwAUBt0lyxZgmnTpmHZsmUAgPj4eBgMBqSmpmLOnDmIjo4GAKxbtw6HDx/GN998g9tuuw0AkJCQgJtuuglPPvkkvv32W6mrT0RuTgvBjl37RCQmWVtMdToddDpdo+NUVVVhx44dGD16tCmUArWhNiEhAdu2bTMN27lzJyoqKjB58mSzaUyePBmCIGD79u2mYdu2bcP1119vCqUA4OXlhQceeADfffcdzpw542TtiEiplBAIlVAGsbBrn4jEovjbRf3666+4evUqYmJiLN6LiYnBsWPHUFFRAQA4fPgwAKBHjx5m40VGRiIsLMz0vnHchqYJAD/99JNodSAi5VBCgFJCGYiIlEjxV+UXFxcDAEJCQizeCwkJgSAIuHDhAiIjI1FcXAy9Xo9mzZpZHdc4LeN0G5pm3flaU1lZicrKStPfFy9eBACUlZXYWCvrLl1y6uNOEQQDrly5Am/vYuh03vIVxEmN1ePPxaQK1dW19bh4sRienupcHkqsQ71T0m0i9rZx9qzTk3CAAVVVV3DtWjEA6ZbF8ePSPgdeyv2UK/cPStw27KWFOgB/HbcFQZC5JGSk+GBq1FiXf933bB3P3nHrWr58OTIyMiyGDxhwXYOfISIiImUqLi5GUFCQ3MUgqCCYhoaGArDegllSUgKdTofg4GDTuBUVFbhy5Qr8/f0txo2NjTWbbkPTBKy30BrNnz8f8+bNM/1dWlqKqKgonD59uskVOy4uDrm5uY2OI/Z4toxTVlaGdu3a4bfffjM7l1fqsok9nrvVQwt1kKt8to6n9HpooQ62judu9dBCHeQqn63jXbx4Ee3bt2/0mE+upfhg2rlzZ/j5+SE/P9/ivfz8fHTp0gW+vr4A/jq3ND8/H7179zaNV1hYiPPnz6N79+6mYT169GhwmgDMxq1Pr9dDr9dbDA8KCmpyA/X09GxyHLHHs3VaABAYGKjIOtgzHuA+9dBCHeQsnxbqoYU62DMe4D710EId5CyfPfXw8FD8JTduQ/FLwsvLCyNGjMDWrVtRXl5uGn769Gnk5OQgKSnJNGzIkCHw9fVFVlaW2TSysrKg0+nM7pV6zz334MiRI2a3haqqqsK7776L3r17o3Xr1pLUp/79VF0xnq3TspUcdbBnPFtpoR5aqIMU83WnemihDvaMZyst1EMLdZBivnLVg1xDJ8h8xu/nn3+Oy5cvo7y8HFOmTMHYsWNx7733AgDuvvtu+Pv748iRI4iLi8PNN9+MlJQUVFRUIC0tDSUlJTh06BBatmxpmt7SpUuxcOFCzJ8/H4MGDUJubi5SU1MxYcIErF271jReZWUlYmNjUVZWhmeffRatWrXCa6+9hk8++QS7d+9Gv379bK5DWVkZgoKCcPHiRZt/nSmNFuoAsB5KooU6ANqohxbqALAeSqKFOgDaqYemCDKLiooSAFh9nThxwjTewYMHhQEDBgj+/v5CYGCgMGrUKOHYsWNWp/nyyy8L1113neDj4yO0b99eWLRokXDt2jWL8QoLC4UJEyYIISEhgq+vr9CnTx8hOzvb7jpUVFQIixYtEioqKuz+rFJooQ6CwHooiRbqIAjaqIcW6iAIrIeSaKEOgqCdemiJ7C2mRERERESACs4xJSIiIiL3wGBKRERERIrAYEpEREREisBg6oRLly5hzpw5aN26NXx9fdGzZ09s3LhR7mLZbO/evdDpdFZfBw4ckLt4VpWXl+PJJ5/EoEGD0LJlS+h0OqSnp1sdNy8vDwMHDkRAQACCg4ORlJSE48ePu7bADbC1HpMmTbK6fLp16+b6QtezZ88eTJkyBd26dUOzZs3Qpk0bjBw5Et9//73FuEpdFrbWQcnLAQAOHTqEYcOGoX379vDz80NISAhuu+02vPvuuxbjKnVZALbXQ+nLo7433ngDOp0OAQEBFu8peXnU1VAdlLws7DnGqWU5uAPF32BfyZKSkpCbm4tnn30W1113HTZs2ID77rsPNTU1GD9+vNzFs9myZcuQkJBgNqyxBwzIqbi4GGvXrsVNN92EUaNG4Y033rA63pEjRxAfH4+ePXti06ZNpluM9e3b1+IWY3KwtR4A4Ofnhz179lgMk9uaNWtQXFyM2bNnIzo6GufOncMLL7yAPn36YNeuXejfvz8AZS8LW+sAKHc5ALVPn2vXrh3uu+8+tGnTBpcvX8Z7772HBx98ECdPnkRqaioAZS8Le+oBKHt51HXmzBk8/vjjaN26NS5evGj2ntKXh1FjdQCUvyyaOsapZTm4DblvC6BWn376qQBA2LBhg9nwxMREoXXr1kJVVZVMJbNdTk6OAEDYvHmz3EWxWU1NjVBTUyMIgiCcO3dOACAsWrTIYryxY8cKYWFhwsWLF03DTp48KXh7ewtPPvmkq4rbIFvrMXHiRKFZs2YuLp1tioqKLIaVl5cL4eHhwoABA0zDlLwsbK2DkpdDY3r37i20a9fO9LeSl0Vj6tdDTctj+PDhwogRI6yWWS3Lo7E6KHlZ2HqMU8tycBfsynfQtm3bEBAQgLFjx5oNnzx5Mn7//XezJ0qReIzdMI2pqqrCjh07MHr0aLMbJkdFRSEhIQHbtm2TuphNsqUeSteqVSuLYQEBAYiOjsZvv/0GQPnLwpY6qFlYWBi8vGo7xpS+LBpTtx5q8u6772Lfvn147bXXLN5Ty/JorA5aoJbl4E4YTB10+PBh3HDDDRY7y5iYGNP7apGcnAwvLy8EBgZi8ODB+Oqrr+QuklN+/fVXXL161bQs6oqJicGxY8dQUVEhQ8kcc/XqVURERMDT0xNt27bFzJkzUVJSInexrLp48SLy8vJw4403AlDnsqhfByM1LIeamhpUVVXh3LlzeO2117Br1y489dRTANS1LBqrh5HSl8fZs2cxZ84cPPvss2jbtq3F+2pYHk3VwUjpy6KxY5waloO7Ud9PUIUoLi5Gp06dLIaHhISY3le6oKAgzJ49G/Hx8QgNDcWxY8fw/PPPIz4+Hp9++ikGDx4sdxEdYvzujcuirpCQEAiCgAsXLiAyMtLVRbPbTTfdhJtuusl0PtS+ffvw0ksv4YsvvkBubq7ViynklJycjMuXL2PBggUA1Lks6tcBUM9ymDFjBl5//XUAgI+PD1555RU88sgjANS1LBqrB6CO5TFjxgxcf/31mD59utX31bA8mqoDoOxlYcsxTg3Lwd0wmDqhsa5YNXTT9urVC7169TL93bdvX9xzzz3o0aMHnnzySdUGUyO1Lx8AmDt3rtnfiYmJ6NWrF8aMGYN//vOfFu/LaeHChXjvvfewevVqxMbGmr2nlmXRUB3UshyefvppTJ06FWfPnsUnn3yCmTNn4vLly3j88cdN46hhWTRVD6Uvjw8//BCffPIJfvjhhya/U6UuD1vroORlYc8xTqnLwR0xmDooNDTUaquosfvC2q8vNQgODsbw4cPxj3/8A1evXlXUlZW2Cg0NBWC91bqkpAQ6nQ7BwcEuLpV47rnnHjRr1kxRt/TKyMjAkiVLsHTpUsycOdM0XE3LoqE6NESJy6F9+/Zo3749AODuu+8GAMyfPx8TJ05U1bJorB4NXSGtlOVx6dIlJCcn4+9//ztat26N0tJSAMC1a9cA1N55wNvbW9HLw9Y6NGvWzOrnlbIsrKl/jFPycnBXPMfUQT169MB///tfVFVVmQ3Pz88HoNzbLdlCEAQA6v2V2LlzZ/j5+ZmWRV35+fno0qULfH19ZSiZeARBgIeHMjbfjIwMpKenIz09HU8//bTZe2pZFo3VoTFKWg7W3HrrraiqqsLx48dVsyysqVuPxihheZw/fx5FRUV44YUX0KJFC9Pr/fffx+XLl9GiRQvcf//9il4ettahMUpYFg2pe4xT8nJwV8pca1TgnnvuwaVLl/Dhhx+aDX/77bfRunVr9O7dW6aSOefChQvYsWMHevbsqdqN0cvLCyNGjMDWrVtRXl5uGn769Gnk5OQgKSlJxtI5b8uWLbhy5Qr69Okjd1HwzDPPID09HampqVi0aJHF+2pYFk3VoSFKWg4NycnJgYeHBzp16qSKZdGQuvVoiFKWR0REBHJycixegwcPhq+vL3JycrBkyRJFLw9b69AQpSwLa+of45S8HNyVTjD+dCC7DRo0CAcPHsSKFSvQpUsXvP/++/jnP/+Jd999t8lfk0owfvx4tG/fHrfccgvCwsLwyy+/4IUXXsCvv/6Kzz//HAMHDpS7iFZ9/vnnuHz5MsrLyzFlyhSMHTsW9957L4Dabj9/f38cOXIEcXFxuPnmm5GSkmK6YXJJSYlibpjcVD3OnTuH8ePHY9y4cejSpQt0Oh327duHVatWoXPnzvj2228b7EpzhRdeeAGPP/44hgwZYjXQGQ9KSl4WttTh1KlTil4OAPDwww8jMDAQt956K8LDw3H+/Hls3rwZH3zwAZ544gk899xzAJS9LGythxqWhzWTJk3Cli1bcOnSJdMwpS+P+urXQenLwtZjnNqWg+bJcvdUjSgvLxdmzZolRERECD4+PkJMTIzw/vvvy10smy1fvlzo2bOnEBQUJHh6egotW7YU7rnnHuG7776Tu2iNioqKEgBYfZ04ccI03sGDB4UBAwYI/v7+QmBgoDBq1Cjh2LFj8hW8nqbqUVJSItxzzz1Chw4dBD8/P8HHx0fo2rWr8OSTTwqlpaVyF1/o169fg+Wvv2tR6rKwpQ5KXw6CIAhvvvmm0LdvXyEsLEzw8vISgoODhX79+gnvvPOOxbhKXRaCYFs91LA8rGnoRvRKXh7/3879hTTVxnEA/86l09hSN13+rTUiQWZNkUCyksiEUEnqIircoKK7yJyQ9hdGTYtMkwiLUVpRSWRd9E+otCysCLqwBYU2RrFubDhc04XzvWrve3Sz6dvbzhvfDwie5/md53nOduGX5xzPZJOvQezfxUz+xv2fvoc/HXdMiYiIiEgU+IwpEREREYkCgykRERERiQKDKRERERGJAoMpEREREYkCgykRERERiQKDKRERERGJAoMpEREREYkCgykRERERiQKDKRERERGJAoMpEREREYkCgykR/TGKioqwZ88eUY89NDQEtVoNu90eaPP5fKiurobJZILP55vVuJs2bUJjY+O/Xh8RUSQxmBJRRBiNRmzYsGHW5wcLijdv3oTZbJ62JtIsFgvKysqg0WgCbdevX0deXh5WrFiBS5cuBdqNRiMkEgnq6+sFY9y6dQsSiUTQdujQIRw9ehRut/s/XT8R0X+JwZSI/hhKpRIKhSLSywjJ6/XCarVix44dgna/3w+pVIrx8XH4/X5BX2xsLBoaGuByuaYde+nSpdBoNLhy5covXzcR0e/CYEpEonP//n0UFhYiISEBKpUKpaWlGBgYCPQbjUb09PSgubkZEokEEokEdrtdsEMaqkaj0aCpqUkwn16vx5EjRwLHHo8HlZWVkMvlSE1NxcmTJ6escWJiAsePH4dWq0VcXByWLVuGGzduTHtd9+7dw5w5c1BQUCBo37x5M/r6+vDs2TNUVlYK+tauXYuUlBRYLJaffm7l5eW4evXqT+uIiMSKwZSIRMfj8WDv3r149eoVHj58iKioKFRUVAR2E5ubm1FQUICdO3fC6XTC6XQiMzNTMEY4NaHU1NTg8ePH6OzsRFdXF7q7u/H69WtBzYEDB3DhwgWcPXsWb9++RVVVFbZt24aenp6Q4z558gT5+flT2mUyGZqamnDq1CnIZDJBn1QqxbFjx9DS0oJPnz5Nu+7ly5fj5cuXGBsbC+s6iYjEZk6kF0BENNnGjRsFx1arFWq1GjabDTqdDvHx8YiJicHcuXORkpISdIxwaoIZGRmB1WpFe3s7iouLAQBtbW3IyMgI1Hg8HjQ2NuLRo0eB3U+tVove3l60trZi9erVQce22+1IS0sLey0/VFRUQK/X4/Dhw7BarSHr0tPTMTY2hi9fvmDhwoUznoeIKNK4Y0pEojMwMIAtW7ZAq9Vi3rx5WLRoEQDA4XD8lrl9Pp/gdrtSqURWVlbg2GazYXR0FMXFxZDL5YGf9vZ2wSMHk3m9XsTGxs5qXQ0NDWhra4PNZgtZExcXBwD49u3brOYgIoo07pgSkeiUlZUhMzMT58+fR1paGvx+P3Q63axfpfRPUVFRmJiYELR9//498PvkvmB+PFJw584dpKenC/om34r/p6SkpJ/+E1Moq1atQklJCerq6mA0GoPWfP36FQCQnJw8qzmIiCKNwZSIRGVoaAjv3r1Da2srVq5cCQDo7e2dUhcTE4Px8fFpxwpWk5ycDKfTGTh2u934+PFj4Hjx4sWIjo5GX18fFixYAABwuVx4//594BZ9dnY2ZDIZHA5HyNv2weTm5uLy5cth109WX18PvV6PJUuWBO3v7+9HRkYGkpKSZj0HEVEkMZgSUcQMDw/jzZs3gjalUgmVSoVz584hNTUVDocD+/btm3KuRqPBixcvYLfbIZfLoVQqw6pZs2YNLl68iLKyMiQmJuLgwYOQSqWBc+RyObZv346amhqoVCrMnz8f+/fvR1TU308+KRQKmEwmVFVVwe/3o7CwEG63G8+fP4dcLofBYAh6vSUlJaitrYXL5UJiYuKMP6+cnBxs3boVLS0tQfufPn2KdevWzXhcIiKxYDAloojp7u5Gbm6uoM1gMODatWvYvXs3dDodsrKycPr0aRQVFQnqTCYTDAYDsrOz4fV6Bbue09XU1tZicHAQpaWliI+Ph9lsnnLuiRMnMDIygvLycigUClRXV2N4eFhQYzaboVarYbFYMDg4iISEBOTl5aGuri7k9ebk5CA/Px8dHR3YtWvXDD+tv+ft6OiY0j46OorOzk48ePBgVuMSEYmBZCKcB6qIiOiXuHv3LkwmE/r7+wW7sP/WmTNncPv2bXR1df2yMYmIfjfumBIR/Ubr16/Hhw8f8Pnz57DfqxqO6OjokLf4iYj+L7hjSkRERESiwPeYEhEREZEoMJgSERERkSgwmBIRERGRKDCYEhEREZEoMJgSERERkSgwmBIRERGRKDCYEhEREZEoMJgSERERkSgwmBIRERGRKPwF9TcVUjZaqJsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(nrows = 1, ncols = 1, figsize = (8,6))\n", "\n", "v_plot = v_cro.plot.contourf(\n", " x='lat', y='level', ylim=(1000, 100),\n", " ax=ax,\n", " levels = np.arange(-20, 22, 2),\n", " cmap = cmaps.MPL_bwr, alpha = 1,\n", " add_colorbar=True,\n", " extend='both',\n", " cbar_kwargs={'orientation': 'vertical', 'aspect': 20, 'shrink': 0.9, 'extend':'both', 'label': ''})\n", "\n", "ax.set_xlim([0, 50])\n", "ax.set_xticks(np.arange(0, 50+1,5))\n", "ax.set_xticks(np.arange(0, 50+1,1), minor = True)\n", "ax.set_yticks([1000, 925, 850, 700, 600, 500, 400, 300, 200, 100])\n", "ax.set_yticks(np.arange(1000, 100, -25), minor = True)\n", "ax.xaxis.set_tick_params(labelsize=12)\n", "ax.yaxis.set_tick_params(labelsize=12)\n", "ax.set_xlabel('Latitude ($^{\\circ }$N)')\n", "ax.set_ylabel('Pressure levels')\n", "ax.set_title('')\n", "ax.grid()\n", "ax.set_title('2016-01 V-wind along East Asia coastlines')\n", "\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "p3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }