{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "13c9f12f", "metadata": {}, "source": [ "# 7. Advanced Calculation and Statistical Methods" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regridding\n", "\n", "Different datasets usually have different time and grid resolutions. Sometimes we need to use different datasets with the same resolution, so we need to regrid the `A` grid onto the `B` grid resolution. The simplest way to do this with xarray is using `xr.interp`. The default interpolation method of the `xr.interp` function is linear interpolation.\n", "\n", "**Example 1:** The horizontal resolution of GPCP rainfall data is 2.5˚, and the horizontal resolution of OLR is 1˚. Now we will regrid the OLR data to the GPCP resolution.\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "31443fb5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 8760, lat: 20, lon: 32)> Size: 22MB\n",
       "array([[[210.37125, 199.29874, 197.44077, ..., 268.05853, 268.25916,\n",
       "         266.9823 ],\n",
       "        [204.61313, 213.93433, 230.92719, ..., 284.24072, 282.60632,\n",
       "         278.35385],\n",
       "        [236.69272, 247.62692, 259.35587, ..., 294.86554, 292.45862,\n",
       "         292.01804],\n",
       "        ...,\n",
       "        [297.27472, 302.5027 , 305.18634, ..., 193.11395, 206.42505,\n",
       "         197.59212],\n",
       "        [291.31464, 291.11176, 298.43726, ..., 155.4393 , 146.58469,\n",
       "         162.1478 ],\n",
       "        [286.89136, 290.6887 , 291.20618, ..., 171.58977, 183.45123,\n",
       "         195.39035]],\n",
       "\n",
       "       [[259.8478 , 225.8486 , 211.98647, ..., 269.50348, 269.39746,\n",
       "         272.64   ],\n",
       "        [276.39136, 272.1738 , 268.95856, ..., 291.94778, 289.79297,\n",
       "         284.37097],\n",
       "        [260.77368, 265.89886, 275.41898, ..., 301.7583 , 299.66028,\n",
       "         292.9348 ],\n",
       "...\n",
       "        [289.9028 , 281.8377 , 285.37466, ..., 169.81645, 173.29109,\n",
       "         213.98285],\n",
       "        [286.0285 , 282.36426, 284.31454, ..., 111.96492, 154.03249,\n",
       "         224.03793],\n",
       "        [290.05353, 295.02466, 291.87067, ..., 125.69296, 153.77583,\n",
       "         191.87067]],\n",
       "\n",
       "       [[240.00652, 211.87251, 198.56546, ..., 264.23984, 258.3333 ,\n",
       "         255.25803],\n",
       "        [224.23218, 243.02698, 246.38681, ..., 279.6334 , 274.43097,\n",
       "         277.21472],\n",
       "        [234.04726, 253.98969, 263.0449 , ..., 289.64203, 291.71185,\n",
       "         293.91864],\n",
       "        ...,\n",
       "        [286.8454 , 287.29822, 284.08643, ..., 165.07278, 165.68568,\n",
       "         180.77968],\n",
       "        [291.43097, 289.64923, 295.36426, ..., 178.16243, 158.17258,\n",
       "         182.52911],\n",
       "        [294.91678, 297.96875, 296.73392, ..., 174.35318, 157.13422,\n",
       "         152.69089]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 70kB 1998-01-01 1998-01-02 ... 2021-12-31\n",
       "  * lon      (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ " Size: 22MB\n", "array([[[210.37125, 199.29874, 197.44077, ..., 268.05853, 268.25916,\n", " 266.9823 ],\n", " [204.61313, 213.93433, 230.92719, ..., 284.24072, 282.60632,\n", " 278.35385],\n", " [236.69272, 247.62692, 259.35587, ..., 294.86554, 292.45862,\n", " 292.01804],\n", " ...,\n", " [297.27472, 302.5027 , 305.18634, ..., 193.11395, 206.42505,\n", " 197.59212],\n", " [291.31464, 291.11176, 298.43726, ..., 155.4393 , 146.58469,\n", " 162.1478 ],\n", " [286.89136, 290.6887 , 291.20618, ..., 171.58977, 183.45123,\n", " 195.39035]],\n", "\n", " [[259.8478 , 225.8486 , 211.98647, ..., 269.50348, 269.39746,\n", " 272.64 ],\n", " [276.39136, 272.1738 , 268.95856, ..., 291.94778, 289.79297,\n", " 284.37097],\n", " [260.77368, 265.89886, 275.41898, ..., 301.7583 , 299.66028,\n", " 292.9348 ],\n", "...\n", " [289.9028 , 281.8377 , 285.37466, ..., 169.81645, 173.29109,\n", " 213.98285],\n", " [286.0285 , 282.36426, 284.31454, ..., 111.96492, 154.03249,\n", " 224.03793],\n", " [290.05353, 295.02466, 291.87067, ..., 125.69296, 153.77583,\n", " 191.87067]],\n", "\n", " [[240.00652, 211.87251, 198.56546, ..., 264.23984, 258.3333 ,\n", " 255.25803],\n", " [224.23218, 243.02698, 246.38681, ..., 279.6334 , 274.43097,\n", " 277.21472],\n", " [234.04726, 253.98969, 263.0449 , ..., 289.64203, 291.71185,\n", " 293.91864],\n", " ...,\n", " [286.8454 , 287.29822, 284.08643, ..., 165.07278, 165.68568,\n", " 180.77968],\n", " [291.43097, 289.64923, 295.36426, ..., 178.16243, 158.17258,\n", " 182.52911],\n", " [294.91678, 297.96875, 296.73392, ..., 174.35318, 157.13422,\n", " 152.69089]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 70kB 1998-01-01 1998-01-02 ... 2021-12-31\n", " * lon (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n", " * lat (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import xarray as xr\n", "lats = -20\n", "latn = 30\n", "lon1 = 79 \n", "lon2 = 161\n", "\n", "pcp_ds = xr.open_dataset('data/gpcp_precip_1979-2019.pentad.nc') \n", "pcp = pcp_ds.sel(lat=slice(latn,lats), lon=slice(lon1,lon2)).data\n", "olr_ds = xr.open_dataset('data/olr.nc')\n", "olr = olr_ds.sel(lat=slice(lats,latn), lon=slice(lon1,lon2)).olr\n", "\n", "olr_rmp = olr.interp(lon=pcp.lon, lat=pcp.lat) # Specify the target grid info to the `interp` method. \n", "olr_rmp" ] }, { "cell_type": "markdown", "id": "237f8e25", "metadata": {}, "source": [ "However, sometimes linear interpolation is not the best way to regrid. For example, rainfall need to stay mass conservation after regridding, therefore **conservative** regridding is required. Here we introduce `xesmf` library to do this. \n", "\n", "**Example 2:** Regrid the GPCP data to the OLR resolution." ] }, { "cell_type": "code", "execution_count": 2, "id": "e51dcb9d", "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "'Author'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mxesmf\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mxe\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Set the grid information \u001b[39;00m\n\u001b[1;32m 4\u001b[0m grid_olr \u001b[38;5;241m=\u001b[39m xr\u001b[38;5;241m.\u001b[39mDataset({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlat\u001b[39m\u001b[38;5;124m'\u001b[39m:olr\u001b[38;5;241m.\u001b[39mlat, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlon\u001b[39m\u001b[38;5;124m'\u001b[39m:olr\u001b[38;5;241m.\u001b[39mlon}) \n", "File \u001b[0;32m/data/wtsai/micromamba/p3/lib/python3.10/site-packages/xesmf/__init__.py:3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m data, util\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfrontend\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Regridder, SpatialAverager\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", "File \u001b[0;32m/data/wtsai/micromamba/p3/lib/python3.10/site-packages/xesmf/util.py:8\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mshapely\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeometry\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m MultiPolygon, Polygon\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mesmpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mESMF\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mESMF\u001b[39;00m\n", "File \u001b[0;32m/data/wtsai/micromamba/p3/lib/python3.10/site-packages/esmpy/__init__.py:106\u001b[0m\n\u001b[1;32m 104\u001b[0m __requires_python__ \u001b[38;5;241m=\u001b[39m msg[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRequires-Python\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 105\u001b[0m \u001b[38;5;66;03m# these don't seem to work with setuptools pyproject.toml\u001b[39;00m\n\u001b[0;32m--> 106\u001b[0m __author__ \u001b[38;5;241m=\u001b[39m \u001b[43mmsg\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mAuthor\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 107\u001b[0m __homepage__ \u001b[38;5;241m=\u001b[39m msg[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHome-page\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 108\u001b[0m __obsoletes__ \u001b[38;5;241m=\u001b[39m msg[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobsoletes\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", "File \u001b[0;32m/data/wtsai/micromamba/p3/lib/python3.10/site-packages/importlib_metadata/_adapters.py:54\u001b[0m, in \u001b[0;36mMessage.__getitem__\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 52\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getitem__\u001b[39m(item)\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m res \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 54\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(item)\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res\n", "\u001b[0;31mKeyError\u001b[0m: 'Author'" ] } ], "source": [ "import xesmf as xe\n", "\n", "# Set the grid information \n", "grid_olr = xr.Dataset({'lat':olr.lat, 'lon':olr.lon}) \n", "grid_gpcp = xr.Dataset({'lat':pcp.lat, 'lon':pcp.lon}) \n", "# ds_in: the input grid info; \n", "# ds_out: the output grid info\n", "regridder = xe.Regridder(ds_in=grid_gpcp , ds_out=grid_olr, method=\"conservative_normed\")\n", "pcp_rg = regridder(pcp,keep_attrs=True)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "1889e350", "metadata": {}, "source": [ "## Coarsen Grid Resolution\n", "\n", "We can also coarsen the grid resolution using `xarray.DataArray.coarsen`. \n", "\n", "**Example 3:** Convert daily OLR data to pentad mean. (This means to coarsen the grid resolution from daily to pentad.)" ] }, { "cell_type": "code", "execution_count": 3, "id": "8cda226c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 1752, lat: 50, lon: 82)> Size: 29MB\n",
       "array([[[284.27383, 285.73615, 288.25266, ..., 231.88799, 241.6569 ,\n",
       "         249.84024],\n",
       "        [286.65228, 288.0508 , 288.27435, ..., 215.95383, 230.82944,\n",
       "         246.1481 ],\n",
       "        [290.7838 , 290.2586 , 287.82904, ..., 198.27681, 214.98921,\n",
       "         225.9622 ],\n",
       "        ...,\n",
       "        [247.29614, 246.06245, 247.9498 , ..., 279.0298 , 277.99088,\n",
       "         276.57684],\n",
       "        [244.55948, 242.81021, 239.57669, ..., 273.2099 , 271.63373,\n",
       "         270.99365],\n",
       "        [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n",
       "         266.7093 ]],\n",
       "\n",
       "       [[257.097  , 249.0689 , 260.7727 , ..., 251.24785, 258.4394 ,\n",
       "         267.57504],\n",
       "        [265.49664, 263.9062 , 270.4431 , ..., 237.29636, 248.2174 ,\n",
       "         250.10226],\n",
       "        [261.7508 , 266.22888, 276.74783, ..., 222.4416 , 235.64157,\n",
       "         227.53247],\n",
       "...\n",
       "        [246.52588, 246.06046, 249.06099, ..., 256.54034, 259.21564,\n",
       "         260.40427],\n",
       "        [244.2377 , 247.02632, 246.57185, ..., 258.28464, 255.90445,\n",
       "         257.71054],\n",
       "        [237.54703, 235.23251, 224.96394, ..., 255.28891, 253.66435,\n",
       "         255.53586]],\n",
       "\n",
       "       [[286.864  , 287.83688, 290.30945, ..., 194.66502, 212.79057,\n",
       "         210.36748],\n",
       "        [288.31   , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n",
       "         223.37724],\n",
       "        [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n",
       "         232.43852],\n",
       "        ...,\n",
       "        [236.44717, 236.95544, 234.64787, ..., 268.50082, 268.91937,\n",
       "         267.25333],\n",
       "        [235.04623, 231.87952, 229.08992, ..., 267.69647, 267.49542,\n",
       "         266.0851 ],\n",
       "        [233.44182, 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n",
       "         264.84662]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 14kB 1998-01-01 1998-01-06 ... 2021-12-27\n",
       "  * lon      (lon) float32 328B 79.5 80.5 81.5 82.5 ... 157.5 158.5 159.5 160.5\n",
       "  * lat      (lat) float32 200B -19.5 -18.5 -17.5 -16.5 ... 26.5 27.5 28.5 29.5\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ " Size: 29MB\n", "array([[[284.27383, 285.73615, 288.25266, ..., 231.88799, 241.6569 ,\n", " 249.84024],\n", " [286.65228, 288.0508 , 288.27435, ..., 215.95383, 230.82944,\n", " 246.1481 ],\n", " [290.7838 , 290.2586 , 287.82904, ..., 198.27681, 214.98921,\n", " 225.9622 ],\n", " ...,\n", " [247.29614, 246.06245, 247.9498 , ..., 279.0298 , 277.99088,\n", " 276.57684],\n", " [244.55948, 242.81021, 239.57669, ..., 273.2099 , 271.63373,\n", " 270.99365],\n", " [236.1903 , 229.96805, 221.43008, ..., 266.5147 , 266.81476,\n", " 266.7093 ]],\n", "\n", " [[257.097 , 249.0689 , 260.7727 , ..., 251.24785, 258.4394 ,\n", " 267.57504],\n", " [265.49664, 263.9062 , 270.4431 , ..., 237.29636, 248.2174 ,\n", " 250.10226],\n", " [261.7508 , 266.22888, 276.74783, ..., 222.4416 , 235.64157,\n", " 227.53247],\n", "...\n", " [246.52588, 246.06046, 249.06099, ..., 256.54034, 259.21564,\n", " 260.40427],\n", " [244.2377 , 247.02632, 246.57185, ..., 258.28464, 255.90445,\n", " 257.71054],\n", " [237.54703, 235.23251, 224.96394, ..., 255.28891, 253.66435,\n", " 255.53586]],\n", "\n", " [[286.864 , 287.83688, 290.30945, ..., 194.66502, 212.79057,\n", " 210.36748],\n", " [288.31 , 288.92453, 290.12537, ..., 204.64694, 225.9674 ,\n", " 223.37724],\n", " [284.80383, 288.20563, 289.7766 , ..., 215.14029, 236.13554,\n", " 232.43852],\n", " ...,\n", " [236.44717, 236.95544, 234.64787, ..., 268.50082, 268.91937,\n", " 267.25333],\n", " [235.04623, 231.87952, 229.08992, ..., 267.69647, 267.49542,\n", " 266.0851 ],\n", " [233.44182, 225.93411, 211.10928, ..., 268.23108, 265.9177 ,\n", " 264.84662]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 14kB 1998-01-01 1998-01-06 ... 2021-12-27\n", " * lon (lon) float32 328B 79.5 80.5 81.5 82.5 ... 157.5 158.5 159.5 160.5\n", " * lat (lat) float32 200B -19.5 -18.5 -17.5 -16.5 ... 26.5 27.5 28.5 29.5\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "olr_noleap = olr.sel(time=~((olr.time.dt.month == 2) & (olr.time.dt.day == 29))) # Remove the leap days.\n", "olr_ptd = (olr_noleap.coarsen(time=5,\n", " coord_func={\"time\": \"min\"}) # Set the coordinate values to the min. of the 5-day period \n", " # (or the pentad start day)\n", " .mean())\n", "olr_ptd" ] }, { "attachments": {}, "cell_type": "markdown", "id": "cff8b1de", "metadata": {}, "source": [ "We actually average the time coordinate over every 5 days. The default setting of `coord_func` is `mean`, where the coarsened coordinate will be set as the date of the 5-day average (e.g., 1998-01-03, 1998-01-08, 1998-01-13, ...). Other options include `min` (the start date of the pentad) or `max` (the end date of the pentad).\n", "\n", "```{note}\n", "`xarray.DataArray.resample` seems to have the same function. From API reference,\n", "\n", "> The resampled dimension must be a datetime-like coordinate.\n", "\n", "First of all, `coarsen` can be operated on any coordinate, whereas `resample` can only be operated on a datetime-like coordinate. Additionally, we cannot skip leap days since the resample frequency is entirely based on the datetime object (See [this StackOverflow post](https://stackoverflow.com/questions/64476727/can-we-assign-the-calendar-of-pandas-datetimeindex-as-noleap-or-can-datetime)). Therefore, `olr_ptd = olr_noleap.resample(time='5D')` will still consider Feb. 29 even if we exclude leap days in the data.\n", "```" ] }, { "attachments": {}, "cell_type": "markdown", "id": "d466983e", "metadata": {}, "source": [ "## Running Mean\n", "\n", "Running mean is often applied to remove or smooth out high-frequency variability. For example, Takaya and Nakamura (2001, JAS) used a 10-day running mean to remove high-frequency variability within a 10-day period before calculating the Rossby wave activity flux. When calculating Realtime Multivariate MJO (RMM) index, Gottschalck et al. (2010, BAMS) removed interannual variability by subtracting the 120-day running mean before performing the combined EOF analysis. In xarray, we can use the `xarray.DataArray.rolling` method to calculate the running mean.\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "be44470f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'olr' (time: 1750, lat: 50, lon: 82)> Size: 29MB\n",
       "array([[[267.31717, 266.99036, 270.8208 , ..., 247.27075, 253.0514 ,\n",
       "         259.74832],\n",
       "        [272.3418 , 271.4567 , 273.70862, ..., 235.08034, 243.3069 ,\n",
       "         250.87163],\n",
       "        [270.9473 , 272.3905 , 274.61237, ..., 223.71478, 231.73334,\n",
       "         233.63165],\n",
       "        ...,\n",
       "        [242.48238, 243.38196, 246.27788, ..., 271.20895, 271.14975,\n",
       "         270.8715 ],\n",
       "        [239.12952, 239.81575, 242.67973, ..., 266.25696, 266.15314,\n",
       "         266.28625],\n",
       "        [234.36653, 231.1346 , 223.61658, ..., 259.56998, 260.0516 ,\n",
       "         260.38214]],\n",
       "\n",
       "       [[264.36322, 261.904  , 264.3725 , ..., 238.1038 , 241.9434 ,\n",
       "         249.87357],\n",
       "        [269.2213 , 267.343  , 269.49976, ..., 232.33305, 237.68199,\n",
       "         241.17148],\n",
       "        [266.89197, 267.56128, 270.72424, ..., 229.26079, 234.51195,\n",
       "         233.8206 ],\n",
       "...\n",
       "        [258.01865, 258.54132, 260.59457, ..., 265.62262, 266.46997,\n",
       "         267.72852],\n",
       "        [254.52092, 255.43341, 253.74515, ..., 262.07703, 262.12787,\n",
       "         264.36252],\n",
       "        [249.05486, 243.50095, 230.53357, ..., 257.8312 , 259.1329 ,\n",
       "         259.55786]],\n",
       "\n",
       "       [[285.45612, 286.57214, 287.6652 , ..., 247.677  , 257.28473,\n",
       "         259.3609 ],\n",
       "        [288.13184, 288.3128 , 289.0145 , ..., 255.27068, 264.8253 ,\n",
       "         264.77902],\n",
       "        [288.0848 , 289.45697, 289.93057, ..., 261.4938 , 269.81818,\n",
       "         268.2691 ],\n",
       "        ...,\n",
       "        [248.90976, 249.10083, 250.33572, ..., 262.9018 , 263.4146 ,\n",
       "         263.58185],\n",
       "        [247.00436, 247.02068, 245.05011, ..., 261.76514, 261.24374,\n",
       "         261.8905 ],\n",
       "        [243.24814, 237.90851, 224.16135, ..., 258.3669 , 257.77066,\n",
       "         257.97882]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * time     (time) datetime64[ns] 14kB 1998-01-11 1998-01-16 ... 2021-12-27\n",
       "  * lon      (lon) float32 328B 79.5 80.5 81.5 82.5 ... 157.5 158.5 159.5 160.5\n",
       "  * lat      (lat) float32 200B -19.5 -18.5 -17.5 -16.5 ... 26.5 27.5 28.5 29.5\n",
       "Attributes:\n",
       "    standard_name:  toa_outgoing_longwave_flux\n",
       "    long_name:      NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n",
       "    units:          W m-2\n",
       "    cell_methods:   time: mean area: mean
" ], "text/plain": [ " Size: 29MB\n", "array([[[267.31717, 266.99036, 270.8208 , ..., 247.27075, 253.0514 ,\n", " 259.74832],\n", " [272.3418 , 271.4567 , 273.70862, ..., 235.08034, 243.3069 ,\n", " 250.87163],\n", " [270.9473 , 272.3905 , 274.61237, ..., 223.71478, 231.73334,\n", " 233.63165],\n", " ...,\n", " [242.48238, 243.38196, 246.27788, ..., 271.20895, 271.14975,\n", " 270.8715 ],\n", " [239.12952, 239.81575, 242.67973, ..., 266.25696, 266.15314,\n", " 266.28625],\n", " [234.36653, 231.1346 , 223.61658, ..., 259.56998, 260.0516 ,\n", " 260.38214]],\n", "\n", " [[264.36322, 261.904 , 264.3725 , ..., 238.1038 , 241.9434 ,\n", " 249.87357],\n", " [269.2213 , 267.343 , 269.49976, ..., 232.33305, 237.68199,\n", " 241.17148],\n", " [266.89197, 267.56128, 270.72424, ..., 229.26079, 234.51195,\n", " 233.8206 ],\n", "...\n", " [258.01865, 258.54132, 260.59457, ..., 265.62262, 266.46997,\n", " 267.72852],\n", " [254.52092, 255.43341, 253.74515, ..., 262.07703, 262.12787,\n", " 264.36252],\n", " [249.05486, 243.50095, 230.53357, ..., 257.8312 , 259.1329 ,\n", " 259.55786]],\n", "\n", " [[285.45612, 286.57214, 287.6652 , ..., 247.677 , 257.28473,\n", " 259.3609 ],\n", " [288.13184, 288.3128 , 289.0145 , ..., 255.27068, 264.8253 ,\n", " 264.77902],\n", " [288.0848 , 289.45697, 289.93057, ..., 261.4938 , 269.81818,\n", " 268.2691 ],\n", " ...,\n", " [248.90976, 249.10083, 250.33572, ..., 262.9018 , 263.4146 ,\n", " 263.58185],\n", " [247.00436, 247.02068, 245.05011, ..., 261.76514, 261.24374,\n", " 261.8905 ],\n", " [243.24814, 237.90851, 224.16135, ..., 258.3669 , 257.77066,\n", " 257.97882]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 14kB 1998-01-11 1998-01-16 ... 2021-12-27\n", " * lon (lon) float32 328B 79.5 80.5 81.5 82.5 ... 157.5 158.5 159.5 160.5\n", " * lat (lat) float32 200B -19.5 -18.5 -17.5 -16.5 ... 26.5 27.5 28.5 29.5\n", "Attributes:\n", " standard_name: toa_outgoing_longwave_flux\n", " long_name: NOAA Climate Data Record of Daily Mean Upward Longwave Fl...\n", " units: W m-2\n", " cell_methods: time: mean area: mean" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "olr_3p_runave = (olr_ptd.rolling(time=3, \n", " center=False)\n", " .mean()\n", " .dropna('time'))\n", "olr_3p_runave" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4462f456", "metadata": {}, "source": [ "We can use `dropna()` to remove missing values. " ] }, { "attachments": {}, "cell_type": "markdown", "id": "240e35ba", "metadata": {}, "source": [ "## Correlation Map\n", "\n", "We can calculate the correlation coefficient between two DataArrays along a specific coordinate.\n", "\n", "**Example 4:** Plot the correlation coefficient map between NDJ [Oceanic Niño Index (ONI)](https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php) and December rainfall.\n", "\n", "**Step 1:** Retrieve GPCP monthly mean rainfall in December. (Choose all data in December, then group and average by each year with `groupby`.)\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "58b45039", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'data' (year: 41, lat: 20, lon: 32)> Size: 105kB\n",
       "array([[[1.0133333e+00, 9.1833329e-01, 7.9833335e-01, ...,\n",
       "         3.6333334e+00, 2.7116668e+00, 2.5383332e+00],\n",
       "        [2.0333333e-01, 4.2833331e-01, 2.5000000e-01, ...,\n",
       "         2.4483333e+00, 2.3216665e+00, 1.7766665e+00],\n",
       "        [5.4999996e-02, 1.3666667e-01, 1.5833335e-01, ...,\n",
       "         2.2033336e+00, 1.8683332e+00, 1.2850000e+00],\n",
       "        ...,\n",
       "        [1.1466666e+00, 1.4949999e+00, 1.8333334e+00, ...,\n",
       "         3.6483333e+00, 4.2433333e+00, 2.9916668e+00],\n",
       "        [7.1833330e-01, 1.3866667e+00, 1.4466667e+00, ...,\n",
       "         4.0750003e+00, 3.2466669e+00, 2.8599999e+00],\n",
       "        [3.9666665e-01, 8.2333332e-01, 1.1883334e+00, ...,\n",
       "         2.9016666e+00, 2.7083333e+00, 1.7416667e+00]],\n",
       "\n",
       "       [[4.6500000e-01, 2.8333333e-01, 3.4333333e-01, ...,\n",
       "         3.8716667e+00, 3.8799999e+00, 3.4633334e+00],\n",
       "        [6.0833335e-01, 1.7000000e-01, 1.4666666e-01, ...,\n",
       "         3.9750001e+00, 3.6300001e+00, 3.1483333e+00],\n",
       "        [1.2800001e+00, 3.2166669e-01, 1.2000000e-01, ...,\n",
       "         2.4466667e+00, 2.1550000e+00, 1.1616668e+00],\n",
       "...\n",
       "        [7.9235015e+00, 7.0794005e+00, 5.7172127e+00, ...,\n",
       "         9.7668800e+00, 1.0939357e+01, 1.0846936e+01],\n",
       "        [9.5492640e+00, 7.4848499e+00, 3.3095343e+00, ...,\n",
       "         1.2228072e+01, 1.2528176e+01, 1.1302447e+01],\n",
       "        [7.2531962e+00, 5.3915715e+00, 2.0546637e+00, ...,\n",
       "         1.0486613e+01, 1.3482674e+01, 1.1387763e+01]],\n",
       "\n",
       "       [[2.0096309e+00, 1.1509016e+00, 4.8980752e-01, ...,\n",
       "         2.0202532e+00, 2.7056713e+00, 2.6676538e+00],\n",
       "        [1.2896461e+00, 1.1470729e+00, 2.6983759e-01, ...,\n",
       "         1.3239046e+00, 1.6525987e+00, 1.6284056e+00],\n",
       "        [8.9463830e-01, 3.9747801e-01, 1.5476857e-01, ...,\n",
       "         1.1533502e+00, 1.1403440e+00, 9.9328095e-01],\n",
       "        ...,\n",
       "        [1.2956619e+00, 6.6536534e-01, 5.8920252e-01, ...,\n",
       "         4.1320643e+00, 4.3791137e+00, 4.1250496e+00],\n",
       "        [1.7519032e+00, 1.2151116e+00, 9.6764684e-01, ...,\n",
       "         5.1612849e+00, 5.1797566e+00, 2.8651981e+00],\n",
       "        [3.1523111e+00, 2.0467207e+00, 1.0773114e+00, ...,\n",
       "         3.6295269e+00, 4.3244128e+00, 2.4604805e+00]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n",
       "  * year     (year) int64 328B 1979 1980 1981 1982 1983 ... 2016 2017 2018 2019\n",
       "Attributes:\n",
       "    long_name:  GPCP pentad precipitation (mm/day)\n",
       "    units:      mm/day
" ], "text/plain": [ " Size: 105kB\n", "array([[[1.0133333e+00, 9.1833329e-01, 7.9833335e-01, ...,\n", " 3.6333334e+00, 2.7116668e+00, 2.5383332e+00],\n", " [2.0333333e-01, 4.2833331e-01, 2.5000000e-01, ...,\n", " 2.4483333e+00, 2.3216665e+00, 1.7766665e+00],\n", " [5.4999996e-02, 1.3666667e-01, 1.5833335e-01, ...,\n", " 2.2033336e+00, 1.8683332e+00, 1.2850000e+00],\n", " ...,\n", " [1.1466666e+00, 1.4949999e+00, 1.8333334e+00, ...,\n", " 3.6483333e+00, 4.2433333e+00, 2.9916668e+00],\n", " [7.1833330e-01, 1.3866667e+00, 1.4466667e+00, ...,\n", " 4.0750003e+00, 3.2466669e+00, 2.8599999e+00],\n", " [3.9666665e-01, 8.2333332e-01, 1.1883334e+00, ...,\n", " 2.9016666e+00, 2.7083333e+00, 1.7416667e+00]],\n", "\n", " [[4.6500000e-01, 2.8333333e-01, 3.4333333e-01, ...,\n", " 3.8716667e+00, 3.8799999e+00, 3.4633334e+00],\n", " [6.0833335e-01, 1.7000000e-01, 1.4666666e-01, ...,\n", " 3.9750001e+00, 3.6300001e+00, 3.1483333e+00],\n", " [1.2800001e+00, 3.2166669e-01, 1.2000000e-01, ...,\n", " 2.4466667e+00, 2.1550000e+00, 1.1616668e+00],\n", "...\n", " [7.9235015e+00, 7.0794005e+00, 5.7172127e+00, ...,\n", " 9.7668800e+00, 1.0939357e+01, 1.0846936e+01],\n", " [9.5492640e+00, 7.4848499e+00, 3.3095343e+00, ...,\n", " 1.2228072e+01, 1.2528176e+01, 1.1302447e+01],\n", " [7.2531962e+00, 5.3915715e+00, 2.0546637e+00, ...,\n", " 1.0486613e+01, 1.3482674e+01, 1.1387763e+01]],\n", "\n", " [[2.0096309e+00, 1.1509016e+00, 4.8980752e-01, ...,\n", " 2.0202532e+00, 2.7056713e+00, 2.6676538e+00],\n", " [1.2896461e+00, 1.1470729e+00, 2.6983759e-01, ...,\n", " 1.3239046e+00, 1.6525987e+00, 1.6284056e+00],\n", " [8.9463830e-01, 3.9747801e-01, 1.5476857e-01, ...,\n", " 1.1533502e+00, 1.1403440e+00, 9.9328095e-01],\n", " ...,\n", " [1.2956619e+00, 6.6536534e-01, 5.8920252e-01, ...,\n", " 4.1320643e+00, 4.3791137e+00, 4.1250496e+00],\n", " [1.7519032e+00, 1.2151116e+00, 9.6764684e-01, ...,\n", " 5.1612849e+00, 5.1797566e+00, 2.8651981e+00],\n", " [3.1523111e+00, 2.0467207e+00, 1.0773114e+00, ...,\n", " 3.6295269e+00, 4.3244128e+00, 2.4604805e+00]]], dtype=float32)\n", "Coordinates:\n", " * lon (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n", " * lat (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75\n", " * year (year) int64 328B 1979 1980 1981 1982 1983 ... 2016 2017 2018 2019\n", "Attributes:\n", " long_name: GPCP pentad precipitation (mm/day)\n", " units: mm/day" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pcp_dec = (pcp.sel(time=pcp.time.dt.month.isin([12]))\n", " .groupby('time.year')\n", " .mean(\"time\"))\n", "pcp_dec" ] }, { "attachments": {}, "cell_type": "markdown", "id": "bdaeafa1", "metadata": {}, "source": [ "Step 2: Create the DataArray for NDJ ONI." ] }, { "cell_type": "code", "execution_count": 6, "id": "5a9f165e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (year: 41)> Size: 328B\n",
       "array([ 0.6,  0. , -0.1,  2.2, -0.9, -1.1, -0.4,  1.2,  1.1, -1.8, -0.1,\n",
       "        0.4,  1.5, -0.1,  0.1,  1.1, -1. , -0.5,  2.4, -1.6, -1.7, -0.7,\n",
       "       -0.3,  1.1,  0.4,  0.7, -0.8,  0.9, -1.6, -0.7,  1.6, -1.6, -1. ,\n",
       "       -0.2, -0.3,  0.7,  2.6, -0.6, -1. ,  0.8,  0.5])\n",
       "Coordinates:\n",
       "  * year     (year) int64 328B 1979 1980 1981 1982 1983 ... 2016 2017 2018 2019
" ], "text/plain": [ " Size: 328B\n", "array([ 0.6, 0. , -0.1, 2.2, -0.9, -1.1, -0.4, 1.2, 1.1, -1.8, -0.1,\n", " 0.4, 1.5, -0.1, 0.1, 1.1, -1. , -0.5, 2.4, -1.6, -1.7, -0.7,\n", " -0.3, 1.1, 0.4, 0.7, -0.8, 0.9, -1.6, -0.7, 1.6, -1.6, -1. ,\n", " -0.2, -0.3, 0.7, 2.6, -0.6, -1. , 0.8, 0.5])\n", "Coordinates:\n", " * year (year) int64 328B 1979 1980 1981 1982 1983 ... 2016 2017 2018 2019" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oni_ndj = xr.DataArray( \n", " data=[0.6, 0.0, -0.1, 2.2, -0.9, -1.1, -0.4, 1.2, 1.1, -1.8, -0.1, 0.4, \n", " 1.5, -0.1, 0.1, 1.1, -1.0, -0.5, 2.4, -1.6, -1.7, -0.7, \n", " -0.3, 1.1, 0.4, 0.7, -0.8, 0.9, -1.6, -0.7, 1.6, -1.6, \n", " -1.0, -0.2, -0.3, 0.7, 2.6, -0.6, -1.0, 0.8, 0.5],\n", " dims='year',\n", " coords=dict(year=pcp_dec.year)\n", " )\n", "oni_ndj" ] }, { "attachments": {}, "cell_type": "markdown", "id": "a093360c", "metadata": {}, "source": [ "Step 3: Calculate correlation coefficient with `xr.corr`." ] }, { "cell_type": "code", "execution_count": 7, "id": "999a0b40", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 20, lon: 32)> Size: 5kB\n",
       "array([[ 3.62929452e-01,  3.42366935e-01,  1.36141385e-01,\n",
       "         2.86181885e-01,  1.81635007e-01,  1.49191933e-01,\n",
       "         2.91984747e-01,  4.77790103e-01,  4.72934980e-01,\n",
       "         2.59950214e-01,  3.45925729e-01,  3.45836394e-01,\n",
       "         2.41839289e-01,  3.26920710e-01,  3.12002374e-01,\n",
       "         2.78955901e-01,  2.83943380e-01,  3.95803478e-01,\n",
       "         4.20742082e-01,  4.71375054e-01,  5.46175408e-01,\n",
       "         4.34086513e-01,  3.36992606e-01,  2.34458541e-01,\n",
       "         3.30061209e-01,  2.83089068e-01,  6.62670164e-02,\n",
       "        -6.41038383e-02, -8.02357126e-02, -1.32435603e-01,\n",
       "        -6.14116577e-02, -3.57627814e-01],\n",
       "       [ 3.83909987e-01,  3.03894582e-01,  2.37785616e-01,\n",
       "         2.14941992e-01,  1.29919746e-01,  9.02064326e-02,\n",
       "         1.65142443e-01,  2.02511225e-01,  2.68816770e-01,\n",
       "         1.56273306e-01,  2.46169180e-01,  3.13843023e-01,\n",
       "         3.71282407e-01,  3.76425080e-01,  3.56976452e-01,\n",
       "         3.31840158e-01,  1.84695348e-01,  4.19843103e-01,\n",
       "         4.71277802e-01,  4.27318315e-01,  3.51365941e-01,\n",
       "         2.37002936e-01,  2.34139483e-01,  2.04142669e-01,\n",
       "         1.27191143e-01, -7.16084696e-02, -1.17030947e-01,\n",
       "...\n",
       "        -1.63141768e-01,  2.02073967e-02,  8.64961743e-02,\n",
       "        -6.46165929e-02, -1.30967877e-01, -1.11179142e-01,\n",
       "        -2.19488532e-01, -3.89394358e-01, -5.41138832e-01,\n",
       "        -5.55411033e-01, -4.62892783e-01, -3.87886292e-01,\n",
       "        -2.86447708e-01, -1.87858258e-01, -4.88526454e-02,\n",
       "        -6.03390847e-02, -5.92937090e-02, -1.09022036e-02,\n",
       "        -1.62940949e-01, -1.06521328e-01, -1.63654755e-01,\n",
       "        -2.66138362e-01, -3.63495708e-01, -3.56191141e-01,\n",
       "        -3.43018577e-01, -4.02329768e-01],\n",
       "       [ 2.18229674e-01,  1.50764053e-01,  4.34983986e-02,\n",
       "        -2.31485281e-02, -1.24680834e-01, -2.82829671e-01,\n",
       "        -2.27022137e-01, -1.80625263e-01, -6.68313177e-02,\n",
       "        -1.22718879e-01, -7.70160205e-02, -1.92838402e-01,\n",
       "        -2.63437027e-01, -4.77678620e-01, -6.13706400e-01,\n",
       "        -5.25689479e-01, -3.34162312e-01, -3.46265765e-01,\n",
       "        -2.73299118e-01, -3.36175549e-01, -1.75612517e-01,\n",
       "        -7.18667328e-02, -2.45879382e-02,  2.50092725e-03,\n",
       "        -1.46619847e-01, -7.41479082e-02, -3.23609599e-02,\n",
       "        -1.90437806e-01, -2.59385838e-01, -3.08636754e-01,\n",
       "        -2.93624430e-01, -3.09437350e-01]])\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n",
       "  * lat      (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75
" ], "text/plain": [ " Size: 5kB\n", "array([[ 3.62929452e-01, 3.42366935e-01, 1.36141385e-01,\n", " 2.86181885e-01, 1.81635007e-01, 1.49191933e-01,\n", " 2.91984747e-01, 4.77790103e-01, 4.72934980e-01,\n", " 2.59950214e-01, 3.45925729e-01, 3.45836394e-01,\n", " 2.41839289e-01, 3.26920710e-01, 3.12002374e-01,\n", " 2.78955901e-01, 2.83943380e-01, 3.95803478e-01,\n", " 4.20742082e-01, 4.71375054e-01, 5.46175408e-01,\n", " 4.34086513e-01, 3.36992606e-01, 2.34458541e-01,\n", " 3.30061209e-01, 2.83089068e-01, 6.62670164e-02,\n", " -6.41038383e-02, -8.02357126e-02, -1.32435603e-01,\n", " -6.14116577e-02, -3.57627814e-01],\n", " [ 3.83909987e-01, 3.03894582e-01, 2.37785616e-01,\n", " 2.14941992e-01, 1.29919746e-01, 9.02064326e-02,\n", " 1.65142443e-01, 2.02511225e-01, 2.68816770e-01,\n", " 1.56273306e-01, 2.46169180e-01, 3.13843023e-01,\n", " 3.71282407e-01, 3.76425080e-01, 3.56976452e-01,\n", " 3.31840158e-01, 1.84695348e-01, 4.19843103e-01,\n", " 4.71277802e-01, 4.27318315e-01, 3.51365941e-01,\n", " 2.37002936e-01, 2.34139483e-01, 2.04142669e-01,\n", " 1.27191143e-01, -7.16084696e-02, -1.17030947e-01,\n", "...\n", " -1.63141768e-01, 2.02073967e-02, 8.64961743e-02,\n", " -6.46165929e-02, -1.30967877e-01, -1.11179142e-01,\n", " -2.19488532e-01, -3.89394358e-01, -5.41138832e-01,\n", " -5.55411033e-01, -4.62892783e-01, -3.87886292e-01,\n", " -2.86447708e-01, -1.87858258e-01, -4.88526454e-02,\n", " -6.03390847e-02, -5.92937090e-02, -1.09022036e-02,\n", " -1.62940949e-01, -1.06521328e-01, -1.63654755e-01,\n", " -2.66138362e-01, -3.63495708e-01, -3.56191141e-01,\n", " -3.43018577e-01, -4.02329768e-01],\n", " [ 2.18229674e-01, 1.50764053e-01, 4.34983986e-02,\n", " -2.31485281e-02, -1.24680834e-01, -2.82829671e-01,\n", " -2.27022137e-01, -1.80625263e-01, -6.68313177e-02,\n", " -1.22718879e-01, -7.70160205e-02, -1.92838402e-01,\n", " -2.63437027e-01, -4.77678620e-01, -6.13706400e-01,\n", " -5.25689479e-01, -3.34162312e-01, -3.46265765e-01,\n", " -2.73299118e-01, -3.36175549e-01, -1.75612517e-01,\n", " -7.18667328e-02, -2.45879382e-02, 2.50092725e-03,\n", " -1.46619847e-01, -7.41479082e-02, -3.23609599e-02,\n", " -1.90437806e-01, -2.59385838e-01, -3.08636754e-01,\n", " -2.93624430e-01, -3.09437350e-01]])\n", "Coordinates:\n", " * lon (lon) float32 128B 81.25 83.75 86.25 88.75 ... 153.8 156.2 158.8\n", " * lat (lat) float32 80B 28.75 26.25 23.75 21.25 ... -13.75 -16.25 -18.75" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "corr = xr.corr(pcp_dec,oni_ndj,dim='year')\n", "corr" ] }, { "attachments": {}, "cell_type": "markdown", "id": "c1ae19a0", "metadata": {}, "source": [ "Step 4: Plot result. " ] }, { "cell_type": "code", "execution_count": 8, "id": "0fb4af2d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGeCAYAAACtobqEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUxxvHPxd3D4QQIGgguHtxd3cp0GKFogWKFKdFChSnP9yKa3Eo7u6uSQgSYsRlf3+EO3LJyZ4lF7jP8+SBW5mdnd2Z+e4777wjEQRBwIQJEyZMmDBhIgMxy+wMmDBhwoQJEya+PUwCxIQJEyZMmDCR4ZgEiAkTJkyYMGEiwzEJEBMmTJgwYcJEhmMSICZMmDBhwoSJDMckQEyYMGHChAkTGY5JgJgwYcKECRMmMhyTADFhwoQJEyZMZDgmAWLChAkTJkyYyHBMAkQLbt26xffff0/evHmxsbHBwcGBMmXKMHPmTD5+/JjZ2ZPjxIkTSCQSTpw4ofG59+7dY+LEibx48SLdvp49e+Lr66tz/rQlIiKCadOmUa5cOZycnLC2tsbX15devXpx7do1g177xYsXNGnSBDc3NyQSCUOGDAHg+vXr1KhRA2dnZyQSCfPmzdO6/FevXo1EIlFY9vpk+vTp7Nq1S/TxEokEiURCz549Fe6fPHmy7BhD510VvXr1omHDhrLfL168kOVLIpFgaWmJu7s75cuXZ+jQody9ezfT8poV8PX1VfrMsyJi69fEiRPl3hs7Ozt8fHxo0KABCxYsIDIyMt05PXv2xMHBQW5bzZo15dJJ/Xfnzh21+Q0JCWHMmDH4+/tjZ2eHk5MTlSpVYtGiRSQkJKQ7Xpr277//rvTer1y5ku4+P3z4INvWrVs3WrZsqTZvOiGY0Ijly5cLFhYWQtGiRYVFixYJ//33n3D48GFh+vTpQt68eYWWLVtmdhbl+O+//wRA+O+//zQ+d+vWrUrPffLkiXDt2jXdM6gFT548EfLlyyc4ODgII0aMEPbt2yecOHFCWL16tdC4cWMBEMLCwgx2/ZYtWwru7u7Czp07hfPnzwsvXrwQBEEQSpUqJRQsWFDYv3+/cP78eeHNmzdCeHi4cP78eSE8PFyja7x79044f/68EBsba4hbkGFvby/06NFD9PGA4OjoKNjZ2QkRERFy+5KTk4W8efMKTk5OAiA8f/5cv5kVybVr1wQzMzPh8uXLsm3Pnz8XAGHQoEHC+fPnhbNnzwr//vuvMHXqVCFfvnyCubm5MHPmzEzJb1bg2rVrwpMnTzI7G3pj1apVot7R3377TQCEgwcPCufPnxdOnjwpbNq0SejTp49gY2Mj5MqVS7hx44bcOT169BDs7e3lttWoUUPIly+fcP78+XR/0dHRKvNw//59IVeuXIKrq6swdepU4fjx48K///4r9O/fXzA3Nxdq1KghREVFyZ0DCIDg7OwshISEKLz31PVDep/v37+XbXvy5IlgYWEhHDt2TGX+dMEkQDTg3Llzgrm5udCwYUOFHUNcXJywe/duvVwr7QslJTExUaNOyVACJLNITEwUihcvLjg5OQm3b99WeMz+/fuVlp8+KFCggNCoUaN02y0sLIT+/fsb7LqGQBsB0rVrV8HW1lZYvny53L6jR48KgPDDDz9kqgBp3769UKlSJbltUgEya9asdMdHR0cLDRs2FABh//79GZVNg6GuQzOhuQBJ3TFLuXHjhuDs7Czkzp1brk1WJkCKFi2qcT4TExMFf39/wdnZWXj48GG6/f/8848ACH379pXbDgh169YVLCwshGHDhsntEytABEEQmjZtKtSrV0/jfIvFNASjAdOnT0cikbB8+XKsra3T7beysqJ58+ay38nJycycOZPChQtjbW1NtmzZ6N69OwEBAXLn1axZk2LFinHq1CmqVKmCnZ0dvXr1kpmNZ86cydSpU8mbNy/W1tb8999/AFy5coXmzZvj5uaGjY0NpUuXZsuWLWrv48qVK3Ts2BFfX19sbW3x9fWlU6dOvHz5UnbM6tWradeuHQC1atWSmfRWr14NKB6CiY2NZcyYMeTNmxcrKyty5szJwIEDCQsLkzvO19eXpk2bcvDgQcqUKYOtrS2FCxdm5cqVavO+a9cubt++zZgxYyhWrJjCYxo1aoSdnZ3s95kzZ6hTpw6Ojo7Y2dlRpUoV/v3333TnBQcH07dvX3x8fLCysiJv3rxMmjSJxMRE4Mtw1pMnTzhw4IBcmUgkEhITE1myZIlse+pz0g7BXLx4kWbNmuHu7o6NjQ358+eXDeWAchPx0aNHqVOnDk5OTtjZ2VG1alWOHTsmd4zUnHr37l06deqEs7Mz2bNnp1evXoSHh8uOk0gkREVFsWbNGlmea9asqe4R4OzsTKtWrdI9r5UrV1K1alUKFSqU7pwjR47QokULfHx8sLGxoUCBAvTt21fO5Js679evX6d169Y4OTnh7OxM165def/+vdq8vX37lp07d9KtWze1x0qxtbVlxYoVWFpaMmvWLLl96t4JKXFxcUyePJkiRYpgY2ODu7s7tWrV4ty5c6LzIUWTMpDWpR07dlC6dGlsbGyYNGmS3vOedghG+l6vX7+eYcOG4eXlha2tLTVq1OD69esa37OUSZMmUbFiRdzc3HBycqJMmTKsWLECIc2aqZq0IRcuXKBq1arY2Njg7e3NmDFjFA5baErJkiUZO3Ysr169YvPmzTqnp4idO3dy7949Ro8erbBedejQgfr167NixQqCg4Pl9vn5+dG7d28WLVok17ZrQrdu3Th69ChPnz7V6nx1mASISJKSkjh+/Dhly5YlV65cos7p378/o0aNol69euzZs4cpU6Zw8OBBqlSpkq7hffPmDV27dqVz587s37+fAQMGyPb99ddfHD9+nNmzZ3PgwAEKFy7Mf//9R9WqVQkLC2Pp0qXs3r2bUqVK0aFDB5lIUMaLFy/w8/Nj3rx5HDp0iD/++IM3b95Qvnx5Wb6aNGnC9OnTAVi0aBHnz5/n/PnzNGnSRGGagiDQsmVLZs+eTbdu3fj3338ZNmwYa9asoXbt2sTFxckdf/PmTYYPH87QoUPZvXs3JUqUoHfv3pw6dUpl3g8fPgwgemzy5MmT1K5dm/DwcFasWMGmTZtwdHSkWbNmco1GcHAwFSpU4NChQ0yYMIEDBw7Qu3dvZsyYwQ8//ABAmTJlOH/+PF5eXlStWlVWJo0aNeL8+fMAtG3bVrZdGYcOHaJ69eq8evWKP//8kwMHDjBu3Djevn2r8l7Wr19P/fr1cXJyYs2aNWzZsgU3NzcaNGiQToQAtGnThkKFCrF9+3ZGjx7Nxo0bGTp0qGz/+fPnsbW1pXHjxrI8L168WFS59u7dmwsXLnD//n0AwsLC2LFjB71791Z4/NOnT6lcuTJLlizh8OHDTJgwgYsXL1KtWjWFnUGrVq0oUKAA27ZtY+LEiezatYsGDRqo7TgOHz5MQkICtWrVEnUfUry9vSlbtiznzp2TddBi3gmAxMREGjVqxJQpU2jatCk7d+5k9erVVKlShVevXmmUj9SILYNr164xcuRIBg8ezMGDB2nTpk2G5f3XX3/l2bNn/O9//+N///sfQUFB1KxZk2fPnml1zy9evKBv375s2bKFHTt20Lp1awYNGsSUKVPSHSumDbl37x516tQhLCyM1atXs3TpUq5fv87UqVO1yl9apB+c6totKYmJiXJ/ycnJKo8/cuQIoLq9a9myJYmJiQr9zCZOnIi5uTnjx48Xlb+01KxZE0EQ2L9/v1bnq8VgtpWvjODgYAEQOnbsKOr4+/fvC4AwYMAAue0XL14UAOHXX3+VbatRo4YApBtrk5qN8+fPL8THx8vtK1y4sFC6dGkhISFBbnvTpk2FHDlyCElJSYIgiBuCSUxMFD59+iTY29sL8+fPl21XNQTTo0cPIU+ePLLfBw8eFIB04+ibN28WADlzfZ48eQQbGxvh5cuXsm0xMTGCm5tbOlNiWqSmcrHDUJUqVRKyZcsmREZGyt1vsWLFBB8fHyE5OVkQBEHo27ev4ODgIJcnQRCE2bNnC4Bw9+5dufw3adIk3bUAYeDAgXLbFJV//vz5hfz58wsxMTFK853WRBwVFSW4ubkJzZo1kzsuKSlJKFmypFChQgXZNqk5Ne2zGDBggGBjYyO7Z0HQbghm4MCBMn+PESNGCIIgCIsWLRIcHByEyMhIYdasWSrN28nJyUJCQoLw8uVLAZAbtpTmfejQoXLnbNiwQQCE9evXq8xf//79BVtbW7l7FATVQzBSOnToIADC27dvBUEQ/06sXbtWAIS///5bZd7EokkZ5MmTRzA3N09nntd33vPkySP3nkjf6zJlysiV9YsXLwRLS0uhT58+Gt2zIpKSkoSEhARh8uTJgru7u9x1xLYhHTp0EGxtbYXg4GDZtsTERKFw4cI6D8FIrwnIDckqG4Lhs19G6r8uXbqovL6Y9u7AgQMCIPzxxx+ybanborFjxwpmZmbCzZs3BUHQbAhGEAQhZ86cQocOHVTmU1tMFhADIR0mSes5XqFCBYoUKZLui9XV1ZXatWsrTKt58+ZYWlrKfj958oQHDx7QpUsXQF5VN27cmDdv3vDw4UOlefv06ROjRo2iQIECWFhYYGFhgYODA1FRUbIvWk05fvw4kP5+27Vrh729fbr7LVWqFLlz55b9trGxoVChQlqbChURFRXFxYsXadu2rZxXurm5Od26dSMgIEBWTvv27aNWrVp4e3vLlWejRo2AFEuKPnj06BFPnz6ld+/e2NjYiD7v3LlzfPz4kR49eqT7gmrYsCGXL18mKipK7pzUw4EAJUqUIDY2lnfv3ul8H9KZMOvWrSMxMZEVK1bQvn37dN7/Ut69e0e/fv3IlSsXFhYWWFpakidPHgCF75z03ZbSvn17LCwsZPVKGUFBQXh6esqGwDRBSGPmF/tOHDhwABsbG3r16qXxNVUhtgxKlCiRzjyfUXnv3LmzXFnnyZOHKlWqqH1Oyjh+/Dh169bF2dkZc3NzLC0tmTBhAiEhIeneWzFtyH///UedOnXInj27bJu5uTkdOnTQKn9pSfvOqCJ//vxcvnxZ7k+RZUfbPCh753/55Rfc3NwYNWqUVulny5aNwMBArfOnCguDpPoV4uHhgZ2dHc+fPxd1fEhICAA5cuRIt8/b2ztdR6voOGX7pKb6ESNGMGLECIXnpB3iSU3nzp05duwY48ePp3z58jg5OSGRSGjcuDExMTFKz1NFSEgIFhYWeHp6ym2XSCR4eXnJykOKu7t7ujSsra3VXl/a4Dx//pzChQurPDY0NBRBEJQ+A2m+IaVM9+7dKyf0UqOqPDVBOobv4+Oj0XnSZ962bVulx3z8+BF7e3vZ77RlLPVb0vYZp+X7779n0qRJTJ8+nWvXrrFgwQKFxyUnJ1O/fn2CgoIYP348xYsXx97enuTkZCpVqqQwP15eXnK/LSwscHd3T/cepSUmJkYjYZealy9fYm1tjZubGyD+nXj//j3e3t6Ymen3e05sGSh6vzMq72nzKN128+ZNjdO6dOkS9evXp2bNmvz9998y35Vdu3Yxbdq0dO+JmDYkJCREaR71gbQdl7YnqrCxsaFcuXIapS+mvZP6iSlzDXBycmLcuHEMGTJEK2FoY2OjtzYjLSYBIhJzc3Pq1KnDgQMHCAgIUNuBSCvHmzdv0h0bFBSEh4eH3DZVX2xp90nPHTNmDK1bt1Z4jp+fn8Lt4eHh7Nu3j99++43Ro0fLtsfFxekUw8Td3Z3ExETev38vJ0IEQSA4OJjy5ctrnXZqGjRowPLly9m1a5dc/hXh6uqKmZkZb968SbcvKCgI+FKWHh4elChRgmnTpilMS0wDIwZp2aR1RFaHNJ8LFiygUqVKCo9J/ZWXEeTKlYu6desyadIk/Pz8qFKlisLj7ty5w82bN1m9ejU9evSQbX/y5InStIODg8mZM6fsd2JiIiEhIQo7ndR4eHhoFQcmMDCQq1evUqNGDSwsLGRpiXknPD09OXPmDMnJyXoVIWLLQFHbkVF5T+v4KN2m7jkp4p9//sHS0pJ9+/bJiUhN4tSkxd3dXWke9cGePXsARDlva0O9evXUtne7du3CwsJCZR769+/P/PnzGTVqFP3799coDx8/fjRYzCfTEIwGjBkzBkEQ+OGHH4iPj0+3PyEhgb179wLIhlPWr18vd8zly5e5f/8+derU0Toffn5+FCxYkJs3b1KuXDmFf46OjgrPlUgkCIKQbhbP//73P5KSkuS2afLFLL2ftPe7fft2oqKidLrf1LRo0YLixYszY8YMpQF8Dh06RHR0NPb29lSsWJEdO3bI3UNycjLr16/Hx8dHZrpu2rQpd+7cIX/+/ArLU18CpFChQuTPn5+VK1emc8xVRdWqVXFxceHevXtKn7mVlZXG+RFjdVLF8OHDadasmUonN2kHmfadW7ZsmdJzNmzYIPd7y5YtJCYmqm3oCxcuTEhIiNxsH3XExMTQp08fEhMT+eWXX2Tbxb4TjRo1IjY2Vq3zt6ZoWwYZmfdNmzbJDUO8fPmSc+fOadUhSyQSLCwsMDc3l22LiYlh3bp1WuUNUmbwHTt2TM7BOykpSS+zVm7evMn06dPx9fWlffv2OqeniFatWuHv78/vv//Oo0eP0u3fvHkzhw8fpk+fPiqtOlZWVkydOpXLly+zdetW0ddPTEzk9evX+Pv7a5V/dZgsIBog9eIfMGAAZcuWpX///hQtWpSEhASuX7/O8uXLKVasGM2aNcPPz48ff/yRBQsWYGZmRqNGjXjx4gXjx48nV65ccrMRtGHZsmU0atSIBg0a0LNnT3LmzMnHjx+5f/8+165dU/qSOTk58d133zFr1iw8PDzw9fXl5MmTrFixAhcXF7ljpdNcly9fjqOjIzY2NuTNm1fh1029evVo0KABo0aNIiIigqpVq3Lr1i1+++03SpcurdG0SFWYm5uzc+dO6tevT+XKlenfvz+1atXC3t6ely9fsm3bNvbu3UtoaCgAM2bMoF69etSqVYsRI0ZgZWXF4sWLuXPnDps2bZJ1jpMnT+bIkSNUqVKFwYMH4+fnR2xsLC9evGD//v0sXbpU42ETZSxatIhmzZpRqVIlhg4dSu7cuXn16hWHDh1K1+lIcXBwYMGCBfTo0YOPHz/Stm1bsmXLxvv377l58ybv379nyZIlGuelePHinDhxgr1795IjRw4cHR2VWs8UUb9+ferXr6/ymMKFC5M/f35Gjx6NIAi4ubmxd+9emYe/Inbs2IGFhQX16tXj7t27jB8/npIlS6pt6KVe+xcvXlSYr1evXnHhwgWSk5MJDw/n+vXrrFy5kpcvXzJnzhy5c8S+E506dWLVqlX069ePhw8fUqtWLZKTk7l48SJFihShY8eOQIpIP3nyZLppsPouA0PkXRnv3r2jVatW/PDDD4SHh/Pbb79hY2PDmDFjZMesXbuWXr16sXLlSrp37640rSZNmvDnn3/SuXNnfvzxR0JCQpg9e7bCkAdiGTduHHv27KF27dpMmDABOzs7Fi1alM5fSh1Xr17F2dmZhIQEgoKCOHbsGOvWrSNbtmzs3bs3nfjXxgdJEebm5mzfvp169epRuXJlhg8fTuXKlYmLi2Pv3r0sX76cGjVqMGfOHLVpderUSTaTUiy3bt0iOjpa41llojGIa+tXzo0bN4QePXoIuXPnFqysrAR7e3uhdOnSwoQJE4R3797JjktKShL++OMPoVChQoKlpaXg4eEhdO3aVXj9+rVcesqC1Kjz3L9586bQvn17IVu2bIKlpaXg5eUl1K5dW1i6dKnsGEWzMAICAoQ2bdoIrq6ugqOjo9CwYUPhzp076TzdBUEQ5s2bJ+TNm1cwNzcXAGHVqlWCIKSfBSMIKR7ho0aNEvLkySNYWloKOXLkEPr37y+EhobKHadsFkmNGjWEGjVqKLzXtISFhQlTpkwRypQpIzg4OAiWlpZC7ty5ha5duwpnz56VO/b06dNC7dq1BXt7e8HW1laoVKmSsHfv3nRpvn//Xhg8eLCQN29ewdLSUnBzcxPKli0rjB07Vvj06ZPa/CNyFowgCML58+eFRo0aCc7OzoK1tbWQP39+uVkPygIlnTx5UmjSpIng5uYmWFpaCjlz5hSaNGkibN26VXaMMo92RWneuHFDqFq1qmBnZycAastf0T2mRdEsmHv37gn16tUTHB0dBVdXV6Fdu3bCq1evBED47bff0uX96tWrQrNmzQQHBwfB0dFR6NSpk2x2iiqSkpIEX1/fdLPPpHVJ+mdubi64uroKZcuWFYYMGSI3yyk1Yt+JmJgYYcKECULBggUFKysrwd3dXahdu7Zw7tw52THSmRDq0KQMlL2L+s67slkw69atEwYPHix4enoK1tbWQvXq1YUrV67I5UP63knbDlWsXLlS8PPzE6ytrYV8+fIJM2bMEFasWJHufdKkDTl79qxQqVIlwdraWvDy8hJGjhwpLF++XKNZMNI/a2trIUeOHEL9+vWF+fPnp4sGLAiC0K5dO8Hd3T1dvrQJRCblw4cPwujRo4XChQsLNjY2goODg1ChQgVh4cKF6WZICoLyenr48GHZvYiZBTN+/HjBw8PDYBGZJZ8za8KECROZzsSJE5k0aRLv379P5yclljlz5jBt2jQCAwOxtbXVcw4Njz7KwNCcOHGCWrVqsXXrVpWO0d8iJUuWxNramkuXLmV2VnQiKSmJAgUK0LlzZ6W+RLpi8gExYcLEV8XAgQNxdnZm0aJFmZ0VE98IcXFxnDx5ktGjR3Pr1q10U6izIuvXr+fTp0+MHDnSYNcw+YCYMGHiq8LGxoZ169bpFBLchAlNePPmDbVr18bb25vx48czaNCgzM6SziQnJ7Nhw4Z0voH6xDQEY8KECRMmTJjIcDJ1CGbJkiWUKFECJycnnJycqFy5spyHriAITJw4EW9vb2xtbalZsyZ3796VS+Phw4dUrVoVHx8fJk+eLLfP19cXiUTChQsX5LYPGTLEYPO2TZgwYcKECRPqyVQB4uPjw++//86VK1e4cuUKtWvXpkWLFjKRMXPmTP78808WLlzI5cuX8fLyol69ekRGRsrSGDhwIN26dWP37t3s3buXs2fPyl3DxsZG6xC0JkyYMGHChAnDkKkCpFmzZjRu3JhChQpRqFAhpk2bhoODAxcuXEAQBObNm8fYsWNp3bo1xYoVY82aNURHR7Nx40ZZGmFhYZQuXZoSJUrg7e2dLgBR3759uXDhguFW8zNhwoQJEyZMaIzROKEmJSWxdetWoqKiqFy5Ms+fPyc4OFguMJC1tTU1atTg3Llz9O3bF0gJuFOvXj1iYmJo2rQpDRo0kEvX19eXfv36MWbMGBo2bCgq3HBcXFy6KJWCIOgtuIwJEyZMmDChT6ysrLReBymzyHQBcvv2bSpXrkxsbCwODg7s3LkTf39/zp07B6Rf3yJ79uxyC7k1btyY9+/fExERkW4hNCnjxo1j1apVbNiwQVREzhkzZjBp0iS5bQ4ODnz69EnT2zNhwoQJEyYMjpeXF8+fP89SIiTTBYifnx83btwgLCyM7du306NHD7mlz9NaHRRZIqytrZWKD0hZcGnEiBFMmDBB1DLMY8aMYdiwYbLfERER5MqVi9evX+Pk5CT21kyYMKElR48epU2bNrLf3bt3p3fv3pQqVSrzMmXChJEi7aPi4+NNAkQTrKysKFCgAADlypXj8uXLslX7IGXVwtTLTb97906rVT+HDRvG4sWLWbx4sdpjra2tFa4/IJ2tY8KECcNx+fJlOfHRv39/fvvttwxf7deECROGxegioQqCQFxcHHnz5sXLy0tuwar4+HhOnjypdNlvVTg4ODB+/HimTZtGRESEPrNswoQJPWJnZyf3u27duibxYcLEV0imCpBff/2V06dP8+LFC27fvs3YsWM5ceIEXbp0QSKRMGTIEKZPn87OnTu5c+cOPXv2xM7Ojs6dO2t1vR9//BFnZ2c2bdqk5zsxYcKEvlizZo3c76JFi2ZSTkyYMGFIMlWAvH37lm7duuHn50edOnW4ePEiBw8epF69egD88ssvDBkyhAEDBlCuXDkCAwM5fPgwjo6OWl3P0tKSKVOmEBsbq8/bMGHChB4ZPHiw7P8PHjzAz88vE3NjwoQJQ2EKxS6CiIgInJ2dCQ8PF+8DkuYrTmN8fJTv8/ZWfW5QkG7X1uRamiAmXwEBup2vLaruU9WzUJVffaMqH6owdB61zZcSTty4Qa0RIyjr68uViRPFn2jI90MZupStpuWmTV3U9dloc39ir6nsftScH4l2H6CaYKjbVpRu2tc29TE9eoi7tlZ9lBFgdD4gJnQkMxrhrxl1rYqeO1+VaNoqBgRkjEDS43WiY2N5FxYGwHxNVhTN4Pc+MDycSceOIVm8mN3a+JRlBfGhaRo+PgYXH4ZGl1dZm3NViY9vgUyfBWNCC4KCFFdgfTfC+rR+SNNTl0dpA6SoJkrzk1H3KbYx9PHJuJZDeh11ecuMliwgQKcOZN+FC7SYMAGLz8EC/715k6oFC6o/MYPFx4rLl+mzc6fst7mZmer3NjUZITy0uY6YtNLemzbX0KGuGdLyoc/qIjatb118gEmAmFCGvsVH6nTFdBiqOnWxaYjNj7Lra0JGihBQ3tlndismViClIjEpie2nTjF82TKSk5Mxs7BgYIsWdCpXzkCZ1I0dqRbEvDRgAOVT32vq/6d+FhklPLS5Vkala4TiIzOqi6KmK7OrbWZhEiBZlbRWkKw09KKJCAHDWUP0bQbObBFiTK2YBkLk/suXdJw2DYDvSpRgYPPmtJeuVm1E9xSXmMjP+/YxpGpVJBIJ3UqVkhcfadGnhUAsmTyEoRAd69nXLD6M6PXOFEwCxBjRtBEx9qEXZdcQm2911hCxpL6eocagM0OEGDMihmWW//svAEdnzqROmTIZkSutCIqIYNmlSxx6/JjnI0fqN3F91DljEh/aOnWnwliHXPTV3Bp71c0ITAIkK6PMF0QXMkJ8pL6WJiIEdKu16u5NXw14RouQLEx0bCwLd++mcYUKRi0+APK6ubGgWTNyu7joN2FjHG7RFj3UMUPPcjGJD+PBJECyOllp6EURmvpzGKpz13dDrg/B9A3w340bALSrUUPxAUYm5n6qXFl/iRmDg6k+EHMfRiA8QPtXKaOFR1Zv1sViEiAmvpCR1g9d0HfnbsgG3cg60ExByTDMmsOH6TdvHs0rV6Zr3bqZkLFMIrOm1OobPQiPjBAdUrSphvoUAuqu/62IjtSYBIiJFDJTfGg7q0UfQkSTuAXathAma4gMQRA4f+8edtbW/Dh3Lq2rVWPliBFYmJtndtYUkpCURFBEBLmcnTEz0zFskqZ1LKuKDikq8p+RwgMyR3yYrB3qMQkQE8aBLrNatJ2OqmnQJF2n/37L1pCAAB4KAoW//162KZenJ6tGjsTGykr1uZlQbpFxcfx+8iTTT5wA4Fjv3tTOn1/7BPXUcWcaSvK/cvt2YuLiGNCpExKJJGWjEQkP0D04mLFc42vEJEBMGNfQi76mFqsTJdpGbNSHCEmbl28EFwcHud+tq1dXLz4yiflnz8rEB4B/tmyaJ5LVLR4i8n/3yRO2HznC961aYaciaFxmCA8wnDDIbF+SrwXTWjAiyNC1YDKjETKEANH3V2tm1FxDr7nzrYkQHx8OXb5MwzFjqFi4MGfmzxc/9KKsrAzwXrwIDSXvrFkAVM2Thy2dOuGtyfoaWd3HQ4P8JycnE2Rujk/OnAr3Z5bwAM2qlyGFhy6v6Jgx4o7LqmvBmCwgxoaO4aw1xlDiQ/qvvjrZtPk0tCARUy4ma4gozj95wspTp6hVtSrDly3D2d6eUR07KhYfyso0A4dhtt25I/v/sd69sbYQ0Uxm9RktWubfLHduFN2BtsJD2SPWtJgyU3yYrBziMQmQbxl9i4/MEE6GqO0ZPST1lfuG3A0M5H+nTvG/U6cA2DNlCs1UTWfVRNjpMyz/Zzzs7PC0t2d127bqxUdWFR4GiriqqfAQ+9prIkz0LRS+4qqZ6ZgEiDGS0VYQXVEXjtqQNdiQQkTs9fVx7a9YhPT+7jveRUTw55EjhEREEPzxo3YJZVAZ9Sxblp5lyyo/ICsFDtOnmNaDc6m+H58hfTG0TdsAmvirxSRAjBVDi5CvMfSzPmp9ZjrkfsUipHXZsryIiWHFgQP8OHcuvl5e1FPVyStDURllxJpIGb1Gi7E4hushgJgxvdKGFB6pMYkQcZgEiDFjKBGS0Y1pRnWsulpDjKHR/wpFyKJjxxi0fr3ctmdv3ig9PiEhgVuhoRSzt8da01ky+hQjmSHSjeUdFEFWEh6g/nUwpvwaw2uQEZgEiLFjTMMxuuQjIztWbT4/dKnx+v7c+YqcU7dcuiQTH0V9fSlToAB1y5ala5066Y5Nyp6d4+fOMf6vv7h46xbl/fxYNGgQ5QsXlj9Q7LukjeOyvlr+rCY8NMivKuFhrK+sqkdvqDxr2ixk9iuQGZgEyLdGVnWa0xRNrCHGWvOzuBCJjY9n/I4dWFtYMKZpU/p07EhODw+FxyYlJdG4Xz8Onz1LwTx5mDdmDKPnzKHRr79yd8UKsru6yp+ggaCNT0zE3MwMc0XWkcx2xM7sIT+RZDVrh5TMEB6pUSdCjLXpyShMAiQrkNlWkKy8SuzX0AJkQSESHBaG35gxRMTEMK5ZM35r2RKUiA+AFQcOcPjsWXb+9Rct6tRBIpFw6dYtDp85g62OwcpKT5jAy5AQXsyejYfj5470WxUeGuYzqwoPyHzxIUVRE5QVmp2MwCRAsgqZJUKymuVDEcqsIVmtFTByIXL79WtaL1yIlbk5LnZ2RMTE0LNaNaa0aaPyvDO3bzNo0SL6tG1Ly1SL0r0PDaVGiRI42dsrPjGNoBUEgRn79vGdnx/VChWSbX/+4QMx8fE8fffuiwDRF1lBeGhRh79W4QGZl/es1txkBCYBkpXQVYQYQw3ITCfL1J8i+i6LjHR7N0IhcvnZMypMniy3rXXZsszp2DHlh7K4EdHRdJw2jUpFirBo3Di5fe8/fsRT3XPy8WHw778TGBrK1RcveBkSwsA6deQESNSyZSQkJWElJqCYGLSpg7qsBaPNczaA6NA2KxmJSXxkLUwCJKuRkZaQr8H6kZavqSUwIiFSyMtL9v9uVapgb23N3E6d1K718tuaNYR++sS6UaOwSnXs2WvXuPHgARMGDFB5/qeYGBYcPQqAX44cAPzatKncMRKJRD/iw9DCQ9k1DFwPDSU8FIkBQ1Q/XabWBgV9XU1CVsMkQL4VjGlhrK9wqmmmkslCJDk5mVkHDgDQoFgxVvXpg7mIpetvPn3KXzt3Mr13b3KXLi23b8rSpZTx96d5rVrw9q3SNBxsbTn/11+8fPuWZpUrY/v+/ZdVWfWBtvXAmOqbAvQdOEys8S/1cdp2/JoaGtUtI6SPPJnQDpMAyYoY2gryNVo+vgUyQdhdef6catOmEZeYSKdKlfjf99+LEh/Jycn0nz8fv1y5GNK6tdw+QRC4cucOg7p0wVzEYnWV/P2p5O+f8iNXri87dCkLk/BQir5GGjVxydL2mpquYWgSIxmLSYB8C2hYk8LCwtiycyd9evTATERnohVfoxXEGMIfZkC5foqNpeOSJcTEx3P8/n0gZdhjWtu2otPYceYM5+/d48ScOVhZWsrtu/XwISFhYVQrUyZlg7blmrpzF1MmGelf9Q0Lj4xKX9cFlDNLjHxL338mAWJCjo7jxrF5xw4AKpQtS6kSJTI5R1mMzF6bBjTveDUgIiaGX7dt49+bN3GwsQFgUN26qsWHghb1UUAAbo6O1ChZMl3rfuHmTczNzamSZlhGJ5SVia6tvS7OpQZGk4XhMlN4GAJ9vvYm8WE4TALERAqf3/yPoaGyTbfv3jWsAPkarSBSjEGIgMKONzouDjtra63SqT1gAFcfPaJjrVps/PVXrf0tPsXEIDE3V9i6Hz53jnJFi2L7WeAA+rUuGanoECsYHInUOY3UmMSHcjJKfHxrwkOKSYBkRTR5W8XUoFTpHd69mwIlS/L0+XPeh4RokTkTchjDsMxnkr298WzTho+RkTyZOZP80iEOEbwNDeXUrVtcffSI0gUKsHbUKO2dPb29ufLyJf7586fb9S4khP2nTjHpp58UnpepZSm2N9LTWir6Pi81YjppI3ltNUJshH5jCZD8rQoPKSYBktXQp/hQkFZiYiJPnz8HYPmqVQwdOJCwJDtGjhxEwYKFGTDgZ1GXVvWV9s2R2R3nZ4YuWcLHyJTn8s7GhtTdf3RsLMmCQExcHJtPnKBC4cLsPX+ej5GRfIqJYfe5c4RHRWFpYcHWCROw1HRaa5p3sXXduvSfPJnAt2/JmT07kOJ8OuT337Gxtqa3suBlmVGWGop4ZehDOOiCvme0aHM9Q3a4mlg+VL1GJuGRcZgEyLeKkhqQegjm4ePHDJ84natXL3Hq1H8AdOrUHde063IoIBJHkwhJjREMyVQvXpy/du4EoM2kSdxavhxzMzN2nT3LwAULiImLw8XBgbBPn2Tn5PTwwM7aml4NG1K1aFHKFiqEb6qYHwoR0YJ3aNSIQdOns+nffxnRqxcAU5YsYdO//7Jx1izcXVxUp2/octSTtSOriA4puharuuvp0/3GEKO3JvGRsUgEQRAyOxPGTkREBM7OzoSHh+Pk5CTupDVr9J8RLawfbz98IJu7u7y5XEE6K9et4+27d4wZPpzCZcvy8PFjICWIk7OzC2FhKcKkZcu2rF27VXQ21IqQr9UHRBWZKEI6T5/O1pMnSUxKAsDV0ZHQz1YRW2trapYsyZKff+bKw4e4OjpSu3Rpg7XK7pUr8zE8nI2zZlGqcGGKNm/ObwMG8NvAgeISMEQ5GoG1Q9dOWtsqpUtxZtSMZ303Fxk500WbZ6lg0WiFaNVHGQEmASKCrCpABEHArGhRvLNl4+XRo1hYWMilkZSUxC/jx/N9164Ur1QJgISPH/n7n10MGNBLLrmcOX0IDEyp/f36DWbmzPmis2ISIQrIYBFy69kzfLNnZ/CiRaw7epQcbm4Efvgg2//vtGk0rlgx5UcGed69Cwmh9vffc/fJE0oXKcKrN28IOnFCLiKqSvRZhhkoPIztddd3jA1dUFTEhiwvQ0dC1dXa8bULENMQTFZBC+uH1OoR9O4dxVq0YMmECQxu25YVCxeycPlypowbx58LF7Jj717ZqZZubgo7gGPHLhAbG0upUgV4+/aNRlk3DccowMBDMnHx8UTGxODh7Mz1x48p07+/bN93xYvzODBQ9vu3AQNo3KqVQfKhimzu7tzevZvq3bpx9to1yhcvLl58gH6GYvQw1KJKdBib2EiLvqKK6ovMWCxbX5iGVjTHJEC+YgRBoGuzZqzfu5f8uXIxdfVq7ty7R8XatQFo+Hnl0RcvX8qd5+HhSUxMDG3bdqJMmfK4uhYhOTknVlZQrlwNTp8+pXFcJ5MIUcLnTvTPbds4dPkyq3/5hRzu7pqn8ZlDZ87wMiiII+fOse3wYepWrszR8+cBaFarFgM7daJu5cpIJBKSk5NJSEyUn+6qCgOMB0gkEprWqMHZa9fImS2b5ukb2pvwKxIemTXE8jViEhv6wTQEI4JMH4LR0Prx9sMHzt+4wbq9e9lx5Iio01at+oe9e3dy8OBetm79l+rVawLpGx5//xSryvr1ZylTpopGWVcqQHRp3Qy1um0GcuTcOer36QNAg3Ll6N2oEdWKFSMuIYGJa9cyrksXCuTMmXKwkvsUBIGx8+Yx4++/Fe6f9NNPahd2U4i+WloVzzg+Pp51e/dSqUQJihYsqJ/r6cpXIDz0YVzTx/18TQu+ZbTw+NqHYEwCRASZKkA0eOPP37tHv0WLuPXwIQAFcuemVd26zF61irSP2dLSku6dOlGxWj0qV65Gnjy+QMo0XIvPUywVNT516uTmzZvXDBjwGz/9NFHj7CsUIfr0mssiLd3TV6+YvGQJd5884erdu7LtlhYWJCQmAlCzQgVOXLoEwMDOnZk/ZoxsbZTomBiW/PMPp65cISomhit37xIeGUnnJk0Y/cMPKQJ0zx7OXLsGQMz169hoEnzMWOZLZgZK7l1b4WEEM7A1Ql+PJwtXz3RklsXDJEBMZAkBcvPpU6oMGUKJQoUY0r07VUqVItfn5cmTcuQgKSkJQRAIfvsWN1dXHB0dlTaoqhqgEyf2MWxYB3r0GMbPP0/R6hb0IkJUtepG3MqFRUTQ89df2X/qFG7OztStXJmqZcrQsFo1cn2e3jpqzhz+XLMGdxcXSvr5cfziRQDenDzJ8q1bufXoEScvX+bD5ynTtSpW5LuyZaldqRLflSsnu1Z8fDwRUVF8io7GV2pBUUVGt7LGJkS0sHqYhIdiMjLQlyaL2mlDZg63mASIicwTIBq8+d1+/51zDx9yZ/du+TF9Db/mxDRCXbtWx9rahv/973C6aJjKRkTUDsVo0voZSxhDkXyKisLG2pqExETGzZ/Pn5/fjbenT5NNgb+HIAhERUfjYG/PtkOHaDd0KNN+/pky/v406tsXgKplyjBz+HAqlighasVYlRg4lkWWmAWlx3ryLQsP0Oz+DSFCDOz6kyFI76FIEXHHZ1UBYnJCNTa0fPOdPD1JuHNH3syup0Y1bYPSvPkwJk5szdq166lXr1u641M3AKKsH5qiagaJoYSHlgPZMbGxeH33HVExMXLbvTw8FIoPSHHMdLC3B+DS7dtYWFgwslcvHMuXlx0zZdAg3RdrM5YgWtJ8pHkBQ8PD+RAaSkFfX8NfWwGK7t8kPNSjboKXIaqormkaWnAY0feQUWESIIYiIyW0tzf1Kldm8aZNPHn5UmWDrav4AKhWrRXffdeOefP6UrhwBXLl8kudFRkGER+pyQK12trKSiY+zMzM6NGiBWv37GHUZ6dTdeTx9iYxMZFTV67gZG/P+/h4urdoQY1UYkRjjDVseJrFCccvWMDOo0cJPHFC/9dRgT7qSOpzMvtrOi0ZZXBKLUSMrarq85kY271lJcwy8+IzZsygfPnyODo6ki1bNlq2bMnDzw6UUgRBYOLEiXh7e2Nra0vNmjW5m8ppD+Dhw4dUrVoVHx8fJk+eLLfP19cXiUTChQsX5LYPGTKEmjVrGuS+Mgxvb9nbf/b6dQBCwsNT9imoYcq+6LRpWIcOXYaHhw/ff1+Yrl3zERz8Qm6/xuLD2Frp1EgLQotP3KWbNwPQvXlzhnTrxsJx40i8fZsh3buLOn9Ap044Ozoyb906Dn2e4XLy8mWSPkcyFY2Pz5c/FUSi3DdIGzQWnanymWxrS/ny5XkcG6vd+5H6nkXcv7J7V1ZHgoKUvxKpzzGGESYpmZGXzOygNXwFVCJtbtP+GTK/XzuZagE5efIkAwcOpHz58iQmJjJ27Fjq16/PvXv3sP9sgp45cyZ//vknq1evplChQkydOpV69erx8OFDHB1TGouBAwfSrVs3ypcvT79+/ahTpw5Vq1aVXcfGxoZRo0Zx8uTJTLlPvaDiTb/z+DGzV63il969qVSypEbiQxFi+llHR1dmzz5Op065CA5+TteuealXrzXz5283vOUjiyAIApsPHKCknx9rfv9dqzQkEgmFfH3Zd+IE9ra2lPDz4/ajR7wPDcVbTNwMA6/MakgmjxuHZ968AOzatMmgLbImVg91Fg9l2zOzQzEmEaQKY+l0TWvCZAyZKkAOHjwo93vVqlVky5aNq1ev8t133yEIAvPmzWPs2LG0bt0agDVr1pA9e3Y2btxI388OeWFhYZQuXZoSJUrg7e1NuNQK8Jm+ffuyZMkS9u/fT+PGjTPm5rRFgzf/Y1gYG//9l5GzZ5PD05NBXbpkiPiQ4unpw7Rp/zJ2bBMAjhzZweXLJ/HwqIjNZ0fYLC8+tBzYT0xM5IcJEzh15Qp/zZypUxaWTJhAuXbt2HzgAHY2NnRp2pQl//zD+H79lEcO1aB1M0bxAeDh7s7qJUuoXKGCwa5haOGR9phvfaJRWoylEza2cOxf2k3jrJv6wqhmwTx58oSCBQty+/ZtihUrxrNnz8ifPz/Xrl2jdCqHuxYtWuDi4sKaz7MJ9u/fT8eOHYmJiaFp06Zs27ZNNjPA19eXIUOG8Pz5c06cOMH169cxMzNjyJAh3LhxgxMKxpfj4uKIi4uT/Y6IiCBXrlyaeRgfO6b+GA3f+jNXr+JgZ0epIkX4GBZGiVatCHz7llZ167Jmxgwc/fzSnWMo8ZGaf//9nblzx8h+e3h4Mm7EcAb++KMspohGGFOrqYWj666jR/lp2jTehoSwctEiunXqpPxgJff69NUrjl24wO7jx3nz/j0W5uZcvnNH7ph8uXJxcNmyLz4/GrZ0GSE8jFWAahrTQ9VQi6ZkVKdrTNUoNZkpOoxNaKRGYV1xFFdHTbNgdEQQBIYNG0a1atUoVqwYAMHBwQBkz55d7tjs2bPzMlX48MaNG/P+/XsiIiLw9PRUmP64ceNYtWoVGzZsoFu39DM3UjNjxgwmTZqky+2kR4c3Pzk5ma6jRrHp338BqFyqFBdv3SI5ORlrKyvW//EHdgoiSGaE+ABo27aPTIBYWFjy4cN7howeTcumTcmTO7fmCaauyZnZimpRKNExMfSdNIkCuXOzcdYsvmvZUvUJClqt2NhYCvj7A5And24a1KlDfHw8Pb//no+hoTx59oxa1aszYPhw1hw/ztQJEzTO57cmPsTerxjxoesraWhLiDEKj4wWHcYsNFJjTHUkMzAaAfLTTz9x69Ytzpw5k25f2lgTgiCk22Ztba1UfAB4enoyYsQIJkyYQIcOHVTmZcyYMQwbNkz2W2oB0Qg91oD9p07JxAeAk4MDyyZOpGG1avh4eek07KKftbw8uHr1IcHBQdjZ2TF65EAuXrnCiLFjWb10qcyfRyuUTNE0Vtbs3s2H0FDOb9xIvsqVNT4/JCSEdj16ADB80CBmTZ2a7l0H2HvgANHR0Tx6+lSj9I11uCU1afOoTSOt6X2KrRv6eg0NIUIyu4pkhMjISIdWQ9yPqHc59YMUGwgki2IUAmTQoEHs2bOHU6dO4ZPqqXt9jgwZHBxMjs9RPQHevXuXzioihmHDhrF48WIWL16s8jhra2usNQlbrW9SlUFMTAzzt24FoELZsuzatIkcn8tFGRkrPlIoWLAQBQsWIurtEz6EhACwbfduAoOCOCdmOEodGW0VUVU4KuYVXr9/n6IFCpBPU8EKnDh9mnbduyMIAvu2bKFJw4YKj3v2/DmdevWiepUq/D5xouj0jV18ROKIIAisWrWMM2dOsnz5WiwsLAye74yweii7rj46uYwUHl9jvAxD35PGouMbIlMFiCAIDBo0iJ07d3LixAnyfvZ4l5I3b168vLw4cuSIzAckPj6ekydP8scff2h8PQcHB8aPH8/EiRNp1qyZXu5BLyipAR9CQmjarh237t5l69q1tFVnzidzxIc0+45E8iEmhqfPn8v2nb98WbcLKcJIrSKCIHDlzh0K5smj1fkDhg2jUIECbFu3TqXIHDpmDO5ubvy7datsJpgqMkN4aGK1SJ2/uXP/YOLElOG8KVNmkjOn4XqHjLZ6KMuDth1gRr/+huqov6YZJxpb69SNiZssIIZj4MCBbNy4kd27d+Po6Cjz+XB2dsbW1haJRMKQIUOYPn06BQsWpGDBgkyfPh07Ozs6d+6s1TV//PFH5s6dy6ZNm6hYsaI+b0cz1NQIQRAY/dtv3Ll/n1MHDlCuTBm1SRpCfEjPV5bdtNvz+voyoGNHFv/zj2yb8Pp1yjCCvlsBY/EV+czqnTu5fv8+04cM0er8kI8f6dK+vUrxER4ezt4DB5g9bZrRig+xpM1bSsyfMXh752THjoNIJBK6dGnNyJHjKFVK/fuvDnWviBirhyEWX1ZXx9TlKSPQd9U1lOjISF8Tnfw3DOGMlwXJVAGyZMkSgHQBwVatWkXPnj0B+OWXX4iJiWHAgAGEhoZSsWJFDh8+LKrxVYSlpSVTpkzRWsDohAa1Y9nKlaxYu5bFf/4pSnwoQl/iIy3SxkPR+i63jh2TEx8AM1esSIn8mTpBYxYjYgpJwTBM8ucJZdmVhFhXR2JiotoAY3v270cQBNq2aKHyOHXCw5CPQh3K8iaRSPj33/+wtLTE378YPXt2YO/enbRo0VZrASL2VVAnPtLuN0SYcVXWkMzU1/p6P1SVzZ07V1i6dCrTpq3C2dk1Q/IjFr05ippERzqMahqusaLVFKf791P+1aK2HDxyhBadOvFDjx4snDNH1DlpG3VdxIeic1PfhioBEvPkCbnr1OFDaCi7Fiyg5aBBACTfvZvemTIjWhJtWm6xBZWmRU1MTKRYixbkzJaNoytXItHQD6R+ixbY2Niw53P01NSEh4czcPhwNmzZQo1q1Tixf7/SdLRdNl6KQaYTojxf9+7d4e+/FxEc/AaAevW68f33rbl69TIPH96jSZOW2NjYyGLLqEPXdQ3ViQ9N0VSUGNMIoy7vgib3feHCcW7evEDDhu3Jk6dA1hUZytB2ESGRy+GapuGakEfLmAznzp2mVZcu1KnTgEkzFhLJl0BTYht2fYsPTbC1seHl0aPcfPiQyqVKyUTI1bt3Kfd5ejVgPBGI9IiFhQVzfvmFpv37M2PzZn4dMUKj8ytXqMDkP/6gSceudOvWi9Kly5EjhzdL509l7OTJJCYmsnD2bHp26aLwfF2FR9pjM+IRRUVFUb16GSQSCZUrVyM2NpYhQ9qycmVF+vQZTfbsRfH3z4Ozsxt79tzF1tZOb9fOCPEhTUOTzjgrCw9N7jP1Ndq2rU3btrW1u6gIsuR0V2N4EQyMyQIiAq3UZaRmTnghIR9YuPBPliyZT5ky5dm585DWM3G0FSCq3nexFpC0iUitAr45c3Jw+XLFCRoSbSuxugJT0dJOWreOiTNm0KxRI9YsXYqrq2qTslQ4JCUlsWXLRubO/Z0HD+4BkD9/QZ4+fUzDhk3p1Kk7rVq10+w+0K0d0y2KozyKBNKJE8do3rwuR4+ep0KFSgQEwMWL/zF37hhu3bood+yOHTcoXLik5hlKhSbRTPVtGc8qi5Zp+szV3ZfY9O7du8PHjyFUq1ZD1PFZTlRoMgQjPfbzlHx1ZFULiEmAiMCQAiQSR/bt28WPP3ZDEAR++GEgQ4eOVttpKcNQ1g/RAkRBQkv/+YcBU6YQdfUqtjY2GWv9yAQBIuTMyebt2/lpxAjy5M7NqQMH0sVCUeej8erVS06fPsGxY4eoWbMO3bv3FpnxL+jrA0qTx6WqU1B0z/37f8/Fi+e4evUBEolELs8vXjzi2bMHzJ07hpw5fVm8eC9mZpqvn6mN+DbUsLwxixBNnrOY+9C0mpcqVZDAwNfEvn+v2YlZBZMASYdpCCaTuXDhLN9/35EGDZowf/4y3N09tE4ro4dexE4hLFm4MIIgcO/pU8o2aKD5hTIDb2/tPA19fJAAHdu25f2HDwz+5RcOHTtG6+bNAfGzUnLnzkOXLj3o0kVcA5QafVtuDRW5UxAEjh07RLt2ndOJDwBf30L4+hbi11970KJFd43Fh7bvviF9Ao1xaXoQ/3x1FR6qBOrVE8d58uyZuIyY+CrQ/HPChN7Ydug0rVs3pHz5SqxYsVEn8WHMlCpcGA9XV9bv3avyOH0vBZ/ZY6j/bN8OwNGzl0Xfm3QZ99R/mmCoWxaTrqYm8Xv37hAc/IY6dZSL0uTkZCIiwnByEmcRDAr68icGTcSHvsrWmCY9iF32XczS84rScpS9+ZFq3w8XFxetZ/yZyJqYLCCZwINHj5jwx59s3bqRBg2asHr1Zp0jr2am46k6bG1s+K5cOW6/eiXq+EgcOX1oG/nz5cNPwRo3GYYqK4gi0rS+B7Zvp2rDxqxatYyePX+gSJGiSk9V9QzEDI1lBX81RyLlRFhMTIzac8zMzMib14+TJ/fRqtX3WFpayvZp25FrMxtSeo6+rEHGYAnRl9VDWTqiBWlGvbxfoeN7VsdkAclAoqOj+XHwYPzLl+fs2ZMsXPg/tmzZq9taKRhH56Pu6/51SAieKuJjpD2/Sbt2FC5bljPnz+slf3pDWWusoHGTOOXkyJFz5M2bn0aNanD8+JF0x2hj5dDn+ZlJmTLlMDc35+HD+yrvoWPH8fz3314mThyhsYUjNarKKjOsEplpCTGk+Ehn7VBk1tPWxKcLmX19E+kwCZAMIj4+npqNG7N+82b++GM+N28+pXv33goXGtMHmWr9SNMq3XzwgMvXrtFGSfAsReJFGoK7RqNGPEsV2j3D0fIzVXpP9vb27N9/ktKly9GmTSN27domOyaj277Unbe+Oz+FX7tqGniJRIIgCFhZWcltT5vPOnW6ULlyM3bu/Itnz25plC8x/Yy6skh7rj6fW0aLELFDLqDW1Ump+JCRVTr4rJLPrxDTEEwGcfrcOS5fu8aaNVu0mkqZGn3VlYyqc8cePMDMzIx6tWql2yftqAVB4O7d2xQtWhxIialRokQpbt26we1798iXZp2gTEED60dq3N3d2bp1Hx06NGfMmKFYWvpQsmQlhccq6pC0NdWr69wyexggMDCA5ORknJyc1R5bokQNzp/fi6en+uBuugYi0zYtbcmo56CPWS6ih1t0UXy6om1hZmQAHBOASYBkGCWLp3Ssb95oXvk0bQSNyckN4MCRIzSsWxdnZ/mOJrXl47//jtKyZX3mzl2ClZUVL1++YPfuIwwZ0o/5y1dSrV5rzKKCtZ6erBMa+oIosuhYWFgwbNhfjBzZia5dqzFq1Fy6dh0k269u8V1FWRJznDo06fw08n9Q8tKm9gPZsmUD9vb2FC/eRGVSycnJHD68hgoVGuHoqPz561N4qEtP3zODDClC9DW9VpT4yMgpRcpIfU1tCtUkRDIMkwAxEBEREQDY2dmxZ/9+ZsxbgKWlJfXqNVJ5XkYsY6KP64jlQXQ0/506xdTx46nTrBkzJ0+m7OeVjVNTuLA/AEOH9gegZ88fqFmzDmPGTOTHH7vh4ZHipCt8LtcMR+QnoTJfmIAAyJOnABs3nmfgwOZMnz6YDx+CadduqlbDcPps13Xt/NQ6Gyrprd++DSZnzlw4OHyJW6Dovk6e3MLz57cZOnSZwqQ1QZ/1IyuIEEOKD7VWDw1f0tfv3pErPl79hTVBFzFiEiIGxyRADMDSpUsZMGAAgiBgZmZGcnIyFSpUZvfuIxQsWEjpeV/VMOTnSnt27VqSkpIIDAri+MmT/D53LlvWrOGTJKXTSUpK4ujRQ/Tr9yXexapV/9CqVTskEglt2nRgypRxvH79krJlKxCJo/FEQBTRMKV9phYWFixevJdly6axcOFvrFo1hylT9lCuXH0DZTITUPEiBwYF0bBte1q37oCPTy5evXpBVFQk9vaKhVtCQjz79/+PokWr4u9fWV3yCtFUrGVmPdSXCNFXNFO9WD1EFOjNV6+Yvm8fg+rWpVqhVG2k2Ich5obT5ksT05/Ya5jQCJMA0TPJyclMmzaNxvXr07VDB15/+ETVqt9RvLjqENL6aPSMbegF4OlnB9KFn8Owb9u1i7U7DxITE4OlpSWXL19g2bIF5Mnjy/z5y2jWrJWcRcDS0pJJk36nd+8u1KiRslaEKBGSCb2ImDV5AN6+NadFi/GAGwcPrmT06Ab8+edJ3Ny+U3h8RrR7GeWHcOb8ee7cucWdO7coXNif2NhY7t+/Qbly1eXe35iYT6xfP4W9e5cSHR3BDz+szZChSG3iruj7+WS2b45eEVmgPm5u1CpcmIr58ul2HU0ehraL9Ojb7PUNYxIgeuD27dusWrWKmJgYHB0dCQgI4J+VK6laqZJ+A2vpER8fzRcok9a71PU29XZFwkDR1Ntp0ybw+PFDAKytrRky5Bd++OF3JBIJikYjGjRogoWFOQEBr8Vn1tCIHHpRhkQioWXLn6hbtxvt23vx118DWLDgIiEh6adkZ9QHmBhrtaION91zV/Fy2dulLCbXpEkLrl27TNWq9SlWrFy648aNa8bDh5do0WIQfn6tyZevglb3IZavyvqI4aLXaozIhsbdwYF+tfWwGJ2mlUX6suh7tcC019ckUNPX9jKqwCRAdGTt2rX07NkTT09P3r17B0D//v2pUrFiJufMsIgVIUMGDkQANm7fiSDAtWuXZeIDwM+vFF27TlDpB+Ho6MiIEWP5888ZLF++FmezKEPcknhEiA+x8SYcHJxZuPAiAwaUY/PmP6hbd7LSy2akJVhVu6yxCEl1cPUGbalUqSoJCQkcOxao8NrJycncu3eO5s0H8sMPv+vduTQturb3X7MVxGiEjKZomnFthIi665tQiykOiA5ER0czcuRI2rVrR0BAAFeuXGHZsmXMmjVLI8dCfb2rmtYdffp3pb6H1B3yJ4kTP/w0hv/+u8SOHQe5f/81b958Yv787Qwb9jtr1pzAzk59ILYyZcoTFxdHYKCawjJ0xdfC70Md+fKVoFOnX9m4cRqXLm0RlX5GtW/K4oYoun46IZYmWEQkjpiZmVG0aAlevVKuFB48uERSUiLZs+fROK+a8LWHf8iwezNWhaJNARgiSI6y65gwWUB04e+//+bjx4/MmDEDS0tLypYtS9myZVN2ilwNN7PRZChG0UeFKktIWtzc3AA3AgKgXr3WGuXT1dUNSJk54Z9LyVRMI/D7UIWqNqdr1/EEBj5m8eIOCIJAxYod1Kan6+1q2m+k/SoXZQlRQO7cefjnn/XEx8dhZZV+CYKlS4eRJ09RWrQYqFHeNOFrFh7aYAwWl4tPn5KUnEwVfS6/oK0JR98WEUVpmzBZQHTh0KFD1K1bl3zaOk4ZCYayhKRFly9OFxcXAMLePNEuAX2gw9CLOszNzRkzZj0lStTg+PHF2iWiIdpEo9bKEpJmW+nSzYiKiuT06YMKrxEXF4ODgwvm5hbcuPEfMTH6FfOGEB/GKmgyJV9pO20RDcyV58+pNGUKLf/6S//50aUQ9G0RMYbId0aESYDowNu3b8mZM2dmZ8Po0Yepu2BBP8zNzXn72c9G4UUMiY7iQ0wbJpFI+O67tjx9ep6oqDANM6gbmiyPoakISf3/gAAoUMAfJydX7t27iiAInD59kJiYaNkx3bv/xu3bp1mw4CdGjKjNX38pDuGvLD/K+NqHXLIy269cAWBlr14pG/RtJdBHgCWT5ULvmASIDvj5+XH37t3MzoZeEGsFEeNcqUlnJhaJRIK5uTn9hw4l+O1bcZlShqYNiY4zXjThu+/aAnD06AKDXUMM6p6ftpYQKWXKVGXJkimMGNGJvn0bUamSK7t3LwKgSpUWeHjk5PTpHQCEhure8H/LwiMr3Hv1QoUY37w5TUuX/vJyGUKEZKYQMQmYdJgEiA7UqlWLS5cuERoamtlZ0Qv6HIoxBDWqVgVg8/bthr1QakQWir6WvnBz86Jy5eY8eLBf/EkGRlm7rakISb1/xoy1VK5clwMHNgNga2vPggU/8eFDIBKJhFy5/DAzMwegSJH0awgpy4Oy/GcE+r7OV9VfqalHjUuWZHJrBX5hhigEfQVdUvan7HgT6TAJEB3w9/cnOTmZ169FxqfIAhizCFk6bx4APqmHvQxp/VBQGPr0+1BGgQKlefHiDnFxmTzdOA3aihBF252dXZkzZzO2tilxQSIiQnF3z4G9vQsAefIURRCS2bo1mO7dFxMc/Jjt28dz4MAcgoMfic5vVvj6zwjElINRhKVQlAljFSHKECtKMjJPRopJgOjA6dOnsbGxyfJOqJqiqY+APnAkkry+vvgXLszSlSv1f4G0iBQf6tCmLGrV6kRMzCcCAozHCiJFTBspth11cXHj8OHnmJubkyuXH/Pnn8PWNmVKdsOGvQgJCWLs2KaMGVOEMWMKc+zYQnbuHM+vv/pz+fI2Hj4MJikpQZZeYmI8b97c0igP3xL6LBN9DUOeeviQPhlRnxVhekkyHZMA0QFPT0/i4+OJijKuL1Vd0ce0fkOIEIlEQsO6dTn6338cPnbMcA2IBuLDEFnw9s5Htmy5uXTJMAJEm4+z1Khb+iPtMYrKKCkpicjIcNzdsyEIAm5uObC3/7JasnTmy6NHVwgOfoggJFO7dn9Gjz5JmTKtWLSoHTNm5GDOnAJcvbqa6OgQduzozYIFJTlxQn0sFUPxzfZpaeuMyOmrU/fsIVq6AJ2mS0LrA5OZLFMxCRAdaNiwIcnJyWzevFnrNPT97utr2rq+RIg+nMdTx5WwtLQEoEGrVrolqixTehQfutz3u3evOHRotV6GxNQJDlXD2WIDkSkTIcrKaP78cVSs6MK+fRtJTk7m5s0T/PhjSW7ePMnGjdMZOvQ7LC2tZMebmZmzb98MJk+ugKvrl5c8LOwV27d/z6xZ+Xn+/CIAR492IzExRlT5fGtkal+r4GU+PHIkG/v1E3e+Icd39e01r831v0FMAkQHRo0aBcAvv/ySyTnJXARB4NSp7Zw5s1PpMfqaxZYnVy7Z/1+pSTA2Lo6z166xfMsWJi5cyJ2zZxEEQaPrGetaPorQduhZk/RTI0aEKKNy5boA7Nu3kZ49h9O581jMzMwZPrwmK1eOpUaN9vz11wWaNRuAtbUD5uaWsnOPHEmJFVG0aGv8/JoAYGubg/DwxwAkJ8djZmaFCeNEEAQ6L12K3+jRvA0Pz+zspOcbFQOZgUmA6ECJEiUAiIuLy+ScfEFfnY66Oph6/6lT25g8uS1z5vRRm642cXhSi4B+vXuzb8sWcnp7M36B8qmqNx88IF/9+lTr2pW+EycyafFiiv/wA4NWrUoxEykKlqTBdFtDt1G1anWSLT8vhoxyshcjQsTkJU+eOkyevJtTp/5l9eo5bNw4jbdvXwBQtWorxoxZz6ZN09m7dzFxcZ9wcsomO7dQoYYAODp6U7hwUwBKlBhCoUJdcXEpTJ06a2UzaDIafUYlN1RkUm1mbIkOvZ8aRTfg48Oiq1fZdOECj4KDiU9MVH28dLuiOqtPpPVfQTuQIRhrOHsDYwrFrgO//PILb9++5c8//yQ5ORkzs6yv57TpWK9fPwZAZORHUcdrE/ZZGuJbIpHglT077Vq2ZNmqVUwcOJC8Cirvok2bePP+PVe3bSNvzpxYW1mRq3ZtwiIi0ieuJ4fTtHh7ay8MbGzs+PjxzWeLjfh1hTICRSHZQb4Y0x6jqBz8/Mrj41OIoKCn9OgxCS8vX7Zt+5OzZ3eyYcNUXFxSRIdEIqF379XMnJmyWmrDhn+QLVsxzp79k59/vkupUl05daofPXu+xc4uW/oLmdAIZfVTWeh9SDVMKj1A+lJIE0r1Arz8HMdn09ix5Eq7WrYhRMY32rlnBUwCREeio6MpXrx4lhcf2n7Rh4a+5eTJrQDUqNFe9HmqRIiy5RukIqRcjRoAWFtbs+faNX6uVCndsVVr1+bvrVtxtLPD1TnFudHe1hYvD48vBxlIeKRGWxFSvXobDhxYwf37F3ByUm0JyYwQA4qWykj73NTly909B3PnnmLSpLbs3PkX69c/p3btzvz2WyvWrZvM6tWPsLHxJXv2gvj716JLl/kAbNjQlpCQlOGWtWub4O6esnbI6tXZqVJlNqVKDdfbfWYWmb0uizLU1U0ZaReZSiVEJvXoQY2SJWlYvjyYm39JWFtMAiPLkrV7TSPg7t27FC1aVOvzjaHu6FL39+xZIrN81K7dWaNzVXVQqvI0c8oUnJycKFq4MFeuX1d4zJNnz3BycsK7dGnw8UHImZM3Hz6Qr3hxmZk1Pj6exFQmYLHiQ9Py0sZ6XKhQOQAuXjS+qbipUTQko0n5uLpmp1+/OYSFvePx46tIJBJKlKiBubkFOXMWoHHjkZQt2xKAevUGU6/eYBo1mik7XyIx4/HjQ7Lfb96c1uV2dMIY6rK+0KZuRuIoX4cUDWd4e2NnY0PTSpWwMDdXfawyMnu4xFB8TfciEpMA0YH4+Hhu3bpFsWLFMjsrQMYvRx4QkDJlVMqHD4Z33orEkdIlShATE4O7uzsPHikOSnX0xAma1K+PvX1KXIn3Hz6QmJjIwOHDyVGwIOVq1MDZxwefwoVZumE7oYm2Bs+7JkJk3LhmQMrS9MbeLomZJaOKPHn8cXHJxvLlKc7crq7ZSUpK5ObNVzx5cp6BA93ZsGEIUVGhBAYK+Pu3pFu3vQCYmVliYWEjS0siseDBgzW8fn2U58/3cOfOYu7fXyUXL8TYyQjrhy6ByaTnqxIicijyDVF2k2lFRVqxYeyVwYRGmIZgdGDnzp2Eh4fTooXyxbIciTTKmRT6cqJ0dPwyhiuRaK5nNRmKSUhIYPDgH/H0zEZCQgJnzp8nZ44cCs91dXEhKvrLAmfZPD1ZMncub4KDEQSBVwEBdGzThlMXr9K///f07/89V67cp1Chwhrfg6YoGBZPx4MHKVNKmzT5weD5UYSi90Nd2y/GNwQgNjYaiUSCtXWK6LO1daBv39n88Ud3bt8+w8GDK3Bx8cTGxompU30BuHZtF0eOzKdIkRZ07ryVmJgUq9v79/cBsLJyw9bWjYCAYzx79iVUv0RijiAk8eHDdapXN8BKqyi+R20x1qEXZSh7xmp9Q0B1RTAJjW8CkwDRkjdv3jBo0CCaNm1qNBYQsehzBsfHj29k/2/QoKdWaYgVIbdv32Tnzi1IJJ+dMgWBJ8+eKTzPw92dZy9eyG3r17u37P/SBrIvsH//Hjp2bEG5ckUYMGAII0eOwz2tc1yq/OgLdf4hLi7ZZIvTKUNb/w9t7iP1Ocr6B0XPMu15gwdX5tmzW0yffgA/v/I4O7tTo0Y79u5dwtCh1QHo0WMSMTFhsvOaNBnF2rUDuH9/NwkJMYD8dGpLS1tatTrN2bPDCQo6SYsWx7GycsLGxpOzZ4dy+/YC7O29KVNmtOY3nkEYo/gQ6zCuSoik8w1JfQKIU+TfCml9Z75yTEMwWjJjxgwSExNZmVlhhLVE3+/2+fN7ALC0tCYs7J3W6Yhpe0qXLou/f3EqVKjCxIm/k5B6Cl8qPn36xNkLF8jn6yvbJh2fTjdODTRu3Bwrq5S4EYsXz6Njx+YaxwvRFlXW6GrVFCzOpQf08Q6oWylX9XTOFMvHr782omPHlHV9rKxsmDJlL/XqdadfvzlUqTIcDw9fAOzt3ahduz/Tp99j4MCr2Ng4cfPmRrl0o6ICOXKkCyVKDCEm5i1HjnTm06cAzMzMKV9+Era2njx6tEH3G1eAPj7WjVF8SNFEFyh6LxTVOYWFZuiptiaMDpMA0YKEhATWrFnDwIED8fT0zOzsAJmzKmhIyGvOn08Zi09IiKN//7I6pacuBoFEIuHvv9fz/fc/smfPdpkD6atUiwFG4sic5Wt48/Ytg4aNV9z4KaB+/cYA/PjjT1y8eI45c2bodC+akrrtff36IQAnT+o/pLi+3wF1QkQRKRYMsLa2p2bNL1EwnZ3dGTVqDW3bDsPa2p6wsCBsbJywtnbg3Ln1JCf7kTNnGQA+fUqZytmv33ksLFL8fAIDj2NpaU+zZkdJTIxlz556vH59FBsbV8zNbcmRo5qe7lq/ZFafa8gPbWVCRA5lPh2p436YRMlXjWkIRgvOnz9PREQELVu2zOysZCqWll+c/wYMmEfx4tUNdi3pUEzp0gXT7WvWqQtnzqTMhomNjWXNmv/x3Xe1KVzYX3T6GzfuZP/+vfTu3Qlzc3MmTx5L9eo1qVixilweDI23Nxw+fAGA3r2n6zVtQ3c4kL4/UTRdt0SJxrx+fYtatfrRseNspeeGhLwmNjaC2NgIli/vRv78qylYsD5ubvnp0mUHdnYe2Ng40b37Sy5fnsTt2wt4/foI584Nx9OzHPHxYezdW49evUKwtnYhPj4SYyOr9K3axO6B9H5c6XxDQPGwTFoMXVDGNPzzDQ3DmCwgWvDy5UsAfLKQo5Qh3mcnJ0/c3FJCo5cqVYuCBcvonKa6dmDp0jXptvXs+aPs/+vXr+Lly+dMnTpLaRqpl31IXS6FC/tjb+/AgQMnAZg5c6pmmdcDgiCwZMlQLC2tqFmzg17SzMglLpRdKygIXr6M4dKlrfz77+8UKVKLpk1/VXiu9PwCBSrRrdsiAAYM2My7d3c5eHAUGze2Zfbs/Jw69QcANjbuVK/+Fz/+GMPDh2sQhCTevbsoS9fa2gVX1yJ8+HAdQUjW6/3q0gRkFfEhRRd/I62HZTIKk6UlUzBZQLTg5MmUDurChQsqZ8AYC4bsfEJDAwHIl6+E4S7ymYAA6Ny5OwEBryhTpjzR0dF07dqaUqW+DP3s3buDOnUa4OdXJN25qtIFsLLKz3//vSEsLARXV08uXbpIQADExERja2tniFuSkZyczIULxxg9ujuRkaFMnboXBwcXledkxrCbWNJaNZKTk1m2rCrR0SmzV8qWbY2Dg5vadOLiPmFr60yFCu3JkaMVCQkxbN/ei7t3tyORpMSRuHx5Ek5O+QgMPI6dXQ5APjbM4cMdyJOnGU+ebOb58z3ky9dSX7epNVm1r1P3zqm6L0WWLlFOqhmJuvC9JvSKyQKiBcOGDQPg9u3boo6Xq2BfGUuXRrJ3r37vT138gebNW1OgQCFu3boGQLZs2QEICQnhzJmTMn8ObRa4lEgkuLp6kDt3ATw8vFi4cCIVK7qwZ896re9HHZ8+RTB0aDv69KlP9uw5mTp1HxUqNNY5XWOw4krL/8GDPQQFXScs7CWTJ8fh7/+TqPY9KioUOzsXgoLA3NyS2NhwkpMTkUjMcHHJTUxMGJcvT+T48V48eLAab++UYcCSJYdSr94/ADx9uo3jx3sAcPCgjqsof2Xo+x3RZiVlpdaQzI79kZlWkSxkXdcFkwVEC/z9/cmRIwfJyfox5xp6yM9Q6R89uhAHB3fMzduSasKJXlA25vzvv5sYObIzxYuX5Pbtm+TKlZvcufMAcOvWdRISEqhRo7bO99u4cUdmzPiZxYsnATBv3hiaN++qW6IKmD9/HKtXz8HCwpK5c7dSr15rgoN1/y7Q5/NWJBQ0bZePHJEOlzhjYfFlpVp1vgV37x7BwyNlmntCQizr1rXg3bt7gISdO3/g33+HU7/+Zg4fThmucnZO8RG6eXMufn4poqNy5dlYWtoTHf2GuLgwzTJuILT1qTAEynxw9ElaXyBR1pDUpM1cRqprMQ/KENaSb0CEZKoF5NSpUzRr1gxvb28kEgm7du2S2y8IAhMnTsTb2xtbW1tq1qzJ3bt35Y55+PAhVatWxcfHh8mTJ8vt8/X1RSKRcOHCBbntQ4YMoWbNmoa4pUwjoxuz9++fs379IJYu7cyjR6czrD3w8ckLwJMnKWuB/PprikBITk5m6tTx5MtXBBubQjpfp2XLHuTP74+nZw6cnFwIDg5g/foFhIWFaDVFNzg4gA0bFiIIAoIgcOLEPnr2rMXy5dOpWbMTy5bdonjxtgrFhzKfCkOi7OtV7P60fPoUgINDLmJjw3n8+DBPnx6XS0sRiYkJvHhxFQsLaw4c+IU//sjNmzfXsbZ2IEeO6nTocIv4+Ahu3for1Tmx+Po2J1++1jx8mOIvFBb2gGLF+lGhwiSqV58vLsMiMQYrk77ICF8hdaH7xc5aM7oIqYpm7phm8qglUwVIVFQUJUuWZOHChQr3z5w5kz///JOFCxdy+fJlvLy8qFevHpGRX1TywIED6datG7t372bv3r2cPXtWLg0bGxtGjRql97zHx8fLYkfoA0PXH32nb21tL/u/p2dKOHZDmHPTUrJkJY4efUmLFj0wNzenU6fuAOzbt4vLly8wceIyLCx0N+w5OjrTtm0fGjbsQEREGADTpw+mShUP2rQpw4sXj0Wl8+LFY/z9JdSunYtp0wbRsmU5unatx4ABzYiOTmTAgHkMG7YcLy9fhedrIz50eQ6aiIq05yg7LyLiBcnJCeTMWQuAVasasGJFHYKD7yi9blAQvH4dB8Dduzu4eXMD0dHvAYiODqFEiZ9ls1oiIp5hZpZSF2/dmsuLF3vIlq0CFhb2lC49mvv3/0dU1BtevjxAePgTzW7OgBiri4E2Q5eaoMmwjGhBAopFiSZ/hsYkSNKRqUMwjRo1olGjRgr3CYLAvHnzGDt2LK1bpwRkWrNmDdmzZ2fjxo307dsXgLCwMEqXLk2JEiXw9vYmPDxcLp2+ffuyZMkS9u/fT+PGuo2rnzp1iunTpxMTE0NISAjW1taiz82IkOy6LP+uKY6OnvTrtwl7e1c8PX1l25WtlqktikzV3t65KV++Jv/8s4RXr17i65uX2bNn4+WVi3Ll9DcVuEePoQiCQPHi5dm6dTmXL5/ExycvsbHRdOhQnjFj5tOwYXtsbNKvI3Pp0iOsre3o1EneGvP48TV8fYsxadIuqlRp/iWqq57QptPQ5zuTOi1vbwgIOM6+fY1ITo7n4cO1gARn5wL4+jYjW7YiKs+XSMzw8SmPv39LqlQZyty5JTEzsyA09D558jRi377GODrmITLyJRYWdlhY2NCixQksLe24cGEsiYlRXL/+OwCXLk3g/v3/UbBgF+rV068/j77feWNC2+GZtO+hovPFDMtISd12GsynTtlNGkqJmRxejdcH5Pnz5wQHB1O/fn3ZNmtra2rUqMG5c+dkAmTy5MnUq1ePmJgYmjZtSoMGDeTS8fX1pV+/fowZM4aGDRtiZqa90ef7778nV65clClThgoVKsiEkb7ISr4gEomESpU6Ktxn6Ab51aun3L17BYASJfJx755AREQY5cvXEJ2G+PouoUyZzpiZ5eDy5doEBDxn164whg+vwa+/9mTu3HH06/cnNWq0AyApKZHIyFB69vRLl9LEiTvw8MiJn195UcJDU+uHps/W0G3evXtXOXOmBcnJ8QAUKtSNsmXH4urqJ3d9Ze+KlZUdAwZcIiAA3r2D9u2vc/fuUs6dG8GnT4EEBZ3EwiJldpKZmQW5cjVg7VofnJzykTu3fDsgtXxYWtrz7t1VcuSwJEeOEnqrD9q+88bkC6IKXctJlbgQu4aQlLQfcgZ38hfzYHUtoLQvwTciSIxWgAQHBwOQPXt2ue3Zs2eXxeEAaNy4Me/fvyciIkJpVNJx48axatUqNmzYQLdu3dReOy4ujri4ONnviIgIAD58+MCCBQvo2DGl433y5Am3bt3C399fL2Z/0F0kZKQVRBX6FCGpG6g7d67Qvn15zFMv5Q18+hSOj8+XlXkFQSAmJho7O3vSok35lCpVCz+/8hQtWhUHB2dmzjzG5csH+P33bkyZ0p4yZT7i6OjKqVPbmDatU7rzO3UaQ7Vq4mdgZPRYvL6JinrGiRPlZL9dXPyoVm0eNjbpp96qelek5fD06TYOH+6IICTh7V2De/eWAxISElI6Hw+PMjx9upUCBTrw+vUhHjxYS+HC3/PgwSoAEhNTFiZ8/foI9+4tRyKRMG2afmOCmFCPJgHrxKw9BAoirH4mQ2cf6lukZAVVqgeMfhpu2i9FQRDSbbO2tlYZEt3T05MRI0YwYcIE4uPj1V5zxowZODs7y/5y5UoJtlWrVi3at28PQJs2bShYsCAlS5akfv36JCUlaXprSjGk9SAjTcWGGEe2sLCkVKnKzJ+fsuLp3LlbAYiMDMPR0Vl23L171yhXzoHISPkhOV063gULLjBgwFwgJWy4s3PKO1euXANsbFKETqVKzWTHu7l5yf7fqdMY7S/8GX1ZPwwtPmJjgzl//stwZ+3at6lR4z4fPyqP+6HoXUn9++HDtbi4FKJZsyM0b36MoKCT2NunNNK2ttkJCjpByZLDKVlyOHFxYURHB1G79koGDBCoX/8fzM1tcHT0JXfuhkBKOxIZ+Vav9UHbdz0jPxgSE9W3fxmBqoB1ispDG7+UtH4kyv4yDGNxmDUijFaAeHmlNN5SS4iUd+/epbOKiGHYsGHExMSwePFitceOGTOG8PBw2d/rz2uNLF++XDaEc/78ednx//33H76+voSFhalMVxNF/rWIENCPCJE2SoULl2TjxnMEBDz/PAxUB4BcufJz48Y52fFTpgwEUoSJ9HxdG/q0w3fXrx/D0zMXM2YcwNIyxQnS1taeLVtSVgj++DHl3a1WrTV2duIbusyY9aIv4uPDOHeuHp8+paxnkz//UJycisk+GtQ9B2UdjadnOcLDn2BhYYeZmTlJSbF8+vQKgGLFBmBrm52bN+ewfXsFbGzcqVVrhezc3Lkb8ebNKSIjX3D//v8AaNJkHo6OmrcjWZlz59bTp481ly9vy+ysyNBUiKQ+R18fN5kiTkxCBDBiAZI3b168vLw4cuSIbFt8fDwnT56kSpUqKs5UjIODA+PHj2fatGmyIRVlWFtb4+TkJPcHKU6z//77LwCvX7+mZ8+esnMCAgKoVq0a0dHRGudNGdq+o2Ksd/p891+/vqU2Joo+GgxpgyQIAhs3LqJhw/Y4O7sCULduaw4f3s7Bg1uZNm0wDx/eBMDFxcNgnXdo6FuyZ88jZ5GLiorg6NH12Nik+Cb06jWdn39WLXqVhYYXi7FYP0JDL3PhQlOio19gZ+eLtXV2Chf+TWk+NMlLmTKj8fQsx86dVTl0qB3FiqUITBsbT5yd89Ox4x1atjxFmzaX6NbtBd7eNUhKSgDAysoJF5fCFCjQkWLF2gISkpLiSUiIBfRbF4zZCnL79iEAvLx0n6auDnXByNKijRBRdZ6+EGtF0VqsfONWkUz1Afn06RNPnnyZFvf8+XNu3LiBm5sbuXPnZsiQIUyfPp2CBQtSsGBBpk+fjp2dHZ07d9bqej/++CNz585l06ZNVKxYUePznzx5QtOmTbl48SKHDh0iOjqaUqVKcf36de7evUvZsmX57bffmDVL+Tok2mAo51R9pPvhw0vWrh1A+fLtqF//Z7XH6yPo0d6963n16gkjR86WbcuZ0xeAYcPaY2trR0JCPP/++5CwsPQ+IJqirIzevfuIhUWKAEpIiGf16gns3buE+PgY6tTpSteu48mRI6+otFShr87JkJ3c06fzuX17iOx3UlIslSrtw9LSWflJiHfCNDe3omXL/7h7dxlnzvxMUpI7AHFx4Rw92pUWLU6QM2eKE3J8fAQbNhTA1taTbt1eERcXiqdnWT59ukv37hd4+/Y2Bw/+gpdXcQoVShmS+RbW/+rZcyk9ey6Vm0KvC9pM15ai7Jlr4iOi6Ly0ZGS/rk6EqLWAZ3YY+kwgUwXIlStXqFWrluy3NMR5jx49WL16Nb/88gsxMTEMGDCA0NBQKlasyOHDh3F01E5tWlpaMmXKFK0FzK1bt3jy5Anh4eFMmDABiUTChAkTAChatCijRo1i8uTJNGzYkDoVKmh1DWVo2kCKdUbV9Z23trYnZ86iFC5cU6PzdJk18P59yhBHnjxfVsZt1aon/v5lsLW1x87Oge++8+Lixdt89532X3vqykQQkrCwsCEgALZsGc+hQ3Np0GAY9eoNxtXVm6Qkw7clxtBW3b8/gYcPp5A9exPevt1PjhytKFJkCk5O4lYjVte5fDnGGg+PwWTLtp8XL5aRLVsD7Ozy8uHDCTnnVktLB3x9mxMY+B87dlTlw4eUkP358tXCwsKaAQMu88cfubh8+W+ZANFXPsF4Z8SIER4ZNdSnTowoc0AVI2KUpZOazDA4KFwJWBHfkDVEImgT1vEbIyIiAmdnZ8LDw2XDMYMHD2bZsmWEh4djY2MjO65Zs2Y8fPiQuxcu4O7urjA9XcYWDWluz6zOTNP6NmdOH27cOMLhw8/SzYYBCAwUaNbMgR49JtOu3XCN8yO2HKZMqUxoaABt2/7OypW9adp0DC1byg85BAXdZ//+mXTsOBsHB8Xvgyr0FXRMHx2Lomu9fTuf16+HYGfnS0JCODY2OahR4yIWFg66X1AJgpBMfHwIIOHNm514eTXDxsZLrkO6e3c5J0/2xdY2O4mJ0TRpMpsiRVrg6JgdQRDYtKkDr16dZfToQLX3KEWsAAHt+5CMnPxgjH5Fqu5fWZkaoswySgOoFSMiP7YV9VFZAaOdhmvs2NnZ4ezsLBMfAE5OTvzzzz/4+fkx7NdfWb10qcJ4D7oEJdPEEqLplNzMMkNr+sX46tV9KlaspVB8BAWlzJzy8fFj3brJlC/fEF/fohrlRSwvXlwhKSmR5cu7UqFCBxo1GpnumPj4aM6cWU3btjPEJyySjH5WaZ/Rp0+PuXJlCADR0S/IlasbxYvPM6j4SEHCu3eHePr0L8LCLgMS/Pwm4O09kYcP13Pu3DASEqJxcSlEp073EYRkcuf+0tQ9eXKUO3e24u5ewGA5NObgZMYoPKSosnCoG55RdI62aFO3tHneoq0iXykmC4gI0qrLmJgY7Ozs6NWrFytWrEh3fK9evVi1ahXb1q2jTYsWStM1RkuItp1aSMgrzM0tcXLKrnWwN7EVeMiQ6lhb21KuXAW++64xpUunOCWnvs8zZ3YycWJKoLhDhxIVihVViCmH69f38vjxGQoWrErJkk3l7jv1vbx6lax1mRhz4LF798by6NF0zM0dqFx5Hx4e4gPB6cLz50u5ebM/rq4VKFDgF0JDL/DkyWw6d37I7t21sbZ2w9LSjhIlhlKwYMoidamfR1TUBzZt6sCzZ8cZNOgmOXKUkEtfX8JOHwJEXx1qZooOXcWYsjIQm6axhNQQk990QuQrt4AY7SwYY6ZevXoAVKpUSeH+FStWUCBfPo6dOKEyHV1UryYVOiMq4LFjixgyxJvduyfTv78LgYF31Z+UBrENf4ECpbl69QjLlk2jR49aXL/+Kl0DW61aKwYOTFl47OHDSxrnRUz5li7djPbt/6B06eaYmZkpdWjPndvMICZ5TdPU53uQnJyIlVVKHJRcuboYXHwkJcXx4cNp7t+fyKNHv+PqWpEaNS6SM2cbfHxSfLo2bvQjKiqIunXX0abNBYXiA8De3oOuXXdgZWXPzZsbDJpvXdFkJomqczMLaZ3WZbaKqum4Ys/XpRz1hZgyyPDYJJmMaQhGC6QL3kkDlKVFIpFQs3p1Nu/YwYTRo/FSEbfE2IZjtB2GadlyInZ2bpw+vYKYmHDevn1Czpzihz6kaPO19PPPVRg/fgtFi8pPz27WrD/Ll//CgweX8PevrHFe1DnoaprP1Mdnlr+NviLl3r79M8+fL6ZgwTHkydNL9wRV8PHjRS5caEZ8/HssLV1xcChE0aIzZftfvkyJ7eHuXoJy5Sbg4VFSbZo2Ns54eBQiOvqjwfJtiGEYRc/OGJcUUfZ+i41umhZl/jfazqrTpJz0/QEnJs9fhma+bkwWEC2YOHEigNwMnrTMmDgRS0tL+g8dqja9r8ESYmVlS9Wq3Xj79jGennkpWbKJ1mmpn32SMmpYoEBp+vT5HRsbe8aMaUho6Du5427fPk1CQhxXrx5RlIxoUpexvqbtZ/Wp/0FBKZFo8+cfjIOD4XwpEhIiuXChGQ4OBShU6Fe8vJpTqtRybGy8SUqK4eTJSrx8uRJ//760bn2O/PnbiE47NjaC6OgQ0o5CG9tzSUpK4PXri0r3Z/aXfVrEimttrCIZFZws7TXF/mmCoWOYZAVMFhAtkMYQefPmDb6+vgqP8XB3Z+yIEfw8ahRPnj6lQP78KtPMKEuIIdNzdfXmr7/eIpGYYW6u26ul6uuxQYOeREdH0Lv3DDw8vHn69AZHjqxl5Mg6LFlyVRaVdMGClGBVFy/+q1NewHCdkhiriL7X99FHelWrHici4hY2Nl7qD9aByMh7xMe/x8trKPfu/QrA69drAMiZsyOhoRdxdS3CvXvLeP36EC1a/IeTk6+otKtWHcrevT/x6tU58uSpapD86yPuzaJFZQkOvs348aHY2rroJV+GQNs2SNMy0iYmiJi0k5ISdW63lNUrVR9/+nhHsiomC4gWSEXHq1evVB7Xp0cPHBwcWL1B3DhzRnhCG9ofxMkpG8+fX2HOnEZERn7QKS1lDVqhQmUZNWoNHh4pN+Pikg2AFy/usHjxEB48uAxAnjxfhoA+fDCSz0MVZKRVxNtbt7/Chf3JkcOD8PBV6SwI+iQ09BISiTkBAZtwcSlL7tzfI222AgP/AaBdu2t07vwQicSMQ4fayOUndXkmJsZz795u4uI+AVC2bE8AIiPfpruuvp9D2mi3Yr/Y4+OjCA6+DYC1tXE6F+rrS15TK4amzvXKyv3x42sMHfod58/v5fbtM5plWiS6RIP9mjEJEC2QrkXz9m36his1tra29OjUiQXLl4tOW1sRou+hGF0a4IMHZ3P79kG2bx+nc+ckpkL26TODJUuuUblyM/buXcKMGV1ITk5myJBlsmOGD69h0I4yLak7a32lp4jM+mqKiHjO3r31+O+/Xjg4PFcpVrQlISGCJ09mIQhJRETcpmjR2Zib2wLJVKy4l1Kl/qZs2Q1YWNjg7FyQnDlr8/HjXQRB8cKQ69Y1Y/36lpw58ydAKv+PzJ0IqKpztLS0w9+/JfXrT9N6JpUhMVSHKbYz1mXoSXqN16+jefr0NoGBn7CxKalSLOoqEjQRIt+CGDG+NzoL4OLigqWlpWoB8vntKeLnp/H6MMYiQrSlUKGUGREnTiwjIOCOzumpq4jm5hYULFiaKVP2ULt2ZwIDH3P37lmcnd2ZNesYAIGBT/jzzx+Jiorg7duXhIaqFo/aoKzT1bSsjd0Ue/fucp4/3w1AjhzVcXTMrfJ4bd+18PCbxMSkLATp7FwKD48alCixgCZNIsiRoym+vn2oWDFlBszz57u5f/9/VKo0AzOz9Gb0hw8P8PjxYQDOnfuLT5/es2fPQGxt3ciXr6Z2GTQg0g4oMFBC1647qVnz18zOkhwZ1UGK7Yx18YMpVKgaixZ9pGrVbtjaihsG11WYKMrr48d3OHBgCxERYeITyuKYBIgWSCQSsmXLxps3b1QfGBBA0Js3uLm6anyNjBAhhqJs2S+xT8LDg1UcKR6xlbt795RIpFevHkEQBEqXrs3RowLDh/+P48c30KKFM126+NKunRdLlgzT2Soi9ktfn9aQzCQo6DQnT/bl7NkU5+q3by8gkahvRrS5d1fXctjb+wFQqFDK0gcSiRmWluk7iXfvLmFrm52SJdM7fcfFRbJtWw88PYsAEBMTwvTp2XjwYC9t2qzEzk5xhFpjqEtgfF/DmZUXTa0imjiIKgoYqUsexQqT1HkbO/Z7hg/vwPLl0/WSl6yASYBoSfny5Tl8+LDKYwRBYPfu3dStWVOraxhahKjrFLRtgHPlKkGLFr+RJ08ZChWqrl0iChDTAJ08uQ0bGzvWr5/Cnj1LZNsbNerNypUPGDRoEVOn7qV37xls3z6XI0fWapwPXYYXxJ6nqOwzW8AIgsD586Nkv21tPUlOTuDMmaFERakR41rw+PEsoqIeAnDjRi8SEuTrQ+ryyJatPDExb4mIeJ4unaCg60RFvadmzbH88stLChasD0CxYu3w91ceKNDYMAbTvDEIIW3LIDPjgYgRIi1bjqRUqcrUrNks4zKWyZhmwWhJx44d6dixIwEBAfgo6C2Sk5OZunQpdx4/5q9ftTef6jI7Rgz6nmEhpVWribRs+ZvevixSo2qGzIsXt4mNjaZQoXIsXvwzfn7lKVy4PADZs+emRYsBAFSq1JRXr+6zcOFg3N1zUrZsXZXX1Hfnb6hyNySXLk3g7dvz5M3bCktLe6pXX8iNG7O5fXsBjx9vpHPnR9jYKLf2aXrP8fFfnJgTEsJISopSaP0AcHFJWXQwIuIZTk4pKxBL3xEfn/LkylWJ3bv7MmzYI7JlK8rjx4fx8SmvNg/GukqutvE09HVNY0AfZaBrHdS0XVA146VmzfbUrNletwxlMUwWEC2pV68elpaWbN26VW57fHw8+/fvp27v3vy2cCETBw6kVsWKOn26aGMJ0Zc/iC6NmyHEhxRlRfndd+0AePToCi4u2Vm1aiyvXwsKvx4HDvyLIkUqMXp0fWbM6MrNmyfTpWfIoRN1aYu1ghiyA5LOzHn9eiFXr06lYcOZ/PDDDnr2XEf+/M5UrDiFxo33EBv7geDgc2rTE7OSrPQZ+fv/jo9PV3Lm7EidOvfkpvymTcfFxQ8np/ycPTuM8PAncvssLW3p2fMASUkJ3Lq1WWYBcXPLp74AsgCGtopkttVFDPpyEtUUbS0qmgzNfM2Y1oIRgbI4+926dWPXrl1MmTKFwoULc/r0aZYtW0ZISAhFCxRg7ujR1KsiH51Tl95CW0uIPqa1ZWYDpGmR7du3DEtLa5ydPRg3rhl//HGYsmXrKTw2KSmJbdvmcPDgSt6+fcnff98mZ84CgPGsTKqo7PW9vo+qMg4Le8WsWb5UrjyYJk3mygnLgAC4d+9vTpz4kQoVJhMVFUS1an9hbm6pND1Fef/06RGXLrUnMvI+Xl4j8fTsT758OVXmOe3z+fDhFgcONCcqKgh//x9o0GAYMTGh7N8/jIYNZ7J7dz9y565CixaLCQy8Ro4cpUTNLDH2zlcR+hKlWfHeFZEZ/jz6mG1Yp464a2XVtWBMAkQEyh7up0+f6Nu3L1u2bCExMRFHR0d69epFr169KG5hodgCoGNN0HU4RqwTl65pqOLp04usXz+I4sUb0rr1ZNl2fTcSgiDQo0dBKlRozE8//aXy2JiYKH74oRju7jlZvfoA9vYZHwRZm3LPiK+kgwdHc/bsXH79NRhbW1e5vCQnJ7F0qfxIrpNTfipVmk6+fG0wM5NfBFBZfu/eHcPjx7/Lfnt7T6VChbEq86WogU9IiObWrfncuDGbuLhQLC1tSUiIplKlgVy7toZq1YZTt+5E1TeciozugA2xsqs29eprER6Q8eJDn2EOTALEhNqHGxkZSUhICD4+PlhYfG6M799XnJgeaoM+fEL0IUTEppOWsLA3DBniTd68xahfvydVq7bE21t1pFhtGTmyLo6OrkyYsFXtsbdvn2H8+CbkzOnLvHnbyZOngEHypApjEiFPnhwlLOwVO3b0pl69qdSqNVZhHm7c+JPY2BDu3/8fMTFfwuH7+NSlUaOdWFo6qM1rfHwYd+9uJyHhDRKJOdmyDSJPHgfFB6dCWWOfkBDNkyf/8O7dFe7eTXFGdnTMweDBt7C391CbbmZ0wNpE0dQEdU3P1yQ6pGRF8ZE6jSJFxF3XJEC+YrR6uAYUIFKMSYiITcvHJ2WK7KhR9XFx8SQ2NoqkpESGDv2b+vW7i7uQSO7fv8i0aZ3w9S3G1Kl7VB4rrfSPH9/lp5+a8+bNa/78czN167ZSeZ6Yx6mtx762aepDkFy8uIzdu/sBkDNnWQYMuIxEIlF53fDwZ7x9ewFf36Y8e7aL48d7YGPjQZEifbCxccPDYzDm5tay4wUhCYnEXOX9aNJYK+Ps2eEEBR2gdev/kSdPFbXHZ6bVQxn6Hg40hoURDU1Gig99WT3SpmMSICaMVoCAfkQIiAv0o21aaW/5+PFNTJ/emX/+CcDBwZWFCwdx8OBKihWrRsGCZXB0dOPZs1uYm1vg71+Z6OgIvL3zU7t2Z40cW2fP7s3BgytxdvZg+/b3So9LW+mjoj4xdmxPTp8+yJ49d8iZ01cvj03fQkTT9DR5hgsWlOL9+4e0bbuGQoUaYGPjrPH1IiKec/XqdF682ENMzDtKl15Bnjy9iI19y/XrvXj7dj/Vq5/F3b2K1gIExHfOhhKLuqCpWMzsqdhZhawmPpSl8bULENM03CyOvqbpqlt6XlpBxDSY6iqbj0/KlMlLlw7QuHEfhg//H2XK1OXUqW1cvXqY8PAP+PoWIz4+lrNnd+Lg4EJY2HuePbtFnz6/ixYhtWp1JDj4BTduHCc09B2urtkU3lNa7O0dmDZtFY0b+zF//jg2blwv6nrq0GZKp6pyV/fMlKUlJW2aCQkx3L27k9y5K+Pn15Q3b25iZmaBjY2zRnkOCjpFTMwH3NyK4uNTm9jYDzx/vgtLSxeSkxM4erQAiYmfAIiOfoa7u3qrhD5QNX1buj+j0NZKpW4hNhMZu56SOvQpoL9GTBYQERizBSQtGWER0YeJf/r0Lty8+R/r1j3DyspG6XGCICCRSNi2bS5Llw6jdu3OjBmzXrQI+fAhiE6dfBgxYiUNGvSUbRdT6Q8fXsbQof05e/YGxYqVEHU9Mei6loQ+05Wm9+rVef75pyNhYSkLLFpYWOPk5MPAgZfTOZ6qTu80u3Z9J7fN2bk0efMOJE+eXoDA1avdEIREChYcg7NzSQIDVT9LfTfiitLLKPGh71WNTciTlcSHmDS+dguISYCIICsJkNQY2kdEl8Y0IOAxffoUpUmTvvz001+iBMXhw2uZObMHM2cepUwZke7hwIgRtZFIJLJ1YcQ2HgkJCRQu7EP37r357Tf9h0c2lBARe42QkNeEhgZw8uQOzp2bj49PBfLmrUl0dAgeHgUpU6aHXJhyMfm9c2cJp04NoHLlP8iWrTxxcUXk4ndomkfQX2RfRWlmBauHOkxCJAVtmlZDlZ2qvGgiXhxFNuFZVYCYhmC+YlIHMNNWjKhqqHWJ5unjU5CBA/9i/vz+WFhYMnnyHJkIUZZm3bpd2bZtDn/80Y1Zs46TO3dhUdcqW7Y+mzbN0PirxdLSkiJFivL8+TNR19EUXaJsii17ZQ3hlSuP+PVXf5KTk7C1daJGjV+pWfNXLCystMvQZ/z9f+TNmzOcPz+K/PmHUbx4LZXH61MABAWJ71Ck142MfMWOHVWoVm0++fO30V9m0uTLkBhi6m5W42sUH98CpkioGU0muZw7Ein70wZpRMy06BIptFmzfowbt5Dt2+cydepPJCYmytJUhJmZGX/8cRgrK1sWLfpZ9HWsrGxISoqXpa8MRfdnY2NLbGyM6Gtpio8PvHjxiPj4OI3P1aXso6NvkZycxLBh+5k37w3du0/UWnyEhj5k7Vpfdu+uw7lzIwgPfwxAUNB27TKXBk1XGdWE4OBzREUFcuhQW50XJtRHfvRxvW8liqYUYxEfytpI6fXErL31LYkPMAmQb5LUYkRTQaKqgmmCtEJ27jyQyZP/ZvPmpfz4Y0PZUtTK0nN1zU6hQuV4+vQGL1/eE3WtOnW+Iy4ulk2bFis9Rtl9vXsXTPbsXjqJN2UIgsCoUUNo3NiPdesmaZ1O6sXxxDR0Hz4EsmTJUIoUqUTjxo2wtraTpaMMZSIgLi6c3btr8enTSwIDj/Pw4TqsrYtQtOgsqlU7pjIfhtLimnS+Dg65ZP/X59IBxiACvgUxYkziQ9vrfYvCQ4pJgJjQWJCosoaoQ1EH2bZtH1asOMq9e9f4+efWcpYQRWm2ajUYMzMzevcuqtYS4u0N/v5lAFiwYLzoe4GUBQVfvnhGfp/ssm36FCJ3795myZL5AMybNxMbG+VThTVFmSD5+DGYUaNS1kL57bdtgPz9a9o4x8eHER39Vva7WLH5lC27hoIFR2Bvb5jgcvrk9OmfAChZcrje0jTGDj+zVoE1JF+L+PiWMQkQE+kQK0g0GZJR92VesWItFizYyZUrp2jYsACjR3fn2bMHsnNTU6xYVTZseEnPnpPZufMv5s3rz5s36ZdhT31e9+5D+PQpgqNHd6nMf2oCHl4hNCyMiuXKpdunDyHi5/fFxT0pKYnQ0I8yQaTvryJvb3ByimD06FrExISxevVRPDwUr7UippEWBIGAgGOEhT2SrftSoMAIcuXqor9M60DaTvbq1ek8eLA63XEeHqUBiIsL1cs1s0rnntXFiKZ1w1CLSmo75PItWz1SY3JCNaESfU3rFUP58jVYt+40+/f/w4kTe+natRpbt14lZ8486ZwuLS2t6NJlHDY2DmzcOI39+5fTvv0v9Ow5GQsLy3SVf9iwP3j7NpChQ9ty8uQVSpQopTQfUmHh7OSEmZkZDx49om4t1c6U2mBpacnUqbMYN24kHTp0pWBBv3TH6Ct8tiAITJrUj7dvA9m69Qq+voXkyjOtQ6w6J9egoBPs2VM3zTWSxWUm1TWl6BKITBmpnVIvXkwJI+/lVRUXl4KyY2rXXkm+fK2wtc2uKAmNrpVVMfbYIrq8AxntaKqrxSP9R03Gr0mVkZim4Yogq07D1RV14kNZp6GoMda0IQgL+0ibNqXx8vJhzZqTX9bYUZB+bGw027fPZe3aiRQtWpZp01aRP3/6CfQJCQl07lyW2NhYjh27gJubm9x+RRYNvzJlaFCnDn/NmqUwn6rK6NOnTzg4qF/PRBrrxFAEBMCqVXOYNWsEc+b8Q6NGHWT70pZl6meqap8gCNy69Rdnzw7B3t6HqKgAOnS4Q1xcUQPcgW54e6eEY79580+qVfuLEiUG6S3trCw8UmNM4kMfTaS296PttdVZO9Sh1Joqch5uVp2GaxqCMZEO6eCLKjQRH9rg4uLG7NmbuHnzAqtWzZbbl7ay29jY0aXLWNavP0NYWAitWpVk794N6dLMm9eSDRt2EhwcxKxZU2XbVQ2nWFlZqZwdkfa8R48ekJyczOLF8/H2duTRowfqbtVg4iMhIYGLF8+xdOlI5s4dzc8/j+SHHzrImX9VNZyq9kkkEkqW/Blb22zExKT4gNjaehpVRyYlKAiqVJlFy5YnKVKkl17TVUVSUhwREXf0dr2vGX0MO4p1wk57PV2urep66tLUdWbi14BJgJiQIUZ4gH5nL3z8+J6VK2fz7l361rx06Sr06DGMRYsmsmfPOjkhkLbSe3tDyZIV2b37No0bd2Ts2J5cv34OkG8IcuTwJikpiV27tmlV+ZOSkpTue/XqJeXKFaFcuSI0bdqSokWLp1uOXhWCINC8eV3GjBmmUZ6kPH36hF27tjFlynhatmxArlwu1KtXlQ0bVjNw4FDGj58qd7wiEaKqwVS0r06ddSQnJwBgbe2aLj1j4c0bM7y9v8PS0l7ntMT6TkRE3CQoaDvx8br7l3xt6MvXSVvRoSv6EB5KCQj48veVY/IByUiMePhFH74eqn0GFFfYCRN+4Pjx3axbN4/x4xdTu3Zzuf2DB0/h3bsgRo/ujp2dI3XrtpTtU5SetbUNU6as4Pnzh0yePICzZy8BX+Jb2NrakjdPHu4/fMj1mzcpXbKkynvK5+vLngMH+KFnT1ycnclTtCizp01j+KD0ZnwXl5QOOEcOb3LnzsP587dUpp0WiUTCixfPMDcXXy0TExPp3/97AgJecfbsKQCyZctOyZJlGDNmItWq1aRkydJyQ1i6kNZXJHfu+uTO3YhXrw5w4sQP1KmzGtAtSJ2+CQ+/zYMHE6hceRReXpW0TkfT+3Fw8EMiscLKylXra34t6Kvp00bcZtS11YkOtXwDgiMtJgvIN45Yq4cUfdeR0qVTFiJ7+zaQn35qwbx5Y0lO/uLMaG1tw6xZG8iTpyCXL58QlaalpSUTJizm6dO7DBzYW85q4Ugkx/bupXjRopSpXp3WXboQHR2tOKGAAOYPHYqzrS3la9Tg/KVLlCtdGlcXF7nDpI2Lk5MTT54Es3v3EfEFkIZjxy6wZcte0ce/fPmCzZvXc/bsKZYsWcXz5+958iSY7dv38/PPIylbtjyuFjHpZjZJ86zOCqKo0U3b0DZsuIN8+drw9Ok2IiNfqjw3M4iMvMebN7sICAjW+NygILhx4ygbN5bnxYv/aRSszNLSGReXUqKOTf3R+zX1Q/q0cGj6Puk6rCLm2uqsKiZrh2pMTqgi0IsTqpFZP7SxeOi6LoyiSiwIAidP/suWLcs4cWIfADNmrKFFi+5yxw0c2Jy3bwNZuHA3Xl7qy9LHB7Zv30zv3p0ZNmw0EyZM49H1Uzg7OVEgf35iY2PZtG0bP40YQekSJdi6di05vLwU3mRsXBzVu3UjKSmJK+fPY2aWXrdn5Gyh1MyZM4NJk34FIDk8XGN/Emm+pbed+jkq2paa1EUVFxfGli2lsbCwo127K1hY2Ko8NyMRBIGQkNO4u1dHIpGo7chS5zks7ConT1ZEEFJEbL16z7C3z6t1XjTpZ4xtSXlNMYRDp76vaShnVbUWD3UvgvQlrCNuzSuTE6qJLIGmFg8phhLoEomEmjWbsnjxXubM2Uz58jXw9U2Zjrp169/4+0uYNKk/7dr9yKNHt6hdOxcDBzbn9Wvl67NIG4c2bTowduxk/vzzdxo3qEK5GjUoWLo0s//6i/CICGpVr87uTZt49vQpRcuVY8aECXyKikqXno21NXNHjeL6/ftsX7lS4TUzy5Hs1rXzAPT9/nutnFnTWkIUoerrT4q1tQsFC3YiNPQeISFfHC+VfU2q+9MnEokED4/vVK41lDYuRnx8GNev9+HGjX5YWbmTL98gLCycsLXNlf5kFehi2cioD+OsLj409e3Q5T0TY+0QZfFQRlYOzqIFJguICHS2gBiB9UOXL3SxYl0dmlb4x4/v0KJFcQDu3RN4//4N584dYf78cYSGvqdv33H07v0LlpYpgbAUFbNdUhgjxo5l3uKUMOzVKlfmzGcrRnJyMk1q1GDl1KlMXrKE5Vu2kN3DgxOrV5M/d+50adXt1YuwyEgunzunsLPXpxVEEAQ2bFjN338vpk2bDgwePEJuv7SR69qnD9v37OHTmzeYm6txeE37ID8XmC5WEOkxd+8u4+TJfuTP35Z69f7RyPlWX+ir3U5M/MSpU5WJiLiDra0vMTEvAChUaAz+/uJXRdaneDBkE6JvAZIREUozytIh5lo6WztA+cv7lVtATE6oXzm6doqZOTRZsGAxLl+OkM2Q8fTMQYsW3albtzVLlkxm0aLfCA//yKhRcxQ2Eo5Egrk5c3//nXatWjFk1CiWjh7N92PHcvlOylf66+Bgsrm7s3DcOEZ8/z0NfviBsu3a0at1a8b88AOeqWKFjOrTh/p9+nBs61bqtm9v0Hvfv38PAwakTBm9ffsGMTExfPddLWJjY/mutB989kO5euMGXdq3Vy0+lD3EgADw8cGRSCJxlDmYKnIgVeVU6uMDHz9WByA5OQnInG8aaScjzWdyciIREXdwcCiIhYX42S937oyQTZ8tUmQKZmbmWFm54+lZV82ZKRiiznx+VEaPoYRBRltUxKC3YZZvGJMFRARZzQKiry9xXYS7IrRpDKKjozh37gg1ajSRWTqkrFgxiz//HMXVqw8pUKCg3D6FjcPnGzp+4QJ1eqV07vly5cLb0xMvDw+a1arFd+XKsWzzZhb/8w/Jycn80rs3v/74IwmJibQfNoy9//1HuwYN2LJ1q8L86qPsX716Sb16VcibNz87dx5i0qRfWblyKbGxsQC4uboy8uefuXv/Pus3b2b1kiX06JImBLoYhx3pA1FjCRFjBQE4c2YvBw60ImfOmtSpsxZ7+8zzQg0MFLh8uT1BQduwty9A7dq3MTe3UXteUlIs+/e7kS/fz7x5swMHhyKULv03r19vID7+PYUKjcXCwk7p+YYW7IZoSvRhATGE1eOrFB2gviKlTqNHD/XpkXUtICYBIgKdBEgGio+MFB6guYDXtGFYsWImc+aMAlLWilm+/JDccEtsbCz+/rnp2LEb06fPkZ2nSnxIefrqFaeuXGHasmU8ff1atn1kr17MHDGCkLAwZixfzp9r1uDs4EBY5Jc0s7u7E3z6tMJnq49n0LlzK27dus7Ro+fx8soBQHR0NCGv7hIVFcXfa9awesMGEhJS4m/MnDKFkT//rN0Xl7e3aAGiLInUXLhwnKNHu5KUFEfVqnPw8+shyjdFEATevbuEubktHh4l1B6vik+fAjh8uCPBwWdxcipGRMQdqlU7hYdHdbXnhoSc4/TpqlSrdoKXL1fx+vUaLCycSEyMAKBKlUNky1Y/3XkZbSnU9zpBuqBvq0dGLTKnN9EBugsPZed/5QLE5ISaxUk9sVIfGNNsMEdHFwCcnFy4cuUUS5aMIHv2BFnDYWNjQ9OmLdm/f49seqQY8QGQP3duvm/dmmvbt1PC78saLBdv3WLRxo3Exccza+RIOjdpQkQqx1RXJycK+vrSZeRIDh9Tvdy8NiQmJrJv3y5evXopEx+ORJLdLgn/woUpX7Ysy//6i4jAQM4cPgxAcmio6tC06hzbPp+rbGqu2NVyExJiqVixFh073iZ37gYcP/49Fy6MFjV19cyZn9m+vRJbtpRk1ars3Lw5j6SkBJKS4tSem5pPnwI5fLgD795dpm7d9SQnh+Pl1Rx39yqizn/+fAm2trmxtc3Nu3eHAHBzq0zdug8/32N4unMyo87o65rGJD60mTZryOm5ogIVivEUVlX/vuEpuGDyATEcGWD50PfUT03qQUYMX7Zv/yPPnz9gzZq59OkzgKVL/yIoKID167fLjmnUqDmrV//No0cP5FaXFYuTgwOzR4yg/g8/AHDqyhVOXbnCT1OnMrxtWzbs28eaX34hIjqaQQsXEhoRwZmrVwHYd/Ik4XouiCNHDgLw00/DVDZ+Nh8+UNXHB+HePcUHGPABpfW1kPLHHz5ER4fw22+RfP/9Rv79twJnzw4lIuI5DRpsSZdOcPAFIiKe4uxciNu3F1K//jTc3Qtx+/Zmzp4dytmzQzEzs8DdvQTW1m44OPhQsGAXXF2L8OHDDaytnXF2LoitbTYkEglv3pzj5Mm+xMS8p379zQQFnSAqKogKFQ4gkYhzihWEBGJiXvHff6VJTEwRG15ezXjyZC4AVlaesmOzmtUjs51N9X39LG/1MGESICZS0LQx1SbSpTarbvbtO47t21fwzz/rqVSpDkeOHJBbvK1mzTo4Ojqybds/jB07SbMMfc5UNW9vPF1ceB8WJrdrzrZteLm6cvnhQ24+e4Zvzpy8CAyU7S9RqJDm11PD4zuXcHN15a9pvyk+QF+NntSrURqiVo1DatoIqCD/Dnz8+Izo6BAAZs3Ki7d3aczMUpqX2Nhn6Rr+yMhgFi+uDIC5uSU5c5alatVhWFraULRoK06e3EZSUgyJidG8f3+N+PhI3r69xIMHq9PdirW1C7a2XoSFPcDNrSjNmx/lzp3F3L27hBIlFuDkJG6BvNDQS0RE3AWQiY/8+Ydx585wzMys8PefjofHd7LiMzTGuAosGObbypgcbDNMfHzDlg8pX50AWbx4MbNmzeLNmzcULVqUefPmUb16ythvcHAw33//PTdv3qRly5YsXLhQYVCprEBmBb7SB8rCsivCxcWNgwef0KlTJS5cOEaBAkUJDJTIGixbW1tatGjL9u0aCJA0DYOttTXXly6l1vDhPE4lMACCQ0PZfvo0MfHxjOrQgdOPH9Oqbl1uPnhAz1atxF1PJI5E8ikqCmdn5/R+E/oUHnrE2xsSE+OZNasOjo45qFt3MmFhL3n79g6CkEzNmmOpVGlguvM2bGiNra0bBQs2IDz8NW3brsbSMsVJ1MzMnJo12xMYKF8GgiDw4sVe3r27ROHCPUlKiiMs7BGhoQ/49Ok1FStOIV++1jx/vpu7d5dQqtQyfH1/FH0vCQmfiI5+LvudP/8wXFzKkpwch5dXM3LkaIVEYmbQfiOj/B+0JTOCi+krPZ1WpU2NyfKhN74qAbJ582aGDBnC4sWLqVq1KsuWLaNRo0bcu3eP3LlzM27cOMqXL8/vv//OmDFj2LRpE13Szh7IAmTm0Iu+0MQa4ubmSc+ew5k9eyQNG6ZMf5Xm2ccH6tZtyPr1qwgKCsTPWzsHrJweHjxcvZrgjx85ePkyvWZ/WYE3d/bsHJ05EwdbW0YbqLWXNnyuLi6EfPyYslGf3sBi0tLCCgJw5swawsJeMnXqbSQS9daG69fX8erVeSpU6MeDB3uIiAhi3jx/fHwqEBcXTmjoC+Ljo3B3L4mlpT2fPr0mIeETgpCEICSTnJzInTtLqFp1DgULdiFv3pZERDznw4drHD8+mSdPZpEjR0vy5PlB/T2nwtOzFr6+fXj6dD4lSiwgOHgf798fw8zMiqCgbbx5s5uGDQMBT7VpaUpmD2ekxZgsEhmF3oIJZsKHQFblq5oFU7FiRcqUKcOSJUtk24oUKULLli2ZMWMGbdu2pV27drRr145BgwZRtGhRBgwYoDZdrTyMIw0TGdOYxIe+RL7YxjT10IsUHx8IDQ2lWLE8lCxZhtmTJlChXDn549LepJKMB7x/T65OneS2zfrxRyavX0+NEiXYM2UKkpw5CQgOZsX27fRq3Zpc5cvLHa/t85E2fvsPHaJJu3aM69ePKYMHqz5JHw2dEo9TMcHJpIwdW4wcOQrz00/b1GYtISGWmTPz4Onpx9u3d8mWzZ/atcfz7t19Xr++gK2tK66uebG0tCMw8DKRkYk4OubGysoJicQcicQMicSc4ODzPH2a4lcikZghCCnrB1lYOJArVzeKFp2tcrqsKs6da8S7dym+OJ6edfj06QkxMV/WuClV6gMWFu5apZ2azBYdGSUyjGHWi87BxKToI7aHJo3uVz4L5quxgMTHx3P16lVGjx4tt71+/fqcO5eyLPvo0aNp0qQJXbt2pXz58vzxxx8K04qLiyMu7ov3fUREhOEyrgFZedhFFWKHZKSiIjY2hj171tG4cUfACVdXV/75Zw8DB/amUp06NKxbl93//IOVlVX6RFQ0EIEfPsj+v3jwYH5s0gRzc3NsrKwYtHAhlx8+pIJEQtinT0xctIiJixaRFBam8zCerPELCKCRvz8zhg5lzNy5FM6bly7NmonOvxwG/MKSNuYBARAXF01g4F0aNpSP1KrMUTUuLoKoqHfExHzExsaFbt12YWfnTsGC9YGfFV5P0a2UKDGYwMAfiYx8RXJyPPHxuXF2LoO1dTatQtJLOXmyEsnJ8bLfxYvPw8mpGJGRD7lyZQTR0TdISooALIiIOIybWzvZsYIgkJz8iejom8THP8faugD29uWRSOSbWU1ChmuCMVotDGGp0XeaehMfJjTmqxEgHz58ICkpiezZs8ttz549O8HBKatglitXjsDAQD58+ICXl5fStGbMmMGkSVo4NBoQQ4gPY6pPmgzJPHt2n4kT+7J06VSOH3+Fjw9Ur16T69cfsW/fLnr27MDSFSsY3L+/RnmoWKQIwtGjctvWHD7M0CVLcHFwwMXBAYDnqfxE9h08SNOGDbUWIWkbP4lEQpemTRkzd+4Xh1dNTE26PlQNoqP6+KSsxguQLVt+hcmlfZ67dy8DUqKUlinTAzs77SwJEokZPj5fwlTrwxqXmPiJ+PiPJCSEybbFxaWI0vBwPwoW/LJK8ZUrKSInKWk5np4/IAgCjx7VJTLyuFyaVla5KVBgF4UKlRadD006WGMUHVKMZTVkVWWkV/FhGnrRmKzpgamCtF8/ac32FhYWKsUHwJgxYwgPD5f9vU4VqMqEYRFTh/38SgIQHPyaFy8ey7abm5vTokUbunbowO9z5xISEqJzhe85cyaJSUkkJSXhbG9P2KdPjJg1S7a/RceOTP79d4Xnqru0XOOX6uAjn9ea6V+zpmYWj0wYT/vwIeW8woVzaHxuiRIVlS5GJwgCDx8e4O3buxnSyUZE3GPfPkdiYl6TlPQl7ktg4GaFxVq8+FMsLLKRlBQGQFJSeDrxARAf/4qXL9vJbQsNvcKdOyO5dq03T578SWRkSowRsTEtNF18LaPRJDZHZg5DGbX4+EYWpftqBIiHhwfm5uYya4eUd/9v76yjqzjaOPzE3UMSogQIFiA4wV2KOxSnQKEfXqAUaAulFG2pQ4tDgdIWK+4atLgEjwNR4i77/XGbSzw3cm9uYJ5z7oHszo7uzv72nZl3QkNzWUUKQ09PD1NT02y/suRtt37kpLDn7u7dq/L/W1nZ5Dr/5bx5pKam0rZ7d6JKafiscaVKGOrpsWrXLp74+QEwY+RIhnbvTv/evYscX57i479OR/pvOfC/jx8XHElxt1nNGUch5JwmkhUnp+poaGhw/76XQi/FihXfOH2LjMw/7Rs3NrJlSzd++KE2yclx8uOSJPH69QMePPiNhw83kZqaUGj+FSE6+jYAGRlJpKcnoKUlmz/i5/crycn+ucLr6VWmXr0Q7OxmA6CtbU6dOr5oa2e/H01MalGlynQA0tMTuXnzA86da0xg4DZiYu7h7T2fU6dqcPNmd6Kjn+ebv5yiQ7bnjnqhjJ2MS0qJRZpY8aJU3pohGF1dXRo2bMiJEyfom2V55IkTJ+hdjBeEuvCuiY9MCpoXYmFRASenyvTsOQITE7Nc512cnTl/9CgtOnViyKxZHFqzpvCdYvOhbY0aPAkO5vDHH6NnaEi/li35ats2AKYMH45rST9F82iMwW3bMu7bb+k6dy53166lTuXK+YYtFoWNd+UYhslKzrkd1tYOWFs7cv/+Rbp0GQ1knyOSlYyMdE6ffjNB/OLFrXTsOAUtrdzdkIuLHbVrD8TFpQWhoQ949OgQMTEZPH++m6ioR/+F0uDx4800aXJO0ZLni7V1m2x/y0SIKenpMTx4UJN69aLR1NTJ52oZenqVsLdfREjI97i6DsPevh9GRq6Ehh7n3r2PCQk5QkKCHx4eq3FxGY+mpjY2Nkk8f76La9c+448/auDk1AUDAxtAonHjftSs2TNXOpcu/cTBg7IJyk5OTenf/3Pq1ete7LKXxvtTmU7BlIHKl9uqm5dHNeGtsYAAfPzxx6xfv56NGzfy8OFDZsyYQUBAABMnTizrrBWL0hQfpfGxrGrys0JWquTGsWPPGT58Kt99N485c6ZnmzQMULN6df7asoVjXl5sP3iw6In/V1lf9u1LWGwsdT77jNVbtuBYoQInli8n+to1mfgoBlknncrJUlBjAwOGtm8PQPdPP+WLH38kzT/3V7jCZHXHXlDnVoSOz94eQkMvM358HcLCArG2dsgVJqc2O3BgCY8enQWgZs32BAbeZfXqwYSF+Wa77uzZdXz/fS9CQx/w8uVN1q5txdWrq3n8+He5+NDS0sPc3I2QkKsKuXovDF1dK3R1rXMclYnWjIxEnj/vX2gcKSmvCAiYSHLyIx49+pxr1/pz/nxLrl7tw6tXezE3b0irVhdwdf0ITU1t7O1BW1uf6tWHM2TIfZo1W0lGRirx8Q/x89vH77/3IiRE5hgtKSmGU6cWERHxDDu7N3vlBAZe5YcfenHx4u/FLnvO4a/iXKsKVDoptzx1lOWYt2oZLsgcka1YsYJXr15Ru3ZtvvvuO1q3bl2iOMtiGW5piA9lP0OqFOp5dT6LFv2Pv/76jYyMDNas2cSwYaOB7F83Ldq0wcrcnP2//CI7UIyx2nuBgSzYt49/bt4k47/H5Z+ff6bXfyIha0+Xc/lqzk6wMPGRefxlZCRdvvmG+/9NRO1ety4HZsxQbIWHog2TtVIL2AAma5lSUlKoV0+P0aNn8tdfv1GtWh1GjlxGnTqtCsxbfHwM77/vSPfuH1K5cg+cnOpy69Z+du+ej5aWNsuXP0NbW4c7dw7z/fc9aNiwP4mJ0bx+HUqtWv1o23YuSUnRrFrljo6OKVpaekRGPsDRsRONGh1XrLyFIEkZpKXFExgYQ1TUPxgaNsLAwJ3AwBmYmnbE0nJQgdcnJwfg79+d2NjHSJJso0ANDW2qVv0Yd/c3K+7ye5FmvVeePDnG5s1dmTjxEs7OzeRWD01NLTZuTCM6OoQffuiNj8+b4chGjQYweXLeuzSXhPz2MCwpyp7/kV/8pbKjLShvRVrWeOfOVeiS8roM960TIMpA1QKkJOJD1cK9LEXIwIGNMDOzRE/PgOfP73DnznO0tLSydTBrvvmGyYsX8+jgQdzyWpabkwIqMDgqitMhIYxasYLhHTuy6TvZ/iAFCZCsp/Od95FP2o0WLuSGnx962tokp6Wxb+pUejdokHfmitsQOQVHHqIka5kSEuJp1Ei2GsjNrTY7dlzCyMik0Cz8888vrF49ne3b/bJZSy5dusMXX9SjbdsJ1KnTha1b/0elSg2ZNm0/mpqa8jhTU5PYsqUbgYHXSU19U48mJq64u/+EnV3xhyCyEhQEkZH7SE72xcpqGDo6uecY5UdmFd6/Pwsfn5/ky3lbt76MpaUnoJj4AEhLS+ann+phaGjNl19eICIigLVrR9K8+XDatBkHQEJCNIsWNSE4+AkAnp7vM3HijiKUtuxQtvhwcJD455/dtGnTAQsLC/nxciU+4K0XIG/VEIwg+2Q1VcyUV6UJNuezOWjQBC5dOkG9es2Ijo7ihx9W5rpmdJ8+2NvY8Mm335Y4o3bm5gzt0IFRnTtz18cn27nExETWb9nC6NFDmDBhFP/+q+C8hBx5uubjw9mHDwFYOmAAC3r3xu+bb3B3cODQnTsFx1PUxihsa9I8+N//egAwZswsdu68KhcfhXHjxgnq1GmVTXwEBYGzswdNmw7h7Nnf+OmnfqSnpzJs2I/ZljWHhDxgw4YOBARcpnr1rtnijY31JTz8vEJ5UITg4FU8f96XoKBZ3L9fk9DQNXInZ4pSrdo8LCyayv8+f745Fy604enTb3n5UrG8amvr0aDBKAIDr5CRkYGVlTNz556Vi4+IiABSUhL5+mtvtm59xvr19/nqq+25nn0HB4nAwAP89ltvtm0bib7+yzJdQVPcHW+Lyq1bNxg5ciAuLpZERkYWPYKyQt1m8SoZYQFRgPI6BFMQyrKUqMIikvmMSpLEsGEtiIgIITDQBycnZx48kM2VyPqls3PtWt6fNYsT69fTsVIlxRPKWUn/9Zwr//yTL7dtI+ziRQyqVgWg//Dh7Nm/Xx7UxMSMc+deoa9vULAFBOSVlubvj87YsQBErV6NmeEbT54NFyygmp0dfxTRt4lCKGD9SEhIoHPn9ty9e5XFizfSr9+YnNkvkM8/70VKShLLlx/PVa2SJJGSkkhk5AtMTW0wNJRNLL516wB//jmf4OB7mJk5MXTo3yQkvGbLlm7ZrtfRsaR7d9lGeBERF7lxYzjJyWEYG1fD2Lgapqa1cXYeh4YGaGhokZYWi5aW4X9Oy7J/g508WZOEBH+MjVsSE3MCgMqV/8rmcCwnqanBREbuIynpATY2laladQaSlEFg4HZSU1+joaFDSMhBQkKOAPDRRxl5evTNimx/HReqVm3KtGn7sp1LTo5nwgTjbMecnWvSqFFnTE2tsbFxonXrgTx8eIW1a2fz9OlNqlVrREiIH/Hx0TRo0JFWrfrTsmU/TEwsssWjTvvclORdbGERT6NGNXjxIogLF27i4SHzw1KgBURZE0WLU6mZ8b/lFpC3ZhWMoGhk7QxKs9PJ2mkoS4xkrpDR0NDgyy/XMmuWzH26oaGRPEwsJvLOZvD48fyyYwfTli7lzt69aIeGKpZQPj1mw2bNiF+3jku3btGhalX27N/PP4cO0bFjV6KiIpk4cSoffTSGjRtX8r//fZFnnvJC28WFbR9+iKGeXjbx8Toujpv+/rRSwu67eZYxh/gA2Lv3rHz5c9++o+XHFW1jU1Mrnjy5kee9pqGhgZ6eIXZ2bqSkJPHZZ3XR1zfG1/c6rq5tGD58EdWqvYe2th4Aw4Y9Y/v2qtStO4P4+BcYGNgQFnYWa+s2+Pr+SmpqNNbW7QgJOUh09C1evPiThw8/z5WugYETnTv7ZxMD1arNxdt7GRkZKZiavockJWNs3DzfcgUHryQo6BP536GhUKnSBLS1DXF2HiE/Xrny/3j16gBXr/YiOvoZ5uZuBdZXUlIUsbHBNG06ONc5XV1D3ntvNkeOvLH4BQQ8JCDgofzvs2f/4tq1w9Sq1YxvvjlDvXptiY2N5OTJ37lwYTerVo1n7dpPmDp1NZ6e3TEwkAmavG6HkvYPxXW1LnPudo+AgGfo6upRuXJNKlSoiL6+QaHXGxkZ4e0dQHDwKypWLGOrQn6bKBXEO2IJEQJEoFQxomyLiJtbbXbvvkVAwDOcnasydGhf/P19OXz4HCZmsq9bDQ0NPps4ka4ffshjX1/c3bJ0/sXIYPP69alVpQpdPvyQRf7+fPbVV/KVGL1796dLl+60adOd69cLMLfn0ykNGzQo13ELIyO6e3iw7tw5vhkyBO1iLikukDwmn2aldev3MDQ0xtTUXP7CVrTqXr8OxstrP3Xrvldo2MTEaIKC7gFQt243+vffhY5O9heOnp4Fbm7DqFPnf5iZVeXYsUHcv9+ODh0eYWrqTlDQNkJCDqKvX5G0tDiMjKoRE3MPSUrJEosmVavOzGWJcHYeibPzSIWfA03N3C/DoKBEKlXKvQ9NhQrt0NY2xstrOu+9tw8trdzLeiVJIiTkPsHBMmvJhQubuX37IBMnbpeH0dDQYPDgFcycuYK4uGguXNjFv/8eJSkpASMjM6pWrc+NGzLrzVdfHcDMTOZt1sTEgr59p9K371TCw1+yatV4vv56CAYGxgwY8DH9+8/A2Ng8V55UOVyT9b27ZMk0tm//KVeY/fsfULVqrULj0tDQUFx8KHvyXHFEyDuAGIJRgLLajK6s934pbbcTpU1eHwmNGhmRkJBAu3Yd+eefE3KLw+27d6nfsiUH16yhe5s2uS9UNKP/JRqfkECdAQNITEyke5cu/HP4CGZm5jx//pRu3Ybg5FSFnTvXcPKkP9WrvzGXFzYMk4v/why+c4fu332H/7ff4mxV8o3QAIWGXjKzEBkZTosWsl1gd+y4hI1NM4WSCAqCffu+5NixVaxc6YOxceF5f/nyEYsXNyMlJZFBg3ZQu3a/XHFmJTU1gceP72Fh0QTIICTkGLq6FlhYNM01xHLmTAOio2/RqNFOHB1zWxcKSic/EhO9iY4+TGrqS6ysRmBoKDP35/XiDg4+xLVrfdDVNUdTUwdzczdMTEwIDr5LfHwooEFaWpI8vJ1dderU6cKwYT9kiydn3EFBT1m9ehqPHl0jJiYCbW0dBgyYybhxS3PlIWtzP3/+kD17NrJ9+89oa+vSrds4mjTphiRJVK1aXy5elE1ez3KPHjXx8XmU7ZitrQOLFq1nwYLx/PTTPtzdG+YZX876SUxMREdHBwvtxLwzoCo/HUXtVN/yzejEJFRBvpTWRFZlWRPz6ge+/noLAOfOnSYiIkL+IvWoU4emjRoxc8UK4hPy8Z5ZhEmcvxw+jK+fH8EhIWzYupXw8DBiY2MYMmQEp07tw8PDk8TEeLp2rcquXTsJDQ3Jdn1wSAjHL14kNCKi4IT+a4A6/+26e/M/L6zFpqBGLaChLSysmTfvRwAuXryuUFJBQbIv+mfPLuHkVFch8QFgb1+DpUsf4eHRnd27xxAXl33ILGc2dXQMqV27KRoaGmhoaGFn1w1Ly2a5xAfIhlgAgoP35zpXXAwMamFnNwsnp1Vy8QF5v2vs7LrTt68XNWqMoUaN0RgZOfL48SGiowNJS0vG3v7NKqfq1VuTmBiNu3snfHyuyY/n1Uy//TaTp09v0rfvVObO3cYffwTJxUdBfj6qVKnJ7NkrOXHCl6FDP+L48U188klH5szpxPvvOzJmTA0+/7wX4eEvcidaSuT3yK1YsYPVqw/w++8XWL/+BMeP+3DmTBA+Pg8JDg4iPDw47wuzkJ6eztixw7C1NaRGDUdu3r5NamoqKSkphV6rFNTZh34ZICwgCvCuWkDyogy2GymQvDqvChWSadrUHR+f53z77c98PH4kAI+ePKFBy5a0adSI35cvx9rCIvfFOcma6SyJjV26lI2//86HY8bw4aRPiI2NZdGi+Vy7dpn4+DjmzfsRDw9P5swZjp/fEzQ0NIiKSsdUI46MjAwquLry+r/Z+SN792b9Rx+ho13wiKjjkCEM79CBZePHK9YQinR0Bfj9gDfJ+Pg8okePmgBs2PAAF5eCTeBBQRATE8qvvw7F2/sU48dvpUWLEbnCpaYmc+zYdzx4cBxjY2v69/8aOzvZEFlcXASzZlWhUaNxdOv2Ta7486Og+ywjI5V79z7G3r4PFSp0yD+gAulIUkaeIicrOZsgJSWSqKiNJCdHYmFRCy0tXU6eHIajYxMSE18TGuoNQO/eC2jZcjSzZ7vKr92wIRUXl+z3SHp6Ojt3LmPTps+YNm0NPXvKnC4WV/QnJycRHBxESkoy588fJjz8FX//vZ6EhFhMTCypUsWDXr3+R4sWffL0YFsUSvJhkpaWhnYBz0tmvaelpdGgQXX8/GSr1hrWr08VV1f+2rOHPdu306dHDzT+87Vz9c4dbKysCncwWFodmSLP8FtuARFzQNSYvFxhlzUlmS+ijDkheblsDwvTo06devj4PGfOnOk0auRJ6/rVqFGtGnt37GDo2LEMnDGD05s2Fe7YK69e0tGRL+fNo3uXLvTp0YN4Tdmqje3b99CxYzMePXrI77//QGpqCgsX/sbo0e2YOnUWiYmJxMcE03PQIF5HRrL6iy/Q0dZm/BdfUM3Fhfm9ehWYFXcXF/ZevEgVe3vquLoSGhVFTycn7gUFYeziwunbt+nbogVWZrnd0/sFB+Nia5u9vHmULS/xAchfNuPGLVNIfADcvPkP3t6n+PDD32nefHiucK9ePebnn/sTHPyEevV64O19CknKYPLkXQAYG1vRvPk0zpz5Cn19M9q3zz2RNC9yuovPiqamDh4euecV5EV8vB8pKUcJCvIiPT0SDQ1tJCkdSUpFW9uG1693oKdXlQoVxlOhwgQ0NY0AjWx1/J9XewCSkkI4dswRSUpDS0uP9HSZ997q1bsxbNhetLV1CQ6+z+vX52jf/iM0NTWpWbMdDx+eAeDKlR24uIzMlsd9+35i8+bPGTfuU8aOHUchGrZQ9PT0cXGRrexyc3MHoFOn/ty+fZnU1BQuXjzGokUDqVDBiWHD5tO69UBMTS2LlEZpWEQLEh85w505c42PP/6I0FeBDO7Xj6mfyCYN9xs2DAtzcw7+8gvN69enxbBhNHR359KOHcXeuqFIiHkhwgKiCGVlAQH1tILkpKS+dkpKXh3a69e3+fDDEXh73wfA3/81zhayTuv4qVN06duXnZs2Mbh//6IXIB9rAYCPz3OaNfPAzMySiIgQUlPfmHqXLv2Oli3b8Ons/3HxyhU2rVlDJQMDOo0bxzezZzOtQ8Ff5KOWL2friRPZjrnY2uIf8mZ4p129epz+Jru14PrjxzSeNIkJPXqwZto02QsyLy+o5C1AJEnC3V32pb969XWqVct73D3rNQB+fjdYuLARs2Ydo3btzrnCLl3alrAwH2bMOISTUx3Wrx/Dq1eP+Pzzy1niy+DAgSlcvbqaadMeYGtbK1c6ipD1nouPf0509F0SEwOIj/dFQ0MTK6vWVKzYS27RSEmJ4vBhmYXM0LAxuroVkaR00tOjiYvzQlPTBDu7T0hKekxk5J9IUjogoatbCVfX3zExaSFP780GcmmcOlWL+PinaGrqUrfuNBwc2tGsWRe53xMrqwR27JiOq2sj2rb9kKioYI4cWcGxYzKnd7t3h2FmJnMZf+fOOT7/vBdduw5g8eINCtdFfh/4itapt/ctNm36hkOHdqCjo8ugQRMYMuQjDAxqFnidKhd25FXGzPlXz318OHfxImMnTZKf69qyJXefPOFlaCinNm4EIC09ndaNGqGvp5c9otLuwAqq+LfcAiLmgLxjmBAr/5UWRR3WLO2OKK/+wNKyHuvXv1k5kJ6eJv9/5w4d6NerF1Nmz+a+t3fRClBIOF3dKkyYMJ/g4ED+/vs6vXqNoFq1GnzwwQT69RuEh0d9Fv63tn/MRx/RbvRoAAZ17VpArDJWTZzIkSVLeLx5M92aNMHVzo6Gbm4cXrKEvV9+yYiOHbny8CEZGRnc9fEhLjGRkMhIFm7dCsBvBw+i3aULTsOHE/jqFReuX2f533+z4OuvgfytHwkJsu3ptbV18xUfee0zFB8vG2KqUKFyntcYG1uhra1LxYrVkSSJsDAfDA3Ns4XR1NSkfXvZUuZ//11baB3lR9b5D15e7bh2rR8PHswhNPQYwcEHuHatLzdujCIlJYoXL3YTGnpMfq2hoTGurjuwtZ2BtrY1zs6r8fB4hZXVCKytR1Olym5cXFbj4rIGHZ2KPH3amdTU3PMTNDW16dDBm/fff4S7+4fcvr2S58//+k+8yDh27DvOnVvHvXtHATA3t+P991fxxRcyF+s3b54iLS2VS5f288knHalTpxFz5qxSqA4Ku80VdWBYq1Z9Vq7czpEjT/nooy84cGAbPXvWYsqUBhw4sISYmDuYm8dne87VaVVplcqV+WDECFIiIvhqqmxTv6NeXrwMDaVjs2Y0qFmTr379lS7jx3Pt3r3sFytjHPkdnhMiLCAKUJYWECgdK0hhgqO0N75ThNJ8lvMZKWHo0L4cPLiP589DqFDBRl4PYeHhdOzVi2c+Pvy0ciVjhg/PPjyRXyFydBY56+3Jk3h6966NkZEJu3bdRFtbO1f/op0Yyjc//oipiQkPbtxgeM+etG7UqMQVsu7QIT787js8qlThzvPn6Ghro6WpiaGeHr8tWkRkTAw7Dh3i7LVrONnZERj85iXZsmUbDh8+m2fxp0zpy6lT+wAYPvwLRo/+Mlu6+VVVWJgfs2e70rPnfExNbUhJSaR9+/9hYCCrM1/f63z5ZWPmzDlNUlIsP/zQm8mTd9Oo0ZtVLy9fwqtXd/npJw/6999Ew4ajC023MDZurICNTWPq1t2FtrZsuayf33pu3x6Ps/MHBARsxNq6A+HhpwDQ0NDHwMCFhISngMwrqq5uJVJS/ORxWlgMwtn5Z0CDO3dssbObhb39YjQ1dXK1f+a9+uTJdk6fHkWnTotp0+ZTkpJiWLRINny2cqUvFSpUAmS3XHp6GvPmdZMvrwVo3rw3a9b8jY5Owbv0lsb7raC6zpwvcujQH5w/f5jERJlgtbd3oX373kyb9jVGRsb5R6AECrKAZCMoiDuPHlG/f3/5UvqalSuz98cf2XnkCHPGjctuAVGmX4G8Kvktt4CIOSDvAIpYO7KGKakYyW879pyU5pyQvOaCBAXBjh17iYgIx8pKZrbOdAZWwdqaSydOMGX2bMZOmsSlq1dZ99NPb0RIXpNdChEfANeuneHFCz/++ee+fJw66zwAAAMDAz6fMyd73FDiCklLl31JxyYkcOjrr/ELDiZBT48x/fphZW4OwAf9+jHy00956OPDhPHjiXj9mu9++QUvr3OEh4dhbV1BnqWkpEQOHNjG2bNvdhPetm1RNgFSUBtXqFCJBg36cODA12hr65GWlkxMTAjvvy/7Yndy8kBDQ5OQkGfExISgoaGJuXluJenrexaAqlU7FbtuslKz5gfcvv0NDg6/YG09GS0tA6ytZUuzk5NDaNv2BsnJEXIBIklJJCQ8BrSoXPkvNDUNiIk5SULCDaytxyBJGQQETCEqah/W1mOxtZ1BcPAKDAzqYmU1LN98uLkN5cGDlTx+fJg2bT5Fkt44Envw4Dht234ov2+0tLRZuvQo9+5d4OXL5xgZmdKvX698xUdhoiNnn1DYM1/Q3C9dXT06duxLx459SUpK5MGDGwQGPufx4zv89ddazpzZz1dfbcDTs33BmVI1/xXEo0YNQi5c4OPly9l24AAPfXyo0aMHoV5euYdflMk7OCdECJByQEkmoxZnqCXzmtIQIurwPGWKj0wyRYiRkREbV6+mZbNmjJ00iY5t2zJkwIDcERThEzIpSeZnIDU1WbELclZSQTMoC2FM1644VqhAy44dschjIiqAlpYW2//4I9uxj6bNp1o1e7y8ztGnzwAiIkLZseMXdu5cTVRUBBYWtrx+LbOWTJ/+q/w6Rdr2f//7i5cvvalYsQaLFjUlOjr7cmQ9PUNiYkLp0GEy9+8fY8WKDkyevJu6dd8MSVWsWB9tbT1++60F48efw8LCRdEqyZMmTRaTmhrPlStz0dNbjr5+ZaKjb6OnZ4eDw0DMzRuQnByW7RpT0zqYmtbH2LgluroVMTfvke28hUVfwsLWERy8AkmStb2mpuyrP6cAzSQlJZpXr+7Qtu18AA4dWoaFhQNubi3ZvHkCZ8+upV+/ibRqJfs6l6QMPDza4OHRpjjb+MjJq08oyjNfkBjR1zegYcOWNGzYEoDBgyfy5ZcTGTeuE82bdyIjI4OaNeszffoS1Uz0VJAKlpb8vnw56xYtwr5NGyJjYqjYpg03d+2ibvXqqsuIunSaKkIMwShAWQ/ByKMsoiAozXkeyt6ht7QsIfkNxRSECbEMGDGCC5cu8e/Zszg7ORWaTn718fLlC2rUcOSrrzbQv/8H+aafr0MyRcivsorxVorFhPT0dCwstJk5cy5BQZHs27cZTU1N+vb9gK5dp3P06CZ27PgaAwNjtm/3x9TUslh95MGDS9m7dwErV/pgaemIv/8tFixowNy556levRUpKYmsXj2YO3cO0aBBH4YN+4GkJFm+X7/2Yc0aT9LTU2jVajYPHuyhQoU2tGih2PyHvIiO9uHBgzWEhvpjZdUCF5fx8iEZgFev/iEjIw1Ly6YYGMjyUVi509IiCA7+hujoo1SrdgIdHet8h2AkSWLXrloYGlpTt+5gjh79hNatP2D48J/Ys+dzLlzYRFRU9rbevPkxjo7VssWTF6VtAckLRe+B9PR0/vhjNZcvn0SSMjh79iDt2vVizpxVODtXKXK6iqDQEEw+BYiIisK6ucz9vqGBAduWL6dvx46kpaXx/datDO3RA3ubLLskK3NYppCJ6ZmU1yEYIUAUoLwJkNIUHiXJR1bKWoRAwZ1yaGgIHTp4oqOlyeFdu3D7b5O5vCio/Fu3bmDKlPF4eYViYZH75ZOJop1hsVHAapO1HI6OZsTExGBpWYHhw6cyZMj/SEiQLa/8999jrF8/h1mzNmFgUD+/6AolPNyfWbMqMWPGITw8uvHw4VmWL2/HsmVP5L4/0tPTOH16Ndu3T6NFixl07/5GYDx6dJCtW3vK/9bU1Gb8+IQ8XZoXBWXvK5ZXU2Teoz4++zh+fAAZGW8moi5efA9Hx9okJyfw8OFpHjw4wYkTMidwBw7EYWBglG98iqZfVErz9ty3bws//fQF8fGxbNlylurV65Ze5FlQdB7IH3//zc7du3F3cCBDkmjZoAHaWlq8N2EC5qamJCYlcfjXX2nbpAk1e/Tg03HjGNOvX+7IFaGondxbLkDEEEw5QpGhGGWLj6xpFEWIKGJZLK05IZlx5DUnJL/O2MbGlv37TzFgQDeatO/A31s207Fdu1zhCiuztrYOkiShp1fwhlm5NqYrqem1iIIjK0FB8N13e3j1KoBu3Ybw+rUBWZ3FNm7chcaNu5T4JZT5ktXR0QfAwEDWUSYlxcjDaGlpU61aawAqV5bVf2JiFE+eHMXP783eOnp6pjRuvLjE4qOsyJyzVLlyH8aMCcfJSZdvv61KbOwrDh1axoQJ29DTM6RevR7Uq9cDc3N79uz5nNGj3enQ4X9YW+thY+OMi0stHBzcePlStqAxLyGStd0UESPK2oIhM299+oyiffvejBnTnmHDWuDh4cnUqV/h4eFZOgn/R17Pe14bQs798ktevHzJgfR0JEliOdCyQQO0tLT4asoUlq1fz7pdu2jv6cmf335LbbeCNxIskJwNpIrtw9UYIUDKGQWJEFWIj/zSU3TsWJXDm/lNTM3MS05cXStz6tQVRo0aRKfevRk8eDjffvsLDqayiamKlLFKFZnlJDXVB0fHOgWGzVOElBKKisPM+mjWTPallVd/WFptFhYm80aZ6ZI9c8JpREQAlSq9Wd4bEHAbkAmQFy9usH59O5KTYzE1fVM/yckxREc/K52MlTF6euaEhsLcuS9JSHiNpqZ2rnu3e/c5NGzYj507Z7J793w0NbVJTZXtGWNhYcvAgbNo334okP2Gz+/+VwaFvUuzfhiYmpqzYcMJtm79nuPHdzNuXGfWrj3CoUN/EBb2iu+/31W4k8A80lXkoyPnc9fS05N/b97k0N9/Y2RkRJN27YhJTkaSJJ5GRPAiJES2Sg2oV7NgXydFRhXbh6sxQoCUQ/ISIaoWHzlR1CpSmAgpbW+peYkQyF+ImJubs2fPEbZv38y8eR/z8OF91q/fTo0ahe++CWBiIvuqj4uLUyh8Xl9kxaEo1qi86l+ZwiOTGzf2UqFCZbkw09WVWYkSEqKzhcv0BXL48Me8eHGdjIw06tcfwe3b27OFu3fvR1q1yr5Jm7pRkKbM6940NLTMdj4r9vZuTJ8u28NGkiRiYkIJCrrH1at/sm7dHNavn0OnTqPo2nUMVas2wMDAqMCXc0koyTP6RohYMXXqV4wdO4cJE95j/Pgucp8z6enpBXo7zS/9/D46ChIhg/v3Z/tff6GtrU1FOzv69ujB7v376d+7Nz/+Kpt03WPIkJJ/IChiAs5akHcAIUDKKVlFSFmLj6woYhUpCxGSGW9O8hIiWlpajBw5lgYNGjNy5ECaN/dg4sSpzJ+/CCOj3OPvWcnc5EpXV1fh/BVVhBTVulEYOetaWV/JISFPsbGpIvf6eeXKH2hqauXykmpn15uOHb/ixo1NREb6UL16D+7e3Ymraxv8/C6QkSFzKufuPlE5GVWQ0jBYZX1hFjREmBk2E3t7DczMbDEzs8XdvSMDBy7l0qVtHDmykmPHNqGpqYmVlQOdO49i5MiFaGlpKSxGVPXue5OOMb/9dpj+/RtgamrO9OlL8hUfiuQtpwjx9X3Mzp1nmD59XLZ47/tHMGPqB5w8cwYtLS2CQ0L4fvVq1m/dyriRI/ly3jz8/P0Z2LcvTvk0jCRJ7PjrL1p4elLJpZDVWUXZx0KdPLcpESFAyjHqJDzyoqDhIlWLEMjfGgLw7Fki+voG2fqI2rXrcvnyXX7+eRUrVnzFgwf32LPnSIHLB9PSZC/HzJesouQnQkpbbGRFFVaPTF6/DsLb+ySjRr1Zxvvo0VlcXRtjYfGmUV6+BA0NDdq3/4z09GTOnFlM9erdeP78BD4+Z7LFWa/eLOLjX5GRkYqJibNyMp4DZTitLIoIyXpNJvb2YGJiTZcu0+nUaSr+/jfx8bnG9u1T2b59MRcv7mXcuOV4enbP83p1IDraBAeHWujpZdC8eXZ/L0FBGdy9ew5TUysqV1ZswmrWOu3evQYAzs5VGTSoIwAvXgTRvn1TDA0NmTt3IZ6eLVi7/S82bVrLsEGDWLpwIUZGRlw7e7bAdA4cOcLw8eP5cMwYfvuhCNY4RZ0lveUIV+wCpVKQSCqso1XGR8DLl7k73+++m0eDBoZ8/fVUfHxSsvUJenp6zJw5l50793P27Em+/vqLAuN/9Uq2s6a9vUOR8/bGSf6bX0Fkuj8vrA/LLHPOX15xKYt7944iSRJNmgyWH3N0rE1g4B1iY8Pl+czKixfXATh2bA5pabn9qly4MIXjxwfxzz/tKM+L+aKibrJlixMREbJ9i3K2hZ+fF6GhD/O5Onubampq4uraiA4d/sfGjWl88cVV9PUr8NlnPVi4cAzx8TH5xlNaZL0vi3JfRUS8JDY2mRcvpGxlunx5P7NmtefDDz1ISpLNjs7IyJBfl5ycSHp6GhkZGdn2XsoZrm7dJly96kdUVBSff/4J6enpnDlzjblzF9CuXUe6desNQLvOvckwslPoObS2ks1nWrtpk/xYkZ5jRXzfv8UIC4hA6ZTEEqIssn4hubvLJkBu3/4TY8d+gp2dY66hmXbtOrJw4VIWLPiUtLQ0HBycOHPmBPPmfYmdXUWWLFlA69btCQsLRUdHJ5fzs9JC0fkbJYlPGZiZVQTg9OnVuLm15N9//yYg4BYpKYncuXOIypVzu5xu1eoTnjw5ir19A+Ljw+Rb1WdSvfoIdHRM8fXdp/CERXUiKuomaWmxeHvPJz4+iNhYX6ysasvPBwVBWNhN/v67FQAffPAafX2LIgzTQOXKTZgz5zSHDi1j9+75pKQk8uGHv6OtLVs9VNz3XlHvm4Imf2eip2fAjRsnGDjQlvr1O9Cp0ygaN+5CrVrNsLNzRUNDA21tHW7fPsvy5SPw8GhL27ZD+PLL/qSlpaClpU1aWipubg1wd2/Bo0fXiI5+JY+/eXMruYUS4JtvfsbQ0IiPPhrDixeB8uFTvTy8n+bXf1Wt2wITE1NiY2Oo37otCxYspUOH3BsvZr0+34+ykmw1Xk4RfkAUQF38gKgUBfdCKQoFfQkU9Lwp21xsbw/Pnz8kNTWFGjU88gyTWeyff/6OefM+lh/X0NDA0NCQ+HjZ5DkDAwNsbGy5d8+31PKXX90UVi/h4S9YvHgIw4d/TqNGnQuMS9lIksSePZ9z4IBs4zsrKxdsbKoQExNCx44rqF69W57XRUUFYGBggZ6eCYcOzeDixe/R1jZk2LBnGBlVLJW8ldVwxLlzzYiMvCL/u3v3aFxc3vQvt2+v4tKlmfK/PT2X0aDBnHzjK+zR3LdvMNeu/QXAb7/FoadX8HwmZZFfPlNSkrl+/RiPHl3j8uX9+Preo0qVegwdOo9mzXqhoaGBjo4uXl57WbhQ5oejYcPO3LhxnNq1W9KoURfMzStw/foxgoKe4OhYDXv7qrRt25rg4EBCQl5QqVI1wsOD6dSpP82bV+HXX3/ik0+m0q5dJ3R1dRkyZAT9+w/OO4P5sHz5Ir7+egFNmzbH2/seN28+wdbWrtDrFBpCN1FsCFb4ARGUX4ryViqqU4EsFNcSooz5IFl5+RIMDGpSpQCnjJlj85MnzyAy8jUrVy4G4Mcf13LjxjVmz/6M1au/55dfvqN589b06NGehg2bULu2B5UrV8XW1o6RIwfi4VGfHj365vmVlDO9gvKrSFgfn5fcv+/FlSuXsbMrOD1F0yrusJiGhgb9+y+mYcN+hIX50KBBH7S0tBk9WoMtW7qzeHEampq559aYm7+Z29G160qqVOlIWlq1XOLjzp0fePBgNQMH3kBHR7UbnxUXc/P6cgHSuPFf6Ohkf3FIkuxrvX79T/H2XktSUniB8RX2aLZosUguQAID71G1aun63VCU/Kwhurp6NG/ei+bNezFmzFfcuXOOHTu+5quvBuHgUJUaNZpibm5D//4z6NhxOCdPbqNjxxFERYVw/74X/v7e/O9/37Ngwe5cFrG2bd/8Pz09nXv3rjFlyi9s3fo9AweOZ8OG4u+0bGhohIGBAWvX/k7z5nUZNqwfu3Ydxvy//Zfym9ejjosIVI2wgCjAW2UBUeYnsIKCpKwsIYpqJ0W8Su7d+zdpaWkMHPh+tvPe3g9o06YhFaxlQzBBL2RzQjQ1NcnIyMDGxpbw8DAWL15Jo0ZNqVOnHoaGMvffGhoaRbJ2FNaU6elpvHr1CHv7WgVOii1OvZbG/JyXL2HePNmL4vPPX2NgYKHQdXmV29t7PWfPjmfECD9MTIq2V0xZWUCio+9x8+YokpOD6dIlEA2NNwKsYkWJDRssSEmJZvDguxw61ANn5y60bVv0F2XWe/327R389dcwpk69i51ddj81ZbHwQpEu49Gjaxw4sIZXr3zw9/dGU1OLn366goGBCWZmsjkYN2/6cOzYF5w6tR0zM2sSE+Po2fMjJk78Vi5GKlaUOHv2IL/8shBv75sYGhozceJnfPDBbIUmjeeV16AgCA4Oom9fD6yt7fj442XMnj2U1q27MX/+T1hZ2RQaRyZ5CpG33AIiBIgCvDUCRFX29xJ45YTiDzkoEkdO8stqYZ1xftetWfMjn38+m9f+/hgZGREeEcHNJ0FcvuxFz559qVy5KjNnTmLTprX/eUzVQ09Pj6pV67BmzSFMTLJvIpef8EhKiuP160Ds7KoTHFx2c8mL+9LKLFemAMnPApIX+bVtWloi2toFe6AtLD/qQmLiS44dk01kNjauSVzcE4yN3Wjd2gtdXat8ryusPSpWTOXrr23w9PwfnTt/XeR8FdcaWdznKSeRkaFMntwEQ0NTfvzxMhER2YeRfH33cOvWKQwMjPnzzxXY2MgsaBkZ6SQmxhEfH02dOk34+ONleHh4oq9fvPslJ0+f3mf48JZoaWnTqVN//vlnCyYmZmzdeh5X19yb2SksRIQAEbw1AgSUL0JKKD6gZAKktPbqyEQRa8gff/yOt/c9OnToQq9eHWnevBUXjx6Sh8urvJGRkQQFBXDw4DnCwl7x559rqFWrAZs2nQYKtnhERATy5ZeNiIkJpVatPgwbtgdJylD4BV6aFEeAZC3bF1/ok5aWzJIlindDpX0Lq5v4AEhI8Of48UryvzU0dJGkFN57LwQ9PZv8L8xCfm3j5TUDb+81DB26ixo1euQdSEmUxp41p097sWRJK2bOPEqdOl3yjevy5QPcu3cBHR09NDU10dc3okqVevTqVbzhyMJ4+TKArl2rMHr0TEaN+phhw1qgo6PL3r130NDQIDDwOU5OVbIt4y9000AF/QsKAfIWIwRIIRRxLoi6CRAomQipW7cyfn5vJp1eunSH2rUL91eQNa9HjvzJzJlD+PHHPTg7V0VLqzJaWtrExr7GyqpitrB//z2XM2d+pW/fL9m+fRrW1tWJjPTBxaUVzZtPxcmpKSYmhU+CK4i0tBS0tQt2plZS6wfA69e+pKTE5RoOKIzSvI3VUYCEhBzj8uWuWFu3JzxcJkqdncfRoMG6IsWTVxulpSVx/PgggoJOMnPmE8zMVLsEtKjWkJSUJNatW8nr14Ho6OgTFxfOlSt/MHHiH3h6DlE4nqLmozgMGeJJXFw0a9Yc4vLlkyxcOIHt2y9y7941li2bgZtbbVau3EG1atnv93w3rRQCRPBWCZCcKOONXQDFFR+gXAECxRch3303mXXrfpH/ra2tTd269enatQfDho3GySm3k6yc+UxIiGfQoEb4+DwCZPNB9PQMSEpKwNm5BlZW1UlMjMbW1o1r1/6iefMRjBjxE4cPb8fX9zympvZcv76B6OhA9PRMsLdviL6+KQ0bjuPu3R1ERDwlJSUeScogIyMdSZJtDDdq1GFsbLLvb7Fnz3iuX1+PgYEln376Qr55nKL1URh5tWNGRnqRLTjK2jRNHXj1aj9Xr8r8Utjadic8/DTt2t3F2Dj/XZrzI6+2Ont2At7ea3F27kaPHodU7oaiKPfP1q2TOH16NZUqNSQtLRl9fRMqVqzB0KHfyzc0LAhFy1YagsTH5xHjxnUmODhQfmzLlqeEhPjzyScd5ce6dx/K119vytNjctb8CgEiKL4AKe3xAFWihGW4oHwBUlgchVEcERIfH8fjx8cJDAxAT0+P9PR0Ll/24vDhf0hKSmL79j307Nm30LylpKTg7/8Uf/8YAgIeER0dhrGxBbdv3yQ83A8DA1P8/W9SoUIVJk7cgbGxZbY6ycjIICrKHy+vb0lIiMDP7zwpKfEkJUXj5NQUCwtXAO7e3Sm/pkmTCfj6nmPcuDNyq8nmze/x5MlRKlSowcSJlzEwMC+0DopCznY8ceJzzpxZzMcfP8HaWvGdRlUpQO7fn01GRip16nybbbKoIiQnh/Hw4RfExnrj4DAQV9dJhfotkaQMnj37jtTUCNzc5qCjY1Zg+MLI2W4HDnQhMPA4FSo0pHnzldjZtURLS0el3Y+i99I//yxi374vWbbsMba2RRdgmRS1bEW517PeQ4mJ8axePZ0jR9bTtGl3vv76IADe3lf45JMOcmdqS5Zspk+f3P5vsuZXCBBB8Rr3Yf6eCxVCXYRIKaKIW/GyFiBQfEtIzms3bVrLtGkT2Lv3GO3bd+LFi8KdZRV1tUtBdfL48WG2bOme67i2tj4ODg3x9JyEvr4Fe/Z8wMiRB3FwaADwn0fJePT0srdXaZmsc+b5zz+H8ezZCSZPvlnk4YCStrUi95QkSZw8WZ34+Kd06/YaXV3FVuvIrs3Ay6stEREX5Mfat7+HqWntAq5SDpntl5oaR2DgCY4e7Sc/16nTH7i5vRnOUCchkpwcz6efVqd27c6MHbuxxOmVpGyK7hfn7X2FVavGM3ToPNq3f7NS7uLFf1i4sK/cc2/z5r358cftGBrm7ZNF0c13hQB5iykTAQJvlQgpjT1NVCVAoHREyNmzp+jduxOSJKGlpYW5uRUVKthTp05jOnbsR6tWXeXX5Fc2Rdys54ckSezcOYT793czevQRUlLi0NTUxsGhEaamb/xoKHO+R36U5rBHcds7IyONx48fYmzshpaWbJgpPt6X6Ohb2Nv3yxY2NTWWlJRQjIwKcBaTB9euDeTly10AWFo2p1KliTg5DUNDQ/Url5KTQ3n6dBrPn/8tH4IDqFixFX36nM03TyXphi5c+JZz55YyZ04QOjqyCcevXt3Gzs4j29BeYffXwYNL2bt3AePHb8HT8/2CAyuIqrvXV698sbCw5f59L77/fgLBwX4ArFhxkgYNOmBvL3tmT5/eT4UKFalVqwF16ijmqqu8ChDhiEydUcR/sUApFLQpWEGb2mW9tm3bDty968OJE/8SFRVOZGQ4wcGB3Lhxgb//XkfLll3o1Kk/1tb1kaQMjh7dRECANzY2zujo6FOhgiPW1k2pXLkJxsaWeaZV0LJIDQ0NPDyGcu/eXxw4MJlq1d7DyKgCAQGXef3aB39/L2xsatGy5ce4uXUpl+7Mi0pk5CMuXvwYY2MngoJOERPzHIDWrS9hbt6YEycqA9CnT/bvMh0dE3R0covotLR4tLQM86y7V6/+4eXLXbi4jOXFi7+wtm6Ls/MIJZSqcNLTE7lwoQ2pqa9p0WIV9vatefHiLBcvziAs7EaBgqgk3VBiYiQJCREsWGDAe++t5PTpRSQnx6KtrY+zczPGjj2FhoZGoc9U164zCQq6z6+/DiU2NoxOnaYWPTM5UGX3+vKlD6NHVyMjI50ff7zEtm2+vHzpQ2hoAB4ebf4LA3FxMUyZ0geAWrUacPjwHlwK22W3HCMsIApQZhaQrJRjEVJaO7oqww9IYZTEElIQx4/vZsOGFTx4cF2+YZa1tQN16rTi1SsfMjIyePHCh/j41wA4OXnQvPkI2rYdn2viXWH1EhBwmWvXfsPPz4vk5Bh0dAwxM3PC0bERfn4XePHiBiNG/EPNmr1KvZz5UdoTPxVp74yMNH79VRfI3eU1aLAZZ+dR+Ptvxty8AWZmha9ievHiL/79dwhGRlVp1+4m2trZPbDeujUOf/8N6OqaYmTkiKfnGYWX0JY2Dx8u4MmTpbRvfwcTE5ldX1PzKnv2eGJlVZf+/a/IfahIkoS//yEcHNqho6OYu/b8npO4uDCWLHlTZisrN+rVG86LF//y6NFBDAwsqVixHu7u/bCwqESzZq3ynVgqSRJ//TWHI0dW0q3bHN57bxYmJqW355Iyu9jw8JcMGSLz61KvXjs0NbX44IOvMTIyw96+araluX/+uYJ162Qu901NTZk/fz4TJ04s8N1TXi0gQoAogFoIkEzKmRBRVHyAegoQUN5yvpcvISkpAT+/B8TEhOPu3gIjozf3V2CgREjIM54/v8KdO4e4cWMPuroGtGnzIc2aDcPZ2UP+9VhcJEli0SJzXF3b0KHDAtLSkrl8+Wfs7etTr95wTE0rFlq+uLgInj69iK/vdXR1DWnWbBhWVk7y8wEBd7C0dMpmxSlunl+9usuDB3to2nRitqXGkiTJ59iEh98mKek1+vpW6OiYYGrq+p8fhpMcOCDb6t3Y2JmEhFeYmTWkWbND6OpmtzCFhZ0mKuo6Zmb1qVChY54WjsDAbdy4IbNodO7sj6Hhm9VOaWnx3L7dh6Cgk+jomDB8+HMMDCoUq8wlFWspKa85dsyJypWn4O6+7L9jkZw925iEBJkFSFvbiL59L/Dy5Xlu3lxCYmIovXufwcGhbaHxJyaGoaWlh65u9r7Rz+8Ahw+/EbWzZ/tiZuYs9zrq63sBX99z+Ptf4Nmzk0hSBnp6prRuPYbBg1fKN8zLiiRJHD68gj17PkdX15APPthA48b9i1s1eaKMLjYlJYlu3QwwNDTFyMiMsLBA7OxcCQ72pVmznnz11X55WJnQWikXIQDGxsasWrWKcePG5XkvCgHyFqNWAiSTciJE3gYBAqUrQoq7nDgy8gUnTvyEl9dmYmJCMDAww86uGrq6FbCz88DY2BZtbT10dAwwMamItXV1zM2diYry5/793cTFhVC9end0dFqjoaGBoyPExLxk2TKHbOmYmjqQkBCBgYEFAwZspk2bzty6dYBDh5aRmppIw4b96dHjU1JTk4mJCWH27Mrya7W19bCxqYK7e0fi4iIwMDDF1/cGZma2TJ/+ppMNCEjm8uWfeP78NJKUQeXKbXF0bEKlSq3R0sp/ZHjhQhNSUuKwsHDF2tqN+PhwXr9+TlJSNK6ufQgLu0FcXGC2a6pVG06VKgM5cqQ3jRsvon792Whr6xMUlAJokJGRSkjIYYyMqmJqWhtNTW0uXGhDRMR5IP9Jo5Ik4ee3Fm1tI5ychsuP29gksXbtGw+bfftepGLF5vmWqSQoci89ebKchw/n06GDN0ZGVYiKusWlS51ITY3KFVZLS5/09CQAPvggAn39vIf+MomLC2LrVpnYNDOriq6uGdWqDSc62gd///3ExvpjaVkbT8+ltGyZv9OztLRkoqICuHlzM+fOLaNFi+mMG/dtvuFjYkJZv340z55d5scfQ/MUKyWlNLvY9PQ0unTRwdW1Dl26jGHt2tlkZLyZhzNx4ioGDJiR7Zpr146yY8ds7t+/Lz/Wv39/Nm3ahMl/y2NOnTpFdHQ0HTp0wNzcXAiQtxG1FCCg1iKkKMIDFBMMRf0SVEcRUhoTaVNSknjy5Dx+fjcIDX1OSEgwr17dIjExirS0JCQpQx5WR8eA1NREdHQMMDCwICbmJVZWHtSu/RGtWw/i9WsffvmlkTy8rW1tJky4SEpKHMuWOWBmZsfYsRv57rvuuLg0wMDAjIcPT9O27YfcuLGHxMRY0tKS5debmFQgNjZM/i+ApqY2U6fu4dKlbdSp8x6vXj3izJl1pKTEUrlyexITI3nx4jqSlIGVVVU8PSdTqVIr/P0vEhrqjZ1dXerXH8H27f149uyEYhWYBVfXPjRpsog//6xL/fpz5V+QUVHxpKSEERp6jJSUCAAsLJrSps0VEhIC8PVdg66uJVWrzlJ4foy9PQQEHOPgwa6Ym1enR4+jmJpWKnKei0te95eXVzvCw8/+95cGsiGoN/+2a3eLjIxk0tMTcXdvRmTkQ/75pz36+pZ063YAC4sa+aaXkZHOmTNjefx4S75hevc+h4NDa/nfhT1HFy58y5Ejs5g06QYODg3yfa58fP5l0aImzJ/vhZtbi4IjzcG9e8f444+PmTnzCFZWuf30ZKW0ulk/vwcYG1tgbW3PgQO/8cMPE7OdHzNmHc2aDUNX9414HTYsjfXr17NgwQJCQ0MBmDVrFitXriQuLk4uRObOncvSpUuFAHkbUVsBkokaCZGiCo9MyoMAgZKJEGWt4skZb1paCrGxLwkJuU94+FPMzZ1xc+uMrq4xV66c5O7dHwkIOAzIdpuNjPTDwqIStWsP5PLln9DQ0ERLS4+kpCg6d55BSko8V67sYPXqKA4fXsHu3fORpAwaNRqAs3M97t07ytOnXtnyMGzYj5ib23P37mEuXNhImzbjOXfujRdPPT0TPvroqtwJWnp6Gi9f3uDSpR+5e/eP/1YO6WBkVIGYmIIrzsTEjkaNxnHmzGJMTCrh6NgJAwNrzMyqIkkS9+//Qnj4rf/SNUdX1/y/K43Q0THDwMCZpKSXREScx9V1Mh4ePxWtAcje7pKUQXJyJPr6+e/ZoizyusciI68TFfUvurrWpKZGoaNjhomJO1FRN9DTs8HWtmuua4yMnnP4cC/i44Po2fMEtrZNCkw3NjaAjIwUEhPDuH9/NU+ebJOf6979MC4u72ULX9BzlJaWwurVjUhOjmPy5JsYGJjn+VylpiYzaZIldnbVmD79AJaWivWDL1/C+vUd8PE5zdixp6hSpb1CHw+KdLOKPru7d3/OgQOLMTOrSHT0K/nx5s1H8OGHW+V/j/rPTcjx48fp3r07aWlpzJ49mxUrVgDg6uqKn5+fPLwQIG8hai9AoExFSHFFR1aUIUAUjbeoFEeEKHv4qKjDOvHxr/DzO0B8/DWuX98AwLhxZwkKusrRo3MwMbEjNjaYmjXb8/ChzBX42LEb2bDhAwwMzKhVqwNTpuwGZEMRq1Z14969o/mm3aBBX27e3EvLlqPx8toMgK6uEebmLqSnp2BrW4fatQcgSRmcPv0lERHPqFq1E1FR/oSHP5HH4+4+AAsLZzw9J5OSEsfLl7dwc+uCiYktkZF+mJhUJDhYD4CkpAh27WqCjo4xDRrMw87OE2NjZzQ0NJAkiSdPHnHjxiiiov5FS8sId/fluLr+r0irgcpiB1lFKI1JvtbWMRw40JWoqMe8//5DDA0Vn0B7+/YqLl2aiaGhHe+9tw9b26a5whT0HEVG+vHjj3Vp0GAMPXv+ID+es76fPbvMd991x9NzGCNGFCwcs9bJgQPTuHz5R0aPPkq1am/2k8mMX5IkUlOT0NbWU2in3KISERHIzJlvLC+amtpkZKQB8OOPoZiayuYLjcrip0ySJF6/fo2+vj5GRrLJwVOnTuWnn96UWwiQtxC1FiBlJDxKQ3RkougLt7idqqqHYkBxh0WFUVJrSEFxZpYjNjaEkJB7VKnSgaCgfzl8eCZduiwnLOwBlSu78O232Tf8MjOriJ6eIc2bj8DH5xphYT68eiVzIW9l5UzFijVISUnAwMAcHR19OneeRpUqzQgOfkTFijXYv38Dfn7nsbGpRWxsMFpaOgQEXCYg4DIgc5RmZ1eX6OgAXFxa4en5P4yNbTE2tsHQsHCrgiRJnDq1hStX5pKRkUrfvhexsJDtSBoT48ezZ39y5853JCaGYGrqSrNmK3B07ISeXm5voznrU10FR0EU9f7LWsa4uCD27m2JlpYBXbvuwcKiOmlpSejoGOZ7/atXF7l1azl+fgfo3/9qLuuJol3W2bNLOHVqIc2aTaVKlfZUr94tV/4Atm2byuXL2+nZcz6+vv8SExPKkCHf4OJSXx4mLyvhzZub8fB4P5fDPYBDh0Zz8aJsWGny5N00atQvV5iSkp6extOnF4mNDad69dbcvXuY8HA/evacj5aWNhkZGRw/Poxbt27h5eWFtbVsxc8ff/zB0KFDWbhwIa1bt6Z9+/bo6emRnJwsBMjbiNoKEBWLj9IUHZkU5QWryhd5QRRlb4nSWm6qqnrKSWZnn5GRTnR0MAYGZty/f5xdu+YRHu5LtWqtsLauRMOG/XBwcMfKyrlAC0JgYCqpqQm8fu2DvX39bOeiogLQ0TFEV9c4z/1nCiMg4Aq3b2/D23sfMTEvcHN7H0/P5ejrW3H//s88fryN16/voaGhSa1aH+Lk1Bknp84KLzV9G8jv3ihIWEVFPeHw4d7ExPigo2NESkoM1tb1AJmVKTExFBubJtSoMYanT3cQGHgMMzM36tefQ61aY+XxFLW7SktL4cCBKfz771rs7OoydeqdPPMaFubHN990JiLCHxeXBvj736Jp0yGMH78ZkA3VbNs2BROTujRoMBp9fWMK4/r1DezZMw4ATU0tNm5MK1rmS4HExBimT7chOTmZ58+f8+jRI2JiYvDz82Pu3LkAXLhwgSlTphAVFYWfn58QIMXh/PnzrFy5khs3bvDq1Sv27t1Lnz595OclSeLLL79k7dq1REZG0rRpU3755Rfc3d3lYR4/fswHH3yAv78/H374IV988YX83K1bt/j888+5du0aMTEx2NnZyePIVJUFoZYCRIXiQxnCA1T/UlWFb5CslKYAyUTVdVbQiykjI6NQ83R8fBR//jmb27cPkJAQTVpaEpqaWmRkpNOlyzJatvwYLa2SrWBIS0vhn38+4saNjZiYVMTDYyg1a/bC1bU1N25c48SJ94mPf4Gra1+qVBmIjU1jTEycCo/4Lacw519ZSU1N4NatFSQnv8bMrCoREXfR0NBGT88CfX1Lnj37k7CwG5iZVcXTcxmVK/fFyal0hi7++GMIPj5nGDlyP05OTQu9Jz/80ICuXWcyYMASAB4+PMPy5e3lYRwcGtGq1Wzq1h1UYLpBQde5f/9X3Nxa0KrVmFIpS1EZMCCetLQ0IiIiqFJF5oXXw8MDc3Nz0tLS2Lx5M5Ik0bVrV3x8fMqdAFELT6jx8fF4eHgwZswY+vfPvaZ7xYoVrFq1is2bN1OtWjUWL15Mp06dePz4sXwW8KRJkxgxYgSNGzdm4sSJdOjQgRYtWhAaGkrHjh3p2bMnx44dw9zcHF9fX/bv309CQoKqi1o6qEh8qIPwKE0yq01V6Stjl9WsTV9YOTI76pLko6CXlCJj415emzl/fj0NG46hYsV66Ooak5gYSWDgVY4d+5QnT47Svv0XVKnSrlj5kySJP/98n0ePDtK37zoaNvxAnq+AgCvs29caa+sG9OhxFHNzxTe6U2cKe/wVvb+LMpyko2NIkyYL881HRsZMIiKeYmFRCW1tPcUjVoDu3b9j27be/Pprczp0+JL27T8r8J6sVKkRhw4t5/7945iZ2WFvX5tq1Vrx5IlsP54XL66zc+dgatbsiY6OQd4RAY6OjXB0XF+mw26Zcz1ev5Y5JBw8eDAxMTFoa2tz8+ZNPDw8+OGHHzh9+jSVKlUqu4wWE7WwgGRFQ0MjmwVEkiTs7e2ZPn06c+bIHLMkJydja2vL8uXLmTBhAgCNGjXil19+oUGDBgwYMIAJEybQrVs39u3bx8CBA0lMTERbu3h6S60sIO+g+FDGi1xZO+aWBcqawJtJSRytRUQ84+efG5CcHIuxsS0GBhZ06rSY2rX7c+bM13h5rSIpKZJhw/ZQq1afYqRxm59/rs/gwTvw8HizR0ho6CPWrm2FkZE1U6bcRltbT+XCt6zvk7IYdlQW6elpnDmzmNOnv2TQoG106zYs37DJyQlcvryNx48vcPmybDXO4MEr0dDQ4q+/PpFP9pw1ywdzc2c0NQvf3bisREjWSah9+/bl+PHjdOrUCRMTEywsLHj48CEnT57k5MmTdOzYsdxZQFS/I1IR8fX1JTg4mM6dO8uP6enp0aZNGy5duiQ/tmjRIjp16oShoSGampp06SKbOGdnZ0daWhp79+5FUa2VnJxMTExMtp9aoIJeIBYTtRIfyqKsO9TSxNFRsZU5JRESRQmb+QOwsqrKjBmPGTjwd5o0mYClZWV27BjA+vUdaNFiOvPnh9GgwRi2beuLn59XwZHnwZMnRwBwc3szUTYw8Brr17fF2NiWCRO85F/kqmpzRdpDlfkobl4UuT4tLYX4+PDiJVAEtLS06dhxIe7u/di/fzKXL+8gIiKAmJiwXGH19Axp2/ZDhg37Xn7Mza0lXbpMZ+PGVCpVkvkk+eabyixebEVsbEih6RdXwGd9HnL+isq2bduYNm0aycnJBAQEsHXrVk6ePAlAWFjueigPqMUQTEEEBwcDYGtrm+24ra0t/v7+8r+7detGWFgYMTExVKjwxuWxp6cn8+bNY+jQoUycOJEmTZrQvn17Ro4cmSvOTJYuXcqXX36phNKUACX3aMoSHZkUV3wow/qRiaqHZAqjpCtnHB0VG5YpzTpVJC5T04rUry/zFCpJEg8f7ufPP99n27Y+uLsPwMhINg/rxYvrVKrUUuG0z51bzvHj8wG4fXsbKSlxPHx4gJcvb+Lg0Ijhw/fmWjWjSB0VB3UQHAWhyNBdccqwcWMn/PzO07LlTLp1+6Z4mSsCffuuY+fOIfz22xsLiJOTB5qamlhYONK48QDMzOwwN7fH3r4m48dvZcuWCSxe3AwHB3ccHNyxtHTFz0/m5TYpKRo9vcInpUL+w5ElESdFwcjIiCVLlsj/jouL4+rVq1SoUKFcDr9AORiCuXTpEi1atODly5dUrPhmC/Hx48cTGBjI0aP5+x7ISkREBKdPn+bKlSvs27eP169fc/78eerUqZMrbHJyMsnJb7w7xsTE4OTkVHZDMO+o+ADlCpCsKJrHgpoiNDSQW7dO0a7dEHR1i7aKozQcmGVFGcMypTGnJJMnT45y8OA0wsOfoKtrhLt7f/r0+TXbmHx09Au8vfdSs2ZvzM1zTxqdNy/7ahstLR3c3ftjb98AT89J6Ormv1RU1ROSlU1x2qagHZ8V5c6dP/n77+E0azaF7t1XlSwyBZEkCQODF/j6XicpKYa7d4+gra2Hv/8NgoLeuC3X0dHHwsKBbt0+wdLSiVWrusnP2drWoX79EWhqatGy5ccqyXdx+G+xS6GU171g1N4CYmcn23AqODg4mwAJDQ3N14KRF1ZWVgwcOJCBAweydOlS6tevzzfffMOWLbldCOvp6aGnV7oTqYqNEns4dRYeoDrxAaVjDVm9ehpeXnsxNDSlVSvF/AYoMixSHMuIIuUp6kurNNujWrWufPzxY+LiwtDVNURXN/tS2NevffnmG9keMzExL+nSZUm28zdvyrxFVq7cjgYNRhEfH0bt2gOxsFBs6/KSWELUQXTkd98UpU1LoxwODg2YPPkmFhauZGSkKzSfoqRoaGiQlORIw4ayArRoMVJ+Ljk5gdjYMMLD/QgIuM2zZ5fYvHkCrVp9QMOGfblxYy8ARkbWNGs2ucBJqALlo/YCxNXVFTs7O06cOEH9+jK/ASkpKZw7d47ly5cXK05dXV2qVKlCfHx8aWa19FFST6fuwqMsKcmLaezYpTg51aB+/Q4KhS/OnIyiihFFh2UUja+0MTbOe4dYAwNzHBwaoa9vhqfnJPnxwMCr/PHHYKKiZMOvsbGvaNBgVJ5xFIY6CAlFKeq9oqo2PX16Ebdvb0NHxwgDAzOmTLkjH1LLmpfibKNQnPbR0zNET88Fa2sXatRoQ+fO03By8uDEiR+IiQnFwMAUF5eG+Pldz7ZnkqBsUAsBEhcXx7Nnz+R/+/r6cvv2bSwtLXF2dmb69OksWbIENzc33NzcWLJkCYaGhgwdOrTQuA8ePMjOnTsZMmQI1apVQ5IkDhw4wOHDh9m0aZMyi1UySrl3FKJDcYprDXFyqs7YsUsKDVdaM+oVFSOKlqcshUhODAwsmDTp31zHHz48IBcfVat2ZMiQnarOWqmQkPCas2e/plmzqflabYpzn0REBOLr+6/cc2dpeeTNL0/Nm/fC23s3KSnxpKbG8/LlP7RpMzbP68rqvurZcx49eswlISEKAwNTNDW1kCSJV68Ud7kvUA5qIUCuX79Ou3Zv/AB8/LFsTG7UqFFs3ryZTz75hMTERP73v//JHZEdP35c7gOkIGrVqoWhoSEzZ84kMDAQPT093NzcWL9+PSNGjFBamUpEKYgPZQsOUK7oUIeXoDImLCprOZ8i4kHR8qiTEMlJ8+bTsLCohItLS2xs8t+ltSyIigrg+vUNtGgxAwMDc2xsUrl6dScODu5UqtSAV68ec/nydpyc6vLvv7u4du1PrK1N6dNnQanlYc4cN9LSktmwIRUtrezde1HbVZF79dWrh+jo6LNgwXX++WcR27dPoWHDvhgbW+YZX1H3LCotNDQ0MDKyyPZ3WYoigQy1m4SqjqjUD0gJxEd5Fx05UZfOIefeKcVFFb4ESruDV3UbFMf0rg6CKTk5jg0bOhIUdBUzMzscHNwJCLhNXFwEALNmHWPNmiHEx0dmu65evV7Urt2JZs2GY2RkXuR0s9bV8eNbWbFCNhy1eXPh3XpmfZXkvty4cRx+fjdYtOgWr18H8fHHTkycuANPz/cLvK6wtlLkPiiN50mReyY8/Am7do2mWrVutGo1E21tffbu/ZDr19czYsQ/1KzZK8/rcj5nxek/8pqEmpKSgq6ubrZj5XUSqtr7AXmnKMYdmum3QxVDLKoeZsn0XVESHxalQXmaK1Ceyby/irMBX1mL1Vu3VhAUdBWA6OhgUlISadiwHx9/LPNTsnXr/xg16tdc192+vZ9t26awZs2QIqeZeV9KksSiRYPk4mPbNl+FN0ws6XP18OEZ3NxaAGBp6YipqQ0hIc8KuarwdAvKv6r7g4yMDAICLnPy5OcsWGDI3bt/cv36egDCw5/meU1e93Bp9J+PHz9GT0+PChUqcOXKlZJHWMaoxRCMQL1Rl/kdOTudsn7plDbq5pdElZTHMmfejykpiezf/5X8uIaGJr17f4GTU102bPgAgG7d5tCkySAqVWrI/fsn0NMzYt062eqNSZN28csvA1iwoAGNGg3AyakuFhYOODvXy3Njv+w+PZ7y7Nktzp//G4DffruNnV2lbOGUVbcvXz4iLMyH2rXfOInU0tIhPT1VoeuLY7kqTeGhaLo2NjVo3foTzp9fAcDNm5v56qtUJCm91N3OF4aZmWzH5vDwcJo1a0afPn3YvXu3SvNQmoghGAVQ2RBMET+1VTHkAuXv5aCuwqQoX33KdNymTkMwBeVFHS1PebVhfHwUkyZZZDmiAUjo6Oijr2/C2LGbqFeve67rvvqqGXZ21Rg/fgsXLmzi7t0j3Lixh4yMdACcnOrSs+d8qlVrha/vvzRr1hBrawcAUlKSWb16GgcP/kaLFn3o0uUDnj69jqNjdTp0yHtyfmk/x4sXt+DZs0usXZso93uzfHl7AgJu4+k5jCFDvkFHR7EXdGH3WWlbPIpzX0uSRHx8GEZGFQrc8TkTZQ3BpKWlcfjwYXr37g3IXFLo6emVyyEYIUAUQCUCRIgPlaJqkVIck7Oy9s1RNN6yFB+ZqIMIUeTlFx8fiba2LomJsWhoaPDw4WmePTtMRMRLHBzcmD79V5KSEpAkiZs3n/D06UW2bZvyn4OsAHk8iYkxJCXF8eLFAw4c+JrHj8/Jz1lY2DJu3DIiIl6xf/8vhIe/AKBu3TaYmlrh5bUHbW0dli49Su3aLdHR0c2VTyitoYDzLF3aBsg+3yQiIoCFCxsSGxvOd98FYWHhUKR487rn1EF8FAdlCZBMYmNjSUlJwcrKqtzOARFDMIJ3kvIwA15ZbsPVAXUtV3FfdpkrLPT0jNDW9sPIKJGTJ2Ubod26dRovr73Ex0eRlpaabU+qdu0GZIvHwMAUAwNTLCzscXfviCQ95vnzO9jYOLF9+2JWrhyDpqYm7703jmPHNpGWlsrduzKR4uBQlfT0NGbP7kCrVv1ZsGBXnnkt7tBM1hfoDz98i7m5PZ9+ejZbGCsrZxo1GsClS7+jo1M0b8CQ/blUxjwPVTs3VOZ9rsgqUHVHCBB1QFg/ygR1ESGl+ZWvLmXKj6LeU6XhLjw/SvMFl5nHly+fM3JkdfkwyubNj3nw4BJhYUEYGZmioaGJhYUtr18H07hxFxwdq+WK602ZNYAaODvLlhsvWXKYqKgw0tJSsLZ2YNSoLwkO9uXTT7uQkBBL27ZDaNNmIB9+6MHr168UznNxePz4LJUr16VuXWdyLMigd+/hXL68lZ07x7Nw4Z5s5VIEZU0wVefn4l1FCJByhhAf7xZvkxVEncpRWi+5rC9xP78HjBtXGwAdHV1mzFiLo2O1PEWGonHmxNz8jedYS0s7LC3tWLfuPkFBT3B0rMbMmW1wcHDL9uJXBl26jGbv3h/Ztm0RH3zwdbZztWu3YMqUX1i5cgx37pzDw0M2VFMac5yKS1mJj8znVx2GEtURsQy3rBF3ZplSlst7QbHmL++3SEmXcKujM7ic29RHRobwww8fYW5egRkz1nLwYAKdO49SyZLR+vWd6dmzI0eOfEtwsB8rVpzEwkLxfbKKSmJiPI8fy7zUhoXl3Tjt2w/FyMiMK1cO5Hk+Z/29zbwr5SwOwgJSjhDWD+Wg7GGL0nrhlUa7qLpt1e1eKmlb5Pcy2bbtK7y9L/PVVwdo0qRrrnSU4SwtM874+Di8vI7y4oUfANWqWWCUZW+/0r63Hz68grf3ZebN20GzZj3zDKOjo0vLln25efNUgXGpYum5GHpRX4QAKScI8aFcymLuhDp/GZVGXZTmvVQaZuySiI/C0k5Lk/m+aNasDgVt0l1aQiQznrNnD/LZZx/w+nUYAO+9NxgjI5M8w2alJOmbmFj8F28VDAyM8w3n6lqHc+f+RpKkQpetKkuICPGh3ggBUpao8xvoHUTdJ3CWp/kg6pbP4oqPwh5RSZI4eXIbT55cIj09jZiYKGxtC196WtxN4nKWY/v2n6hQwZ7Nm89y9+5VOnfuX6x4ipKXR4+uoampia1tpQLDVapUm6SkeJ49u42bW32F8lWaQkSdn2WBDCFAygHC+pGbwl4MxS2LqkRIXvk3IRYouL3VXYQoM2/FtYIUJj6iol4REvKUqlWbo6WlXaQ0Hj8+wPLlI2nUqDWrVx/Azc292Pkr6L7LrwwaGpqYmlqwadM3jB//KT/++DmOjq4MGDAeQ0OjvC9SIC/58fIlnDy5jcaN38PCwqbAsGZmsgmzinpGzUpJhYiiz3Be8Zfld6E6P9vKQAgQQbmjJBM3Fd0Ntiy/nkyIVZnoLE3UsfPM64WalBRHcnI8Zma2JCREM3++O/HxkVSr1pIxYz7DwaGzQp4u7e1hzZr9uLi4sXXruVznc96DhdVPXvddYYKgalV3tm//iX//Pcu1a2fk80Du3r3KN9/8UUgJio6NTRqPH19j9uyVhVpxkpLiACiJr8uy2J4ga1qqECPq+NyoCiFAyhIFP+lU9UIqD3uRlLRDUHQpYGmJkKKY/mMxEeKjAIq7S25Ofv65P/fvHwfA1bUx8fGRdOgwiefPzzJ3bleaNu3OJ59swczMqsD4L106ye7dG/jww3kK5UcR61VRh4pevvTH2bkKjRu3YefOX3FxccPf/yktW3YtWkQKoqWlhYmJGU+f3s92PK98p6Y2pUIFJw4fXkfNmk1LlG5RLX+KPr/qMApeWl6QyyNiGW5Zo+CdlmmeVwXvyhI5VWz3nR/5NXth4qOw26U0RFNR41BH8ZGTjIx0/v57LvfvnyAq6o2TLl/ff2nYsC/Dhv3I+vX3WbToH7y9L/PRRw0ID8+/IjIyfJkypQ8tW3Zh3Lg5CuejNJ8rL69jnD69jz59RuPoWAUAf3/Z7qw//fRF6SWUBQ0NDfr3H8fx44VvgObiokvv3sO4cuUfMjIyuHbtCN98M5bly0eRkpJc5LRLS4CWB96VPlhYQNQBNbOEZFIeLCIlpbAylsQSUtodYEnbQRntqK7iI7PuX716jJfXJqysKnHo0DIOHVoGQPv2H9G//xLi4sKxsamCk5NsyKV58178+ustpk5txsqVo1m8+GCee6rs2rWexMR4pk9fgrFx0fbeKI15PMHBQcyaNYRmzToxYsQ0fH0fc+XKKV6/DsXb+yY9ew4vWQIFEBr6AkdHV4XCtmvXk/XrlzF1akMePbpNhQqOhIUFYWlpx/jxy4uctrIsIYKyQWxGpwDquBtuWZjpy1qIKPuLoDjWBWX5lcgLReq/oM62pNcXJ76SUtw2z2yXpUvbZtvQLZNZs45Tu3anfNO5fv04n33Wg2rVGvHFF7uwts7e0DExd+jXrx4Aq1b9RdeuA4uV7+LUYWpqKmPHdiQg4Bn79t3D3Nyy6JGUgI8+6kFaWirr1h1TKPz+/ds4dGgHnTr1o3//sfz88wLWrPmKjh1HMHXqLxgaFr0vK2q9lVcRUtBmdFkpr5vRCQGiAMVq3FOnivd2EiIkX97GCWGl+aIqrJMtTQFSHsQHwK5d8zl4cAndus2hZ8953Lt3DC0tHRo27FNoOt7eV5g6tRm6uvoYGBijra2Du3tLWrVqjY6OLs+fe/P77z8AcPVqFCYmZsXKe1Hr8siRP5k5cwhbtpylceM2Rbv4P0pi3fzppwXs3LkaL69QhSbr5kSSJPbv/53Fiydjbm7LzJkbqFu3ddEzwtsvRN52ASKGYJTJy5dFFyFFWGtYFhMWy2oZqKrGQ1VdPkWaW1UeUN828REW5ou390kAvLw20a/fIpo0UdxSkenOPCUlCQ+PtlSpUo97987z9ddTsoVzd29YrBdx1jwUpU4dHSsDsHv3Bpydq8r9jhSnzopzv1evXpfIyHCioiKwsLAucpoaGhr07j2SunWbMm1af+bN68ru3RHo6RkUOS4xJFO+EZNQlU1x7vYiPFEmxKp0giqU78lRitTXuzIBrDgoW3yURt0HBt7l1KnVzJ5dGR+fa4BsSWh6elqR4snc7wRkO9GOG7eUv/++SNWqMl8fnp4dAPjxx73Z5oEUVwgoSp06jfn55/V4eR2mWzc3Tp/egINDyZe6KkpsbBQaGhpoaJTs9eHqWp2BA8eTlJSIo6O20pzF5aQ8T0592xAWEFWgZEsIKObEqjRR5QTVkryQ8hMb6uT0q6CmVjT9kn7VKXK9KsRHSch8xFat6kZk5Av58T59FtK27QT09AyLnV5WC8fWrecIDPShRo16+Ps/pWJFpxLlO2d+FHGONXLkWPr0GcjcuTOYPHkc27ZtYvfuI+jr66Ojo1OstBVt31On9tGgQctSmXtib18JgKioCCpUsCu2q3p1sIQo0sUL60t2hABRFcUVIaD2QqSsJ6dmpajWoMKGscqyfKWVrjq1j7LIfLSePbtCZOQLtLS06dBhMsePf4+bWwvMze2yhVfkkWrRog8bNnhjZ1cp23FzcyvMzWU+QqpWrVUa2S9y3gBMTU355ZcNDBjwPgMHdqdTp+aEhoZibGyEhYUVmzf/iatr5SKlW9i9Eh8fx6VLJ5gxY6nC8RaEJGUAkJycmO14cYRIaYgQZVtHiuuC/21FDMGokuLeccV4g6hyaKYshysyy1mS8qrDkEzOJi5Kkwvrxxt8fWXDJs2bj6BXr8/YvFnC3b1jseLS0dHFxaWmfG6CIi+nsngW2rXryOrVmwgKCiA8PJSwsDBu3brOL798V+S4Csv//fv/kpKSTPPmnYuZ2+x4enZAW1sHL6+jeZ4vqiAoznBM1p8qKYs01Q0hQFSNCkUIqE6IKKvjLSje0ixXUeaGvGvzQ9RdfGTtxOvU6QLAhQubePHCWynpqSODBg3FxyeMDh26EB8vc4F++vRxbt++WeS4CqofH5+HaGlpUblyjeJmNRvGxqZUqVKTq1fP5BumOCKkPLVxWQkgdUAIkLKgJCJEjYVIeXro80PROlKGGMls2tK0fqjCc2pJKGn96ej48ttvw7l37xhPnngREREgP1etWssS5u4N5eHloKury549R7hy5R5bt/6NtrY2rVs3pEeP9hw9eqhIceXXLgkJ8SWefJqTLl0Gcf58wflTskcDteFdEyJCgAjypThDG+XxoS8pyhAh6oIy81PcevP2/gcdHV/s7eHSpW1cvrydb7/typIlrVi58o1zsXXrRpVSTssPGhoa1KpVmz59BnDx4m02bNhBcnIyQ4b04siRg3lek5GRgZfXOf7443cuXjwvP55X+1y4cJgWLTqjpaVVanlOTU3B0NC40HDvigiBd0eICAEiyJessysURd1eoKqiLDo6Vcz9UDeePj3Btm19+O234aSlpXLokGwyZJMmgxgzZj2NGg2Qh83LN0dx26k81pWOjg4DB77PsWMX6N69N6NGDWT37j9z7U47e/ZUunVry4QJI3nvvTbExub9wREZGc7NmxdLfaM7Y2NToqMjCQryLTTsuyRC3gWEABGUGqrea6So4kgRShKfKjs6VUwcVTfrh6npa06flm389uzZJSIjg2jQoC8A9er1ok2bsUye/DebN0ts3iwxfvyW0syyWkzWLQ6ampps2LCDbt16M2bMEFq0qMeUKeNZvfoHAgMDWLfuFwCMjIxYt24bxsZ5WyPWrPkKLS0t3ntvcJHSL6ytBw2agK2tA1Om9CUxMaFIcZdWHgRlgxAgZUFJbGtq+iQps+MtbOpLaQmR0ohDTZsnF+Xpi97eHsLCDrNgQX1CQ32YM+c0xsZW/P33XAYOlG0ut3btcAID7yk9L+VVhOjr67Np0x/8/fch3N3rcv36VT77bBbu7i7Uq9eQBQuWcPjwWXr27Jun5ejy5VNs2/YjH3+8HEvLCgqnm/k8ZJ0zlfMZMTIy5pdf9vP8uTctW9rw6NGdAuNUlcMygfIRAuQdQlm+QVTV4RaWTkmESGnWjbI7OlWIB3WwfmSOg9+/f5zvv++JtbUrX355k5o12zFs2I9cu/YnP//cXx7eyMhCSTnOTnkVIRoaGnTp0o11637n8uW7PHoUxJIl33L79g28vM7Rpk1jtmxZn+e1a9cuoV69ZgwbNrlU8pJTjFSrVodffz1MYmI8T57cLfR6IULeDoQAEZQIVXe0iqRXVCFSFpv6FZfS2K+lPFg/sr5gtm+fRo0abZgz5xQ2NjLHWp6e7+PkVFfu92PQoBVYWDgUGGdpvnzKqwjJio2NLR99NI1KlVx59uwJ3br1ok+fAbnChYUFc/36OXr1GoGmZum/MjKFyKBBHWnevBXbt/+ca55KXggRUv4RAkTVvEVTm9XdQ6giQkRZ4kMZnZyqhENZWj9yzv5PSUnk1atHtGw5Gk3NNysvNDQ0GD78ZwCsrJzp1m12iTaEKw5vgwjR0tJi3brtuLhU4vDh/YwcKZuompGRQVpaGpcunWDUqDYYGBjRtWvpzv3IiylTZnLv3jUSEh4V/eIiIESIeiAESHlCjZ4aRXdXzfpTdfqZ5LeaR9mWDzVqLoVRtxemtrYehobmhIf75TpXvXorJk3axdixG1WfsSKgbnWak6ZNm3Hw4GkOHjxNRkYGY8YMoXbtSri6WjNuXGfMzCz5889rpbL3S2G0aydbRn3lykWFnp+3cDrdO4XYC+YdoTRftsXd2r0wEaLk/fqA8jXckpXSEnBlOfyiiPUjJ5qamlSp4snNm/vo2fOzXEMAjRv3z32RClF0i6fi3KuqpnXrdpw6dRkvr3McOvQPFhaWtGnTnooVPYs89FLcskZEhANga1tRHk9h/U1JNpZT5aaagtwIC4gqeQuGX4orPhShOJaSEjiHLXI6xaE0XjrFqZPiUJadcEGPRqVKDfH3v4WX1+Zix6/Ml39pzMtRJ1q2bMPSpav45JPPaNq0uVLmfeTH3bu3AKhU6c0mesq2hGSmoe4C8W1ECJDygho8HcoUHyWNQ9nLgJWdhipQZ+tHfvj73+b8+Q1YWjpSvXrr0s1UKVIUEaIu95GytmYoSVf15Ils7keTJrV4+vRxqcRZFN7V/Z7KCiFA3gFKY9hBVeIja1zqYA3Ja5faoqZRks7sbZh4Whj5fb3u3buQhQsbYm5ekQULrmNrW1W1GcuCIu1elLZSFxGibvTq1V9ucfn996LN7SltA3NpCJGC/J8IhABRHeV4+EXV4qOk8ZaWECkoDlW8QNTNElTScfa8yO+xCAy8y/79i+jadSbz51/CzMy2eImXkJz30tsiQtTR+gFQpUpVtm79GwAdHd0ix62Mbrao4qEgwSHESHaEABHki6IvcmV/pZfB5sEKXaeOL/vixKcObZyTXbvmYWvrRv/+i9HV1Vdt4hR877wtIkRd6dhRttdMxYrFUxNl+a1XVKHyrqMhKeLx5R0nJiYGMzMzoqOjMTU1LevsCARvNTdv3qRhw4Zs2bKFkSNHlnV2BGVA165duXHjBuvWraNnz56luvtueSYkJIQjR44wevTobMfL6ztKWEAEAoHaEB8fz6hRo3B3d2fo0KFlnR1BGbF9+3bq1atH3759sbOzo1evXgQFBfH69euyzlqZMm/ePMaMGUNMTExZZ6VUKHMBsnTpUho3boyJiQk2Njb06dOHx48fZwsjSRILFy7E3t4eAwMD2rZty4MHD7KFefz4MS1atMDR0ZFFixZlO3fr1i169OiBjY0N+vr6VKpUicGDBxMeHq708gkEAsUIDQ2lR48e+Pr68scff6CtLdwUvatYWVlx4sQJrly5wsSJE7ly5QpOTk5YWVmxY8eOss5emdG2bVtsbGzy3bG4vFHmAuTcuXNMmjSJK1eucOLECdLS0ujcuTPx8fHyMCtWrGDVqlX8/PPP/Pvvv9jZ2dGpUydiY99MpJo0aRIjRozgn3/+4cCBA1y8eBGQdWodO3bE2tqaY8eO8fDhQzZu3EjFihVJSFDO1s8CgUBxAgMDWbhwITVr1uTBgwccPXqUOnXqlHW2BGpA06ZN+eqrr7hx4wabNm2iRYsWvJ8l0AAAGoVJREFUzJw5kydPnpR11sqEESNGEBISolLfLEpFUjNCQ0MlQDp37pwkSZKUkZEh2dnZScuWLZOHSUpKkszMzKRff/1Vfqxhw4bSlStXpJSUFKlXr17SoUOHJEmSpL1790ra2tpSampqsfMUHR0tAVJ0dHSx4xAIBJKUnp4u3blzR9q/f7+0atUqqUuXLpKmpqZkZGQkffTRR1JwcHBZZ1GgxgQFBUlVq1aVNDQ0pA8++EC6fPlyWWdJLSiv7yi1s3FGR0cDYGkp23fA19eX4OBgOnfuLA+jp6dHmzZtuHTpEhMmTABg0aJFdOrUicTERHr06EGXLl0AsLOzIy0tjb179zJgwACFNqxKTk4mOTlZ/nfmeNvbMu4mEKgKHx8fPvzwQx4/foy1tTWpqakEBgYCoKOjQ7Nmzfj2228ZOHAgJiYyfzXiORPkh4mJCSdPnuT777/njz/+YOPGjXzwwQf07NmTdu3aqXxDQnWh3D4zZa2AspKRkSH17NlTatmypfzYxYsXJUB68eJFtrDjx4+XOnfunO1YUlKSFBoamiveefPmSdra2pKlpaXUtWtXacWKFQV+aS1YsEACsv2MjY1zHRM/8RM/8RM/8VOHn52dnZSYmFjCt7BqUatluJMmTeLQoUN4eXnh+N8i6UuXLtGiRQtevnxJxYoV5WHHjx9PYGAgR48eVSjuiIgITp8+zZUrV9i3bx+vX7/m/PnzeY4157SAAEiSlEtdx8TE4OTkRGBgYLla+vQuINpGvRHto76ItlFv8msfXV1d9PVV7zOnJKjNEMyUKVPYv38/58+fl4sPkA2hAAQHB2cTIKGhodjaKu4d0crKioEDBzJw4ECWLl1K/fr1+eabb9iyZUuusHp6eujp6Skct6mpqXhQ1RTRNuqNaB/1RbSNevM2tE+ZT6WVJInJkyezZ88eTp8+jaura7bzrq6u2NnZceLECfmxlJQUzp07R/PmzYuVpq6uLlWqVMm20kYgEAgEAoHqKHMLyKRJk9ixYwf//PMPJiYmBAcHA2BmZoaBgQEaGhpMnz6dJUuW4ObmhpubG0uWLMHQ0FAhR0UHDx5k586dDBkyhGrVqiFJEgcOHODw4cNs2rRJ2cUTCAQCgUCQB2UuQNasWQPIHKxkZdOmTXJ3s5988gmJiYn873//IzIykqZNm3L8+HH5rPmCqFWrFoaGhsycOZPAwED09PRwc3Nj/fr1jBgxokR519PTY8GCBUUarhGoBtE26o1oH/VFtI168za1j1pNQhUIBAKBQPBuUOZzQAQCgUAgELx7CAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlvPMCJC0tjc8++wxXV1cMDAyoXLkyixYtIiMjQx5GkiQWLlyIvb09BgYGtG3blgcPHmSL5/Hjx7Ro0QJHR0cWLVqU7VylSpXQ0NDI9Vu2bJlKylheOH/+PD179sTe3h4NDQ327duX7bwi7ZCcnMyUKVOwtrbGyMiIXr16ERQUlC3M5cuXqVevHi4uLqxbty7bubzaSUNDg507dyqlzOWJgtonNTWVOXPmUKdOHYyMjLC3t2fkyJG8fPkyWxyifZRDYc9OViZMmICGhgbff/99tuOibZSHIu3z8OFDevXqhZmZGSYmJnh6ehIQECA//1a2T5k5gVcTFi9eLFlZWUkHDx6UfH19pb///lsyNjaWvv/+e3mYZcuWSSYmJtLu3bule/fuSYMHD5YqVqwoxcTEyMN06NBBWrNmjXT9+nWpUaNGkpeXl/yci4uLtGjRIunVq1fZfnFxcSotq7pz+PBhaf78+dLu3bslQNq7d2+284q0w8SJEyUHBwfpxIkT0s2bN6V27dpJHh4eUlpamjxMjRo1pF27dkkXL16UqlSpIvn7+8vPAdKmTZtytVV522NBGRTUPlFRUVLHjh2lP//8U3r06JF0+fJlqWnTplLDhg2zxSHaRzkU9uxksnfvXsnDw0Oyt7eXvvvuu2znRNsoj8La59mzZ5KlpaU0e/Zs6ebNm9Lz58+lgwcPSiEhIfIwb2P7vPMCpHv37tIHH3yQ7Vi/fv2k4cOHS5Ik2yDPzs5OWrZsmfx8UlKSZGZmJv3666/yYw0bNpSuXLkipaSkSL169ZIOHTokP+fi4pLrYRcUTM6HVJF2iIqKknR0dKSdO3fKw7x48ULS1NSUjh49Kj/m7Ows+fj4SHFxcVKjRo2kBw8e5JuuIG8Uqadr165JgLwTFO2jGvKro6CgIMnBwUG6f/9+rj5JtI3qyKueBg8eLH/n5MXb2j7v/BBMy5YtOXXqFE+ePAHgzp07eHl50a1bNwB8fX0JDg6mc+fO8mv09PRo06YNly5dkh9btGgRnTp1wtDQEE1NTbp06aLagrzlKNION27cIDU1NVsYe3t7ateuna2tvvjiC2rWrImZmRmenp7UqlVLdQV5h4iOjkZDQwNzc3NAtE9ZkpGRwYgRI5g9ezbu7u65zou2KTsyMjI4dOgQ1apVo0uXLtjY2NC0adNswzRva/uUuSfUsmbOnDlER0dTo0YNtLS0SE9P5+uvv+b9998HkLuGz7nxna2tLf7+/vK/u3XrRlhYGDExMVSoUCHPdD777LNsxw4ePJjLA6wgbxRph+DgYHR1dbGwsMgVJvN6gLFjxzJkyBBSUlJyhQV4//330dLSynbs7t27VK5cuVTK8i6QlJTEp59+ytChQ+UbZon2KTuWL1+OtrY2U6dOzfO8aJuyIzQ0lLi4OJYtW8bixYtZvnw5R48epV+/fpw5c4Y2bdq8te3zzguQP//8k23btrFjxw7c3d25ffs206dPx97enlGjRsnDaWhoZLtOkqRcx/T09PIUHwCzZ8+Wu5bPxMHBoXQK8Q6hSDvkJK8wRkZGGBkZ5Rn+u+++o2PHjtmOOTk5FSO37yapqakMGTKEjIwMVq9eXWh40T7K5caNG/zwww/cvHmz0GclJ6JtlE/mgofevXszY8YMAOrVq8elS5f49ddfadOmTb7Xlvf2eecFyOzZs/n0008ZMmQIAHXq1MHf35+lS5cyatQo7OzsANkXQsWKFeXXhYaG5voaLwhra2uqVq1aupl/h1CkHezs7EhJSSEyMjKb+g8NDS3Szsl2dnairYpJamoqgwYNwtfXl9OnT2fbLly0T9lw4cIFQkNDcXZ2lh9LT09n5syZfP/99/j5+Ym2KUOsra3R1tbONVxSs2ZNvLy8gLf32Xnn54AkJCSgqZm9GrS0tOSq1NXVFTs7O06cOCE/n5KSwrlz54rU8IKSoUg7NGzYEB0dnWxhXr16xf3790VbqYBM8fH06VNOnjyJlZVVtvOifcqGESNGcPfuXW7fvi3/2dvbM3v2bI4dOwaItilLdHV1ady4MY8fP852/MmTJ7i4uABvb/u88xaQnj178vXXX+Ps7Iy7uzu3bt1i1apVfPDBB4DM5D99+nSWLFmCm5sbbm5uLFmyBENDQ4YOHapwOrGxsdnG6gAMDQ2zfSG+68TFxfHs2TP5376+vty+fRtLS0ucnZ0LbQczMzPGjh3LzJkzsbKywtLSklmzZlGnTp1cZseCiIqKytVWJiYm+Zo13xUKah97e3sGDBjAzZs3OXjwIOnp6fI6tLS0RFdXV7SPEins2ckpBnV0dLCzs6N69eqAeHaUTWHtM3v2bAYPHkzr1q1p164dR48e5cCBA5w9exZ4i9unLJfgqAMxMTHStGnTJGdnZ0lfX1+qXLmyNH/+fCk5OVkeJiMjQ1qwYIFkZ2cn6enpSa1bt5bu3buncBouLi4SkOs3YcIEZRSp3HLmzJk862nUqFGSJCnWDomJidLkyZMlS0tLycDAQOrRo4cUEBCgcB7ySh+Qli5dWppFLZcU1D6+vr751t2ZM2fkcYj2UQ6FPTs5ycs1gGgb5aFI+2zYsEGqWrWqpK+vL3l4eEj79u3LFsfb2D4a/2VMIBAIBAKBQGW883NABAKBQCAQqB4hQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgc7bLOQEEkJSWRkpJS1tkQCAQCgUBQBHR1ddHX1y8wjNoKkKSkJAwMXIHgss6KQCAQCASCImBnZ4evr2+BIkRtBYjM8hEMBAKmSknDzk4p0WajYkXlp2Fvr/w03oZyvA1lgLenHCbEKjeBly+VGz/Aq1fKT0OUQzHehjKAasoRrNwP+xjAKTiYlJSU8ilA3mCKsgSIpgpmwGhpKT8NHR3lp6Grq/w0CrHWlRgDA+XGD2BkpPw0jI2Vn4apch65bJigodwEYmKUGz+opsFVceMq++ED5XciqugIVdGhq+LFpCa8OyUVCAQCgUCgNggBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5QgBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5ZSD3XCVt6NlRobSopaTnq78NFJTlZ9GSory00hKUm78iYnKjR8gPl75acTFKT8NVWwkKxGr3ARUUVGqaHBV3LjKfvhA+Z2IKjpCVXToqngxKRlFuw8NSZIkpeakmCQlJWFra0uMKnpCgUAgEAgEpYapqSkhISHo6+vnG0ZtLSD6+vpUrFiRwMBApcQfExODk5MTgYGBmJqaKiUNgMaNG/Pvv/8qLX5VpPG21JWoJ/VJQxV1JepJccp7XYl6UhxV1VWTJk0KFB+gxgIEQFNTU6kVBDKVpsw0tLS0lF4GVaQB5b+uRD2pVxqg3LoS9aQ4b0tdiXpSHGXXlaZm4VNM1XoS6qRJk8o6CyVGFWV4G+oJlF8OUU/qlYayEfWkOKKuFEPUk+IoUg61nQOibGJiYjAzMyM6OlolarM8I+pKMUQ9KY6oK8UQ9aQYop4UR53qSq0tIMpET0+PBQsWoKenV9ZZUXtEXSmGqCfFEXWlGKKeFEPUk+KoU129sxYQgUAgEAgEZcc7awERCAQCgUBQdggBIhAIBAKBQOUIASIQCAQCgUDlCAEiEAgEAoFA5bxTAiQyMpIRI0ZgZmaGmZkZI0aMICoqqsBrQkJCGD16NPb29hgaGtK1a1eePn2qmgyXEcWpJ4CHDx/Sq1cvzMzMMDExwdPTk4CAAOVnuAwpTl0tXLiQGjVqYGRkhIWFBR07duTq1auqybCKWL16Na6urujr69OwYUMuXLhQYPhz587RsGFD9PX1qVy5Mr/++quKclr2FKWuvLy8aNGiBVZWVhgYGFCjRg2+++47Fea27CjqPZWcnMz8+fNxcXFBT0+PKlWqsHHjRhXltmwpal398ssv1KxZEwMDA6pXr87WrVtVk1HpHaJr165S7dq1pUuXLkmXLl2SateuLfXo0SPf8BkZGZKnp6fUqlUr6dq1a9KjR4+kDz/8UHJ2dpbi4uJUmHPVUtR6kiRJevbsmWRpaSnNnj1bunnzpvT8+XPp4MGDUkhIiIpyXTYUp662b98unThxQnr+/Ll0//59aezYsZKpqakUGhqqolwrl507d0o6OjrSunXrJG9vb2natGmSkZGR5O/vn2d4Hx8fydDQUJo2bZrk7e0trVu3TtLR0ZF27dql4pyrnqLW1c2bN6UdO3ZI9+/fl3x9faXff/9dMjQ0lH777TcV51y1FLWeJEmSevXqJTVt2lQ6ceKE5OvrK129elW6ePGiCnNdNhS1rlavXi2ZmJhIO3fulJ4/fy798ccfkrGxsbR//36l5/WdESDe3t4SIF25ckV+7PLlyxIgPXr0KM9rHj9+LAHS/fv35cfS0tIkS0tLad26dUrPc1lQnHqSJEkaPHiwNHz4cFVkUW0obl3lJDo6WgKkkydPKiObKqdJkybSxIkTsx2rUaOG9Omnn+YZ/pNPPpFq1KiR7diECRMkT09PpeVRXShqXeVF37593/pnr6j1dOTIEcnMzEyKiIhQRfbUiqLWVbNmzaRZs2ZlOzZt2jSpRYsWSstjJu/MEMzly5cxMzOjadOm8mOenp6YmZlx6dKlPK9JTk4GyLahjpaWFrq6unh5eSk3w2VEceopIyODQ4cOUa1aNbp06YKNjQ1NmzZl3759Ksp12VCcuspJSkoKa9euxczMDA8PD2VlVWWkpKRw48YNOnfunO14586d862Ty5cv5wrfpUsXrl+/TqoqtlgvI4pTVzm5desWly5dok2bNsrIolpQnHrav38/jRo1YsWKFTg4OFCtWjVmzZpFYmKiKrJcZhSnrpKTk3NtGmdgYMC1a9eU/vy9MwIkODgYGxubXMdtbGwIDg7O85oaNWrg4uLC3LlziYyMJCUlhWXLlhEcHMyrV6+UneUyoTj1FBoaSlxcHMuWLaNr164cP36cvn370q9fP86dO6fsLJcZxamrTA4ePIixsTH6+vp89913nDhxAmtra2VlVWWEh4eTnp6Ora1ttuO2trb51klwcHCe4dPS0ggPD1daXsua4tRVJo6Ojujp6dGoUSMmTZrEuHHjlJnVMqU49eTj44OXlxf3799n7969fP/99+zateut2WclP4pTV126dGH9+vXcuHEDSZK4fv06GzduJDU1VenPX7kXIAsXLkRDQ6PA3/Xr1wHQ0NDIdb0kSXkeB9DR0WH37t08efIES0tLDA0NOXv2LO+99x5aWlpKLVdpo8x6ysjIAKB3797MmDGDevXq8emnn9KjR49yOZlQmXWVSbt27bh9+zaXLl2ia9euDBo0iNDQUKWUpyzIWf7C6iSv8Hkdfxspal0BXLhwgevXr/Prr7/y/fff88cffygzi2pBUeopIyMDDQ0Ntm/fTpMmTejWrRurVq1i8+bNb70VBIpWV59//jnvvfcenp6e6Ojo0Lt3b0aPHg2g9PectlJjVwGTJ09myJAhBYapVKkSd+/eJSQkJNe5sLCwXGoxKw0bNuT27dtER0eTkpJChQoVaNq0KY0aNSpx3lWJMuvJ2toabW1tatWqle14zZo1y+VQlbLvKQAjIyOqVq1K1apV8fT0xM3NjQ0bNjB37twS5b2ssba2RktLK9fXVmhoaL51Ymdnl2d4bW1trKyslJbXsqY4dZWJq6srAHXq1CEkJISFCxfy/vvvKy2vZUlx6qlixYo4ODhgZmYmP1azZk0kSSIoKAg3Nzel5rmsKE5dGRgYsHHjRn777TdCQkKoWLEia9euxcTEROlW2XIvQKytrRWqpGbNmhEdHc21a9do0qQJAFevXiU6OprmzZsXen3mjfz06VOuX7/OV199VbKMqxhl1pOuri6NGzfm8ePH2Y4/efIEFxeXkmdexajqnsqKJEnyOUflGV1dXRo2bMiJEyfo27ev/PiJEyfo3bt3ntc0a9aMAwcOZDt2/PhxGjVqhI6OjlLzW5YUp67y4m25d/KjOPXUokUL/v77b+Li4jA2NgZk/ZGmpiaOjo4qyXdZUJJ7SkdHR143O3fupEePHmhqKnmQROnTXNWIrl27SnXr1pUuX74sXb58WapTp06uJZPVq1eX9uzZI//7r7/+ks6cOSM9f/5c2rdvn+Ti4iL169dP1VlXKcWppz179kg6OjrS2rVrpadPn0o//fSTpKWlJV24cEHV2VcpRa2ruLg4ae7cudLly5clPz8/6caNG9LYsWMlPT29bKutyjOZywA3bNggeXt7S9OnT5eMjIwkPz8/SZIk6dNPP5VGjBghD5+5DHfGjBmSt7e3tGHDhnduGa6idfXzzz9L+/fvl548eSI9efJE2rhxo2RqairNnz+/rIqgEopaT7GxsZKjo6M0YMAA6cGDB9K5c+ckNzc3ady4cWVVBJVR1Lp6/Pix9Pvvv0tPnjyRrl69Kg0ePFiytLSUfH19lZ7Xd0qARERESMOGDZNMTEwkExMTadiwYVJkZGS2MIC0adMm+d8//PCD5OjoKOno6EjOzs7SZ599JiUnJ6s24yqmOPUkSZK0YcMGqWrVqpK+vr7k4eEh7du3T3WZLiOKWleJiYlS3759JXt7e0lXV1eqWLGi1KtXL+natWuqz7wS+eWXXyQXFxdJV1dXatCggXTu3Dn5uVGjRklt2rTJFv7s2bNS/fr1JV1dXalSpUrSmjVrVJzjsqModfXjjz9K7u7ukqGhoWRqairVr19fWr16tZSenl4GOVctRb2nHj58KHXs2FEyMDCQHB0dpY8//lhKSEhQca7LhqLUlbe3t1SvXj3JwMBAMjU1lXr37l0kNwIlQUOS/pvtJRAIBAKBQKAiyv0qGIFAIBAIBOUPIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKgcIUAEAoFAIBCoHCFABAKBQCAQqBwhQAQCgUAgEKic/wO9wl5hZ9hWOQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from cartopy import crs as ccrs \n", "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", "import matplotlib as mpl\n", "from matplotlib import pyplot as plt\n", "mpl.rcParams['figure.dpi'] = 100\n", "\n", "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "clevs = np.arange(170,350,20)\n", "\n", "corrPlot = (corr.plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(-1,1.1,0.1), \n", " cmap='bwr', \n", " add_colorbar=True, \n", " extend='neither', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': ' '}) #設定color bar\n", " )\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(-20,40,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines() \n", "ax.set_ylabel(' ') # 設定坐標軸名稱。\n", "ax.set_xlabel(' ')\n", "ax.set_title(\"Correlation Coefficient Map (Dec. precip. and DJF ONI)\", loc='left')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "52219561", "metadata": {}, "source": [ "## Conditional Control with `where`\n", "\n", "We can filter and select data using specified conditions. The usage is\n", "\n", "> xarray.where(cond, x, y, keep_attrs=None) \n", "\n", "When True, return values from *x*, otherwise returns values from *y*.\n", "\n", "**Example 4:** Plot the mean sea level pressure (MSLP) map in December 2021, excluding regions with altitudes higher than 3000 meters. \n", "\n", "Step 1: Read data: MSLP and topography. " ] }, { "cell_type": "code", "execution_count": 9, "id": "30792b76", "metadata": {}, "outputs": [], "source": [ "lats=0\n", "latn=60\n", "\n", "topo_ds = xr.open_dataset('data/etopo5.nc')\n", "mslp_ds = xr.open_dataset('data/mslp.2021.nc')\n", "topo = topo_ds.sel(Y=slice(lats,latn),\n", " X=slice(lon1,lon2)).bath\n", "mslp = mslp_ds.sel(time=slice('2021-12-01','2021-12-31'),\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).mslp\n", "mslp = mslp/100. # Convert to hPa. " ] }, { "attachments": {}, "cell_type": "markdown", "id": "f3eff5b9", "metadata": {}, "source": [ "In this example, the grid resolution of the conditional array (`topo`) and the `mslp` array should be the same so that xarray can look for corresponding grids that satisfy the condition. Therefore, we need to regrid the data first." ] }, { "cell_type": "code", "execution_count": 21, "id": "56af5de1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'bath' (lat: 25, lon: 33)> Size: 3kB\n",
       "array([[ 9.1000000e+01,  9.1000000e+01,  1.2200000e+02,  1.5200000e+02,\n",
       "         1.0600000e+02,  5.1800000e+02,  5.4900000e+02,  3.6600000e+02,\n",
       "         3.9600000e+02,  2.7500000e+02,  4.8800000e+02,  4.4200000e+02,\n",
       "         4.5700000e+02,  3.3600000e+02,  7.6200000e+02,  2.9000000e+02,\n",
       "         3.5100000e+02,  5.3300000e+02,  5.0300000e+02,  4.5700000e+02,\n",
       "         3.0500000e+02,  2.4400000e+02,  3.0500000e+02,  7.6200000e+02,\n",
       "         7.6200000e+02,  2.1300000e+02,  3.5000000e+02,  1.3700000e+02,\n",
       "         2.4400000e+02,  3.5000000e+02, -5.7000000e+01, -1.9800000e+02,\n",
       "        -1.1700000e+02],\n",
       "       [ 9.1000000e+01,  9.1000000e+01,  9.1000000e+01,  1.5200000e+02,\n",
       "         2.1300000e+02,  2.1300000e+02,  2.1300000e+02,  2.8900000e+02,\n",
       "         2.9000000e+02,  3.9600000e+02,  5.4900000e+02,  3.3500000e+02,\n",
       "         7.7700000e+02,  7.3100000e+02,  8.8400000e+02,  1.5240000e+03,\n",
       "         9.7500000e+02,  1.0060000e+03,  1.0210000e+03,  1.2350000e+03,\n",
       "         8.6900000e+02,  7.7700000e+02,  5.1800000e+02,  8.3800000e+02,\n",
       "        -4.9000000e+01, -1.6100000e+02, -1.7800000e+02, -1.5000000e+02,\n",
       "        -2.1100000e+02, -4.2200000e+02, -3.9900000e+02,  2.1400000e+02,\n",
       "         1.0670000e+03],\n",
       "       [ 1.2200000e+02,  1.2200000e+02,  1.9800000e+02,  3.3500000e+02,\n",
       "         5.3300000e+02,  4.8800000e+02,  6.1000000e+02,  8.0800000e+02,\n",
       "...\n",
       "        -5.0440000e+03, -4.9250000e+03, -3.5340000e+03, -2.9970000e+03,\n",
       "        -4.1980000e+03],\n",
       "       [-4.3630000e+03, -4.3470000e+03, -4.2490000e+03, -4.2770000e+03,\n",
       "        -2.5940000e+03, -4.2540000e+03, -2.6660000e+03, -1.2200000e+02,\n",
       "         0.0000000e+00,  1.5200000e+02, -5.7000000e+01, -8.0000000e+01,\n",
       "        -4.1000000e+01,  4.7200000e+02,  1.1430000e+03,  1.8300000e+02,\n",
       "        -4.9930000e+03, -5.2330000e+03, -3.1710000e+03, -3.0110000e+03,\n",
       "        -3.7140000e+03, -3.9730000e+03, -4.2040000e+03, -4.5100000e+03,\n",
       "        -4.1420000e+03, -2.9700000e+03, -4.5320000e+03, -4.5030000e+03,\n",
       "        -5.4850000e+03, -4.5540000e+03, -2.8210000e+03, -2.7980000e+03,\n",
       "        -3.2370000e+03],\n",
       "       [-4.6990000e+03, -4.3950000e+03, -4.5390000e+03, -4.5680000e+03,\n",
       "        -4.0540000e+03, -4.5090000e+03, -4.5230000e+03, -2.0340000e+03,\n",
       "         2.7500000e+02,  0.0000000e+00, -2.6000000e+01, -4.0000000e+01,\n",
       "         6.1000000e+01,  3.6500000e+02,  4.8800000e+02, -6.7000000e+01,\n",
       "        -4.0000000e+01, -2.4460000e+03, -3.0020000e+03, -3.8700000e+02,\n",
       "        -9.7000000e+01, -3.8870000e+03, -2.3470000e+03, -4.3600000e+03,\n",
       "        -3.0830000e+03, -3.0900000e+03, -3.5050000e+03, -4.5650000e+03,\n",
       "        -5.0010000e+03, -4.6920000e+03, -2.5840000e+03, -2.0280000e+03,\n",
       "        -2.8320000e+03]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n",
       "  * lat      (lat) float32 100B 60.0 57.5 55.0 52.5 50.0 ... 7.5 5.0 2.5 0.0\n",
       "Attributes:\n",
       "    long_name:       topography\n",
       "    note:            updated 27 Feb 1998 from NGDC CD-ROM 29 April 1993\n",
       "    scale_min:       -9964.0\n",
       "    colorscalename:  topographycolorscale\n",
       "    scale_max:       7964.0\n",
       "    ncolor:          253\n",
       "    maxncolor:       253\n",
       "    units:           m\n",
       "    CE:              7964.0\n",
       "    CS:              -9964.0\n",
       "    colormap:        [0 1973790 4026644 [4026644 28] 9125192 [9125192 28] [15...
" ], "text/plain": [ " Size: 3kB\n", "array([[ 9.1000000e+01, 9.1000000e+01, 1.2200000e+02, 1.5200000e+02,\n", " 1.0600000e+02, 5.1800000e+02, 5.4900000e+02, 3.6600000e+02,\n", " 3.9600000e+02, 2.7500000e+02, 4.8800000e+02, 4.4200000e+02,\n", " 4.5700000e+02, 3.3600000e+02, 7.6200000e+02, 2.9000000e+02,\n", " 3.5100000e+02, 5.3300000e+02, 5.0300000e+02, 4.5700000e+02,\n", " 3.0500000e+02, 2.4400000e+02, 3.0500000e+02, 7.6200000e+02,\n", " 7.6200000e+02, 2.1300000e+02, 3.5000000e+02, 1.3700000e+02,\n", " 2.4400000e+02, 3.5000000e+02, -5.7000000e+01, -1.9800000e+02,\n", " -1.1700000e+02],\n", " [ 9.1000000e+01, 9.1000000e+01, 9.1000000e+01, 1.5200000e+02,\n", " 2.1300000e+02, 2.1300000e+02, 2.1300000e+02, 2.8900000e+02,\n", " 2.9000000e+02, 3.9600000e+02, 5.4900000e+02, 3.3500000e+02,\n", " 7.7700000e+02, 7.3100000e+02, 8.8400000e+02, 1.5240000e+03,\n", " 9.7500000e+02, 1.0060000e+03, 1.0210000e+03, 1.2350000e+03,\n", " 8.6900000e+02, 7.7700000e+02, 5.1800000e+02, 8.3800000e+02,\n", " -4.9000000e+01, -1.6100000e+02, -1.7800000e+02, -1.5000000e+02,\n", " -2.1100000e+02, -4.2200000e+02, -3.9900000e+02, 2.1400000e+02,\n", " 1.0670000e+03],\n", " [ 1.2200000e+02, 1.2200000e+02, 1.9800000e+02, 3.3500000e+02,\n", " 5.3300000e+02, 4.8800000e+02, 6.1000000e+02, 8.0800000e+02,\n", "...\n", " -5.0440000e+03, -4.9250000e+03, -3.5340000e+03, -2.9970000e+03,\n", " -4.1980000e+03],\n", " [-4.3630000e+03, -4.3470000e+03, -4.2490000e+03, -4.2770000e+03,\n", " -2.5940000e+03, -4.2540000e+03, -2.6660000e+03, -1.2200000e+02,\n", " 0.0000000e+00, 1.5200000e+02, -5.7000000e+01, -8.0000000e+01,\n", " -4.1000000e+01, 4.7200000e+02, 1.1430000e+03, 1.8300000e+02,\n", " -4.9930000e+03, -5.2330000e+03, -3.1710000e+03, -3.0110000e+03,\n", " -3.7140000e+03, -3.9730000e+03, -4.2040000e+03, -4.5100000e+03,\n", " -4.1420000e+03, -2.9700000e+03, -4.5320000e+03, -4.5030000e+03,\n", " -5.4850000e+03, -4.5540000e+03, -2.8210000e+03, -2.7980000e+03,\n", " -3.2370000e+03],\n", " [-4.6990000e+03, -4.3950000e+03, -4.5390000e+03, -4.5680000e+03,\n", " -4.0540000e+03, -4.5090000e+03, -4.5230000e+03, -2.0340000e+03,\n", " 2.7500000e+02, 0.0000000e+00, -2.6000000e+01, -4.0000000e+01,\n", " 6.1000000e+01, 3.6500000e+02, 4.8800000e+02, -6.7000000e+01,\n", " -4.0000000e+01, -2.4460000e+03, -3.0020000e+03, -3.8700000e+02,\n", " -9.7000000e+01, -3.8870000e+03, -2.3470000e+03, -4.3600000e+03,\n", " -3.0830000e+03, -3.0900000e+03, -3.5050000e+03, -4.5650000e+03,\n", " -5.0010000e+03, -4.6920000e+03, -2.5840000e+03, -2.0280000e+03,\n", " -2.8320000e+03]], dtype=float32)\n", "Coordinates:\n", " * lon (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n", " * lat (lat) float32 100B 60.0 57.5 55.0 52.5 50.0 ... 7.5 5.0 2.5 0.0\n", "Attributes:\n", " long_name: topography\n", " note: updated 27 Feb 1998 from NGDC CD-ROM 29 April 1993\n", " scale_min: -9964.0\n", " colorscalename: topographycolorscale\n", " scale_max: 7964.0\n", " ncolor: 253\n", " maxncolor: 253\n", " units: m\n", " CE: 7964.0\n", " CS: -9964.0\n", " colormap: [0 1973790 4026644 [4026644 28] 9125192 [9125192 28] [15..." ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "topo_rmp = topo.interp(X=mslp.lon, Y=mslp.lat).drop_vars(['X','Y'])" ] }, { "attachments": {}, "cell_type": "markdown", "id": "adadd077", "metadata": {}, "source": [ "Then set the condition with `where`:" ] }, { "cell_type": "code", "execution_count": 29, "id": "7f57103f", "metadata": {}, "outputs": [], "source": [ "mslp_mean = mslp.mean('time')\n", "mslp_mask = xr.where(topo_rmp<=3000,mslp_mean,np.nan)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4a48000d", "metadata": {}, "source": [ "The condition is `topo <= 3000`. The `False` values (those that don't satisfy the criteria) will be set as `NaN`. The `True` values will be preserved.\n" ] }, { "cell_type": "code", "execution_count": 30, "id": "4d11fd7f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGeCAYAAADrFxkuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACnCElEQVR4nOzddVwVWR/H8c+lGxERRFGwu5tVMTBw7Q4UXTtZG1tUrLW7W9fE7k7sQtdGxUAMSjrm+cP1PouExA3ivF+v+3rWmXNnfvfqw3w5c+YcmSRJEoIgCIIgZGsa6i5AEARBEAT1E4FAEARBEAQRCARBEARBEIFAEARBEAREIBAEQRAEAREIBEEQBEFABAJBEARBEBCBQBAEQRAERCAQBEEQBAERCBRmw4YNyGQyZDIZ586dS7BfkiQKFy6MTCbDwcEh3r4vX77g5uZGyZIlMTQ0xNTUlOLFi+Ps7Mz9+/cTnOPmzZtJ1vHq1St5HTKZDA0NDczNzXFycuLq1avp/mwymQw9PT2srKyoW7cuM2bMwN/fP03HVYY1a9bQsmVLbG1t0dfXp3DhwvTv358PHz4k2v7vv/+mfPny6OnpYW1tjaurK9++fYvX5syZM/Ts2ZPixYtjaGhI3rx5adGiBbdu3UpwvEuXLtGrVy8qVaqErq4uMpmMV69eKeOjCoIgKJQIBApmbGzM2rVrE2w/f/48L168wNjYON72b9++Ub16dTZs2ECvXr04cOAAW7dupU+fPvj4+HD37t001TF48GCuXr3KxYsXmTFjBvfu3aNu3brcuXMnTccDWL9+PVevXuXkyZMsXbqU8uXLM2vWLEqUKMGpU6fSfFxFmjRpEkZGRnh4eHDs2DFGjRrFoUOHqFSpEh8/fozXduvWrXTq1IkqVapw9OhRJk2axIYNG2jdunW8dsuXL+fVq1cMHTqUI0eOsHDhQvz9/alevTpnzpyJ1/b06dOcOnWK/PnzU7NmTaV/XkEQBIWRBIVYv369BEi9evWS9PX1paCgoHj7u3btKtWoUUMqVaqUVKdOHfn2devWSYB05syZRI8bGxub4Bw3btxIsg4fHx8JkObMmRNv++nTp+X1pfWzJXbe169fSzY2NpKxsbHk5+eX6mMr2sePHxNsu3HjhgRIU6dOlW+LiYmR8uTJIzVs2DBe261bt0qAdOTIkWSPGRISIllaWkr169ePt/2/f19z5syRAMnHxyetH0cQBEFlRA+BgnXq1AmA7du3y7cFBQWxZ88eevbsmaD9ly9fAMiTJ0+ix9PQUMxfUfXq1QF4/fq1Qo73Q/78+Zk7dy4hISGsXLky3r6bN2/SvHlzcubMiZ6eHhUqVGDnzp0JjvHu3Tv69OmDjY0NOjo6WFtb07Zt2wS/0adE7ty5E2yrVKkSmpqa+Pr6yrd5eXnx4cMHevToEa9tu3btMDIywtPTM9ljGhkZUbJkyXjHBMX9fQmCIKia+OmlYCYmJrRt25Z169bJt23fvh0NDQ06dOiQoH2NGjUA6NatG/v27ZMHBEV7/vw5ABYWFgo/tpOTE5qamly4cEG+7ezZs9jb2xMYGMiKFSvYv38/5cuXp0OHDmzYsEHe7t27d1SpUgVPT0+GDRvG0aNHWbBgAaampgQEBCikvvPnzxMbG0upUqXk27y9vQEoW7ZsvLba2toUL15cvj8pQUFB3L59O94xBUEQMjMtdReQFfXs2ZO6devy8OFDSpUqxbp162jXrl2C8QMA9vb2uLu7M23aNFq1agWAnZ0djRo1on///gkuWCkVFxdHTEwMsbGxPHz4kH79+gHQpUuXtH+wJBgaGpIrVy7ev38v3zZgwABKlSrFmTNn0NL6/s+sUaNGfP78mbFjx9KtWzc0NDSYOHEinz9/5t69e5QoUUL+/vbt2yuktpCQEAYMGICNjU28HpofwStnzpwJ3pMzZ85fDgQcOHAgoaGhjBs3TiF1CoIgqJvoIVCCOnXqUKhQIdatW8eDBw+4ceNGorcLfpgwYQJv3rxh3bp19O3bFyMjI1asWEGlSpXi3XpIjdGjR6OtrY2enh6VKlXizZs3rFy5Eicnp7R+rGRJkiT/7+fPn/P48WN5+IiJiZG/nJyc+PDhA0+ePAHg6NGj1K1bN14YUJSIiAhat27N69ev2bVrF0ZGRgnayGSyRN+b1Hb4/ve1detW5s+fT6VKlRRWryAIgjqJHgIlkMlk9OjRg0WLFhEREUHRokWpVatWsu+xtLSkR48e8nvaFy5coEmTJgwdOlQ+LiE1hg4dSteuXdHQ0CBHjhzY2dkle5FLj9DQUL58+UKZMmUA5Pf+R4wYwYgRIxJ9z+fPnwH49OkT+fLlU3hNkZGRtGrVikuXLnHo0CGqVasWb7+5uTnwvafA0tIy3r6vX78m2nMAMGXKFKZNm8b06dMZNGiQwusWBEFQFxEIlMTFxYWJEyeyYsUKpk+fnur3165dm4YNG7Jv3z78/f0THdiWnHz58lG5cuVUnzctDh8+TGxsrHx+hVy5cgHg5uaW4BG+H4oVKwZ8H9Pw9u1bhdYTGRlJy5YtOXv2LPv376d+/foJ2vwILw8ePKBkyZLy7TExMTx+/DjREDZlyhQmT57M5MmTGTt2rEJrFgRBUDcRCJQkb968jBw5ksePH9O9e/ck2338+BELC4sEo9NjY2N59uwZBgYG5MiRQ8nVpt2bN28YMWIEpqam9O3bF/h+sS9SpAj37t3Dw8Mj2fc3adKEzZs38+TJE3lISI8fPQNnzpxh7969NGrUKNF21apVI0+ePGzYsCHeYM/du3fz7du3BEFm6tSpTJ48mfHjxzNp0qR01ykIgpDRiECgRDNnzvxlm82bN7Ny5Uo6d+5MlSpVMDU15e3bt6xZs4aHDx8yceJEdHR04r3nzJkziQ56S+34ABcXFzZu3IiPjw+2tra/bO/t7S0fC+Dv78/FixdZv349mpqaeHp6xnuCYeXKlTRp0oRGjRrh4uJC3rx5+fr1K//88w+3b99m165dALi7u3P06FFq167N2LFjKVOmDIGBgRw7doxhw4ZRvHhxALS0tKhTpw6nT59Otsa2bdty9OhRxo0bh7m5OV5eXvJ9JiYm8t4ATU1NZs+ejbOzM3379qVTp048e/aMUaNG4ejoSOPGjeXvmzt3LhMnTqRx48Y0bdo03jHh/490wvdbIOfPnwe+9z7A93ESFhYWWFhYUKdOnV9+z4IgCGqh7okQsoqUTBokSVKCiYkePXokDR8+XKpcubJkYWEhaWlpSWZmZlKdOnWkzZs3J3qOpF4+Pj5JTkyUmDZt2kj6+vpSQEBAij7bj5eOjo6UO3duqU6dOpKHh4fk7++f6Pvu3bsntW/fXsqdO7ekra0tWVlZSfXq1ZNWrFgRr52vr6/Us2dPycrKStLW1pasra2l9u3bx5sQCIj3vSUlue8nsfdv27ZNKlu2rKSjoyNZWVlJQ4YMkUJCQuK1qVOnTrLH/a+zZ8+m6vyCIAgZhUyS/jM8XMhWrKyscHZ2Zs6cOeouRRAEQVAzEQiyqYcPH1KjRg1evnwpHwQoCIIgZF8iEAiCIAiCICYmEgRBEAQhAweCd+/e0bVrV8zNzTEwMKB8+fLx1p+XJInJkydjbW2Nvr4+Dg4OPHz4MN4xnjx5gr29Pfny5cPd3T3ePltbW2QyWYIR466urvLn6QVBEAQhu8iQgSAgIAB7e3u0tbU5evQojx49Yu7cufGex589ezbz5s1jyZIl3LhxAysrKxwdHQkJCZG3GThwIM7Ozuzfv5+DBw9y+fLleOfR09Nj9OjRqvpYgiAIgpBhZchAMGvWLGxsbFi/fj1Vq1bF1taW+vXrU6hQIeB778CCBQsYN24crVu3pnTp0mzcuJGwsDC2bdsmP05gYCAVKlSgbNmyWFtbExQUFO88ffv2xcvLiyNHjqj08wmCIAhCRpMhJyY6cOAAjRo1ol27dpw/f568efMyYMAAevfuDYCPjw9+fn40bNhQ/h5dXV3q1KnDlStX5DPmubu74+joSHh4OL///nuCWetsbW3p168fbm5uNG7cOEVr2UdGRhIZGRlvmyRJSlsnQBAEQfg1HR0d9PT01F1G5qa2GRCSoaurK+nq6kpubm7S7du3pRUrVkh6enrSxo0bJUmSpMuXL0uA9O7du3jv6927t9SwYcN42yIiIhKdOKdAgQLS/PnzJX9/f8nY2FjatGmTJEmSNHTo0GQnkJk0aVKCCWeMjIySnbhGvMRLvMRLvJT7srKyksLDw9N59cneMmQPQVxcHJUrV5bPg1+hQgUePnzI8uXL6datm7zdz7+VS4n8pq6rqxtvSt2fWVhYMGLECCZOnBhvTvukuLm5MWzYMPmfg4ODsbGxwdfXFxMTEwDCvPb/+kNmY9Kje+ouQWFkJcupuwRBTT7mLqPuEtLkZej31UW/fvbj7NG/OXVwCx/fvwZAQ1OTHGa5MTO3xCxXbsxyWVGpRgOq/tYkRceOjozgzx4OfP74joFjFlLLMfHFzRShZK4vjB8/nt27d1OxYkVu375NVFSU6CVIhwwZCPLkyRNvBTqAEiVKsGfPHuD7DHsAfn5+5MmTR97G398/wVK2KTFs2DCWLVvGsmXLftlWV1cXXV3dBNtNTEzkgUDL0CDVNWQXkvdt0E/4/WVaPo/l/ykrXVGNhQiq5GdVHmMlHl+SJL59+8bnL1/48vkzn//7+vJF/t9IEhoGFhgYmmBoZIqBkTGGhiYYGJlgaGSCgZEpBobG8fa9fHaVo3vWcvX8IbS0tKnt2JZBbguJjo7i66cPfP3s9/316QPXzh/mzYt/qNv4178sAWBkwtLt11g4dSDzp/Tl8YNr9B81D109fYV+Nwd2LKfbkgno6+uzfv16WrZsiZmZmcLOkV1lyEBgb2/PkydP4m17+vQpBQoUAMDOzg4rKytOnjxJhQoVAIiKiuL8+fPMmjUr1eczMjJiwoQJTJ48mWbNmqX/AwjZkuR9O96fRUDImvysyivsWOHh4Wzfvp3nL17w5fNnPv3nwv/zWCUtLS1MzXJjZp6bHOa5yZWvNDINDUK/BfEtOAD/D28I/RZEWGgIoSFBREaEJXleu6Jl6DfyL+o5dcLYJOkL6YTBLdHQ1Exyf1xcHAFfPvLJz5dPfm/x93uD/wdfoiLD0dHV4+jedYSFhjB21pbUfzmJ+PLpA3Mn9ebWlZP0798fDw8PcuTIQXBwsEKOn91lyEDw559/UrNmTTw8PGjfvj3Xr19n1apVrFq1Cvh+q8DV1RUPDw+KFClCkSJF8PDwwMDAgM6dO6fpnH369GH+/Pls376datWqKfLjCP/6+YKZ1Unet0UoEBIlSRKnTp1i6rRpfPL3p2ixYuTKlYsiRYpQo3p1cllYkCtXLiINS2CW0xIz89wYmZilaODzD7ExMYSFfQ8HYaEhhIUGExoSRM5cVhQuUSFFA6G/fvoAMhnrFo0nJDiAb8GBfPv3f4ODvvD54ztiYqLl7XX1DLC0zo+FlQ31m3Ymd578VKzeIE3f0c+unNnPfPf+aGlpM23pAcYNEL+8KVqGDARVqlTB09MTNzc33N3dsbOzY8GCBXTp0kXeZtSoUYSHhzNgwAACAgKoVq0aJ06cwNg4bR152traTJ06Nc2BQkhedgsDP4hQkLUoonfg9evXuE+dyrlz56hduzabNm6Mt/z482826T4HgKaWFsYmZsn2APxKTos8PLxzhXNBOzE2McPIJAdGJmbkzlMAY1MzLKzykdvKhtxW+bHIY4OxiZnCn7gKD/vGijkjOea5jhoOzXCduJwcOZMeFyaknVjLIJ2Cg4MxNTUlKCjo/4MKL+9Rc1UZS3YNAz8TwSBzS28YiIiIYOXKlaxYuZJcuXIxYcIEHBs0kF9AFRUEspLHD64za6wLXz59oP+ouTRu1UP+fTUspyNvl9jPYSH1MmQPgZB1iDDwf6K3IPs6c+YM7lOn4ufnR69evRjQvz8GBt8HH4sgEF9UVCR+73w4f2wX29bMoEiJikxbsp+8BYqou7QsTwQCQWlEGEhIhILMKa29A76+vkydOpXTZ87wm70969etw87OTr4/u4eBxw9u8OjeVd6/ec67f1+f/HyJi4tDQ0ODTr3c6NzbDS1tbXWXmi2IQCAIKiZCQeaSljAQGRnJqtWrWb58OWZmZixdsoRGjRrFu7+e3cNAbGwsI3t9H3BobVOIvPkLU7thW/LmL4y1TSEKFCpBjpy51Vxl9iICgaBwomfg10QoyLrOnT/PlClTeP/+PX/07MnAgQMxNDSU78/qQcD7Vcp+mw/6+omoyAj+GHeAklV+T7D/bfD3V1IaijnBFE4EAkEhRAgQsqLU9A68e/eOqdOmcfLkSWrUqMHqVasoXLhwvDaZPQyk9GL/KwGf3rB9QXdkGhpY2pT89RsElRCBQEgTEQAE4buoqCjWr1/PosWLMTU1ZeHChTR1cspSC54pKggA3Lm0g93L+qGrb0y/KScxtyqosGML6SMCgZAiIgAI2U1KegeuX7/OxIkTeenjQ/du3Rg6dChGRkbKL04FFBkCfjiwbjjnD8yn/G8daNNvGQZGYrrhjEQEAiFJIgQIQuK+fPnCrNmz2bNnDxXKl2f/vn2UKFFC3WUphDKCAMC3oE9cPLSIhh0m0rDjpCzVg5JViEAgxCNCgCAk3TsQFxfHrl27mD1nDpIkMW3aNDq0b5+iKYUz+vgBZQWBH+5f/T5hm73TQBEGMigRCAQRAgQhBZ48ecL4CRO4ffs2rVq1YsyYMeQyN1d3WQqh7DAAcOfi3xQp1wAjUzHtcEYlAkE2JUKAICTu596B0NBQFi1ezPr167G1tWXrli1Ur15dPcUpgSrCQODnt/g8ukiHweuUfi4h7UQgyGZEEBCElDt58iRT3N35+vUrrkOH0qtXL3R0dH79xkxAFUHgh7uXdqCppUPpai1Vdk4h9UQgyCZEEBCEX/vRO/Du3TumTJnC6TNncHBwYNLEieTPn1+9xSmQKsMAwL0ruylesQn6hqYqPa+QOiIQZGEiBAhC6kRHR7Nu3ToWL1mCqakpy5YupWHDhukeBJdRBhSqOgjISRLaugbqObeQYiIQZDEiBAhC2ly+94iBC9x4+fIlLt27M2TIkCwzpwCoMQwAhUrX4da5LUiSJJ4wyMBEIMjkRAAQhPQ7cukm7cbMBMDK0pI3vr5M9/DAPGdOzMzMqF27NkWKpH353cJGvhmml0AdCpV24KznHD6/f4ZF3qIKP/63b98UfszsSASCTEYEAEFQvIolCjFyxAi+fv3Kl69fCQgI4PHjx3z9+pXPnz+zdNky9u/bh41N2i/qyYWC0JAgHty5RPkqddHTV07XemnbaLX1EtiVsEdDQ5Pn3ucUFggCAgLYuHEjR44c4dy5cwo5ZnYnkyRJUncRmVlwcDCmpqYEBQVhYmICQNjlPek+rrjwZ31itcOMJanJiIKDg2nRsiVGhobs3LkTfX39ePsjIiKYNn06ly5dwsjICGMjI4yNjTE2MaF1q1bY29vL2yYWCJbMGMrRPWuJiYmma9/xOPefoNDP9TN1hYKFI6tjblWIrsO3KuR4V7e058CBA9StW5d69eoxevToeD+HhdT79fRaglJI3reTfQmCoDrJrVtgYmLC8mXLeOnjwx+9erFt2zaePHlCXFwcb968oV27dnh6elK/fn0qVaxInjx5iJMkHj16RHcXF+YvWEBsbCzwvZfgZ9FRkcTERGOV15bj+zfK2ypLadtopR4/KYXKOPDc+yyK+B00OjKcI0eO4O7uzrFjx+jXr58CKhTELQMlERd1Qcg6ihcvzqKFC1m8ZAmTp0whNjYWY2NjpLg4cpqbs2f3booXLx7vPXFxcSxfsYIFCxZw+/Zt5s+fTy5z8wS3DvqPmsutq6fwe/cKgNtXT1Llt8ZK/TzquH1QuLQDZ/fO5tP7p+TOWyxdx3r24AxhYWE0b95cQdUJIHoIlEKEAUHIeurXr88+T0/u3rnD1i1b6NO7N506d2b/vn0JwgCAhoYGAwcMYOPGjTx9+pRmzZpx48YN+f7YmBhOHtzCgA5V+eTni339luTNX5gTBzar8mOpjO2/4wheeJ9L97Ee3ThI4cKFE/3ehbQTgUAQ1EQEx8zJwMCA6tWrM2DAAMaMHv3Le9Y1a9Tg4IED2BYoQJeuXVm5ahUWsd70bVeRvyb8Qf6CJViy3YuJc3fQpHVPvM4fIjQkSOmfQ9W3DvT0jbEpUoXn3ufTfIyoyDDevrzDw+sHadasmXiEUcHELQNBELK15MYPKEru3LnZvHkz8+fPZ/bs2Tx6+BBfnydMX3aQyjUbyts5NOnA2oXjuHR6H41adld6Xaq+dVCodB2un1pPXFzcL1eIDAv5ysMbB/no+4iPvv/w0fcRX/19kCQJLR09unTpoqKqsw8RCARBEFRAS0uLkSNH8vbdOx7/8w8AhYqVi9fGwjIf5arU4cyRbSoJBKDaUFC8QmPO7JnF2xe3yF+kSrJtD20azbWTa8mZ2xZLm5KUqdEKS5uS31/5SlCpkpgGWdFEIBAEQVAhExMTwiMiACiX5xtvoizj7a9Wy4k1C8eqtCZVhQLb4jXRMzDln5uHkw0EcXFxPLp5GIeWw2nmMkfpdQnfiTEEgiAIKqSvp0dERAT6+vqJrpyooamJpqbqf1dTxZgCTS1tilVoxD+3jiTb7t3L24QE+FGy8u9Kr0n4PxEIBEGNxMDC7CUuLo6nT58iSVKSgxGjo6PQ1tZVcWXflbaNVnowKFnZCd/nNwkO8EuyzaMbh9AzMMW2eE2l1iLEJwJBFmTYdzqGfaeruwxByBSs/O6q7FzLV6zg0uXLVKpYES0tLSRJSjBZUXRUFNo66gkEPygzGBSv2ASZTMbj20cT3e/7/BY3zmygWIVGaGqpb0Gm7EgEgizmv0FAhILMQfQSZA8XLlxg/vz5DBk8mE6dOvHu3TuOHEm86zw6KpKYaPXMKPhfyggGRqYW2BSpygOvffG2R0WGcXDDKBaOqoa+oRlNOrsr9LzCr4lAkIUkFgBEKMgcRCjI2t6+fcufw4ZRp04dBg0aRJ06dWjQoAEeHh6EhobGa1utthOh34LwunBYTdUm9CMYKCocVG/Ym0c3DuL7/CYAzx+cY65reS4dXkyTzlNx/eu6UlZFFJInAkEWkdyFX4SCzEGEAvVR9m2D0WPGYGJszLy5c+XP348fN46AwECWLl0ar22hYmUpUbYah3etUmpNaaWIcFC5bjcsbUpycP1Idi3ry/IJ9TDOYcXwBXep39ZN3CpQExEIsoCUXPBVGQo+Xr3Hx6v3VHa+rESEgqzpn3/+oWPHjpia/v/ZeRsbG/r17cu69et57/siXvum7fpw2+s0714/U3WpqfLfcJCaoKCpqYVT1+m8eHieOxe206bvUgZMP5fuNQ6E9MmQgWDy5MnIZLJ4LysrK/l+SZKYPHky1tbW6Ovr4+DgwMOHD+Md48mTJ9jb25MvXz7c3ePfi7K1tUUmk+Hl5RVvu6urKw4ODkr7XMqQmgu9IkPBj4t+Yq9ftRGEjEhZvQSxsbEEBweTI0eOBPs6d+5MdHQ0L57cj7e9TsO2GJvm5ODOlUqpSdmSCgr/DQulqjan85+bGbn4ITWb9P/lzIWC8mXYiYlKlSrFqVOn5H/W1NSU//fs2bOZN28eGzZsoGjRokybNg1HR0eePHmCsbExAAMHDsTZ2ZkqVarQr18/6tevH29dcj09PUaPHs3582mfV1vd0nKBN+w7ndCV41LUVlkX78SOa1mjXCItsyfJ+zay0hXVXYagICEhIUiSlGggiImJAcA2x7d423V09WjRcQA71s2mZeeBWOW1U0WpKvHfUFDGrv2//6X61ReFhDJsINDS0orXK/CDJEksWLCAcePG0bp1awA2btyIpaUl27Zto2/fvgAEBgZSoUIFypYti7W1NUFB8RcL6du3L8uXL+fIkSM4OTkp/wMpWHp+2/9vKMgov7F/vHpPhIL/EKEg6wgMDASId7vgh4h/ZyzU0034mGE7l2Ec3buONQvGMX7ONqXWmBGkfkxCwkmdhPTJsH00z549w9raGjs7Ozp27MjLly8B8PHxwc/Pj4YN/78giK6uLnXq1OHKlSvybe7u7jg6OmJgYICGhgaNGjWKd3xbW1v69euHm5sbcXFxKa4rMjKS4ODgeC9VU0TXv2Hf6RkmDPyQ0epRNzGeQPWUcdvgRyBIrIcgMioK+P4z7Gd6+ob0GOzOxZN78L5zWeF1CcLPMmQgqFatGps2beL48eOsXr0aPz8/atasyZcvX/Dz+z67laVl/Pm/LS0t5fsAnJyc+PTpE+/fv8fT0zPeLYcfxo8fj4+PD1u3bk1xbTNmzMDU1FT+srGxSeOnTJus/sSACAXxSd63RTDI5O7dv4+OtnaiPysif/QQ6Okl+t76v3ehSMmKrJgzIlW/uAhCWmTIQNCkSRPatGlDmTJlaNCgAYcPf38ed+PGjfI2P6+DLUlSgm26urpYWFgkeR4LCwtGjBjBxIkTifo3qf+Km5sbQUFB8pevr++v36RAKb3//ysvXcQc4ZmJCAWZ14ULF6hcpQqGhoYJ9v2YgyCxHgIADQ0N+o6Yw7NHtzl9OOvfNhDUK0MGgp8ZGhpSpkwZnj17Jh9X8N/eAAB/f/8EvQYpMWzYMMLDw1m2bFmK2uvq6mJiYhLvpWrpDQUZOQyIcQRJE70FmU9kZCReXl7Url070f03b97EyMiIqJz/n7P/6rmD7Nm8gId3rxIVGUGZir9Ry7EN6xdNICI8NNHjCIIiZIpAEBkZyT///EOePHmws7PDysqKkydPyvdHRUVx/vx5atZM/UIYRkZGTJgwgenTp6tlPEBapTUUZOQwIKSMCAaZx/Xr14mIiEgyEJw6fZo6deqgrf19gFx42Ddmj+/J6nljGObiQOvfLBjqXIu42Bi+fHrPzvVzVVm+kM1kyEAwYsQIzp8/j4+PD9euXaNt27YEBwfTvXt3ZDIZrq6ueHh44Onpibe3Ny4uLhgYGNC5c+c0na9Pnz6Ympqyfft2BX8S5UptKBBhIGsRwSDju3DhAlaWlhQtUiTBPj8/P7y9vWlQv75826mDW4gI+8b6g49Ysu0qvYfNxCqvHc8f3wXg8O7VqipdyIYy5GOHb9++pVOnTnz+/BkLCwuqV6+Ol5cXBQoUAGDUqFGEh4czYMAAAgICqFatGidOnJDPQZBa2traTJ06Nc2BQp1CV45L0UBDEQayLvGIYsZ14cIFateunWB8E8Cnz58BsCtYEPg+DurAjuXUqNucPPm+bytSsiItOg0E4MunD4SHhaiociE7ypCB4O+//052v0wmY/LkyUyePDlNx3/16lWCbZ06daJTp05pOp66/SoUiDCQ9f3oKRDBIOO4ffs2z1+84M8//0x0v2Xu3ADcex1LdVu4c+0Mb14+ZpDbokTbm1vkAfIoqVpByKC3DITU+Xj1XpIXfREGshdxGyFjuHHjBj169KBChQpJTodubm6OpqYmn/3fA7D/72XYFi5F2cqJjzcQBGUTgSAL+fniL8JA9iWCgfpcvnyZHj17UrpMGTZu2JDkHAOamppYWFjwxf89fu98uHb+MC06Dkj09oIgqIIIBFnMjxAgwoAAYv4CVTt79iy9evematWqrF2zJtG5B/4rd+7cfP3sx7NHd77PpSIW+BHUSPzry4IyaxgQcxAohwgFqnH06FH69e+Pg4MDy5ctS7Jn4L++BoVjYGTCbw1a0bhVDxZNG8jFU54qqFYQEhKBQMgwxLTFyiNCgXLt27ePIUOH4uTkxOJFi5KcefC/JEni80dfLCzzIZPJGDJ+KbUbtmXmGGduXDqmgqoFIT4RCJQgq683kBIFNxxSdwnCT0QoUA5PT09GjBxJ2zZt+GvOHLS0UvbwVmBgIBEREVhYfV/jQFNTk5FT11HZviHuwztw70bmXZpdyJxEIFASVYaCjNbV/iMMiFCQ8YhQoFihoaFM9/CgWbNmTJ8+PdFF1JLy4cMHACraaQPw4vE9bnudYtzsbZQsX4NJQ1sTHPRVKXULQmJEIFCi7NhT8HMIEKEg4xGhQHG2b99OSEgII0eMQCOVAwJNTU0B+Pz5M29fP2VUn0ZMGNyStQvH0d5lBOFh3wgJ/KKMsgUhUSIQKJmqQkFG6CVI6uKfmlAgxhEImcXXr19Zs3YtrVu1wtraOtXvt7a2xsLCgrPnzjFhUEvMzHPTe9hMDu5cwdyJvQHQ00/+KQVBUCQRCFQgO/QU/OqiL3oKMhbRS5A+L1++pE3btsTGxjJgwIA0HUMmk1G+fHm2b99OxLevTF28j7bd/mTWquPExcUCoGdgpMiyBSFZIhCoiCpCgbp6CVJ6sRehIGMRoSBtvLy8aNuuHTra2uzdswcbG5s0H6tGjRroaGuzfPly+foFZSr+xpJtV5k4byeGRqpfXl3IvkQgUKGs2FOQ2ot8StqL2waqI0JBfH5W5ZPdv9fTE5cePShZsiS7du1KVxgAqFC+PEePHqVy5coUNvKVb89lmRf7ei3SdWxBSC0RCFRM2aFAlb0Eaf2NX/QUZCwiFPyaJEnMX7CAkSNH0rJFC9atXYuJSfp+e//48SNt27WjT9++vH37FiBeKBAEVROBQA2yQihI70VdhIKMRYSCpEVGRjJs+HCWLFnCyBEjmDFjBjo6Ouk+7r59+9DS0iIqKoq27drx8OFD4HsoEMFAUAcRCNREFaFAWcFAURdzEQoyFhEKEvr69SvO3bpx7NgxFi1cSL9+/RSy+JAkSezes4dGjRqxe9curKys6NS5MxcvXpS3EaFAUDURCNRIVQMNM8IjiYnJrGsuZGUiFPzfjycJfHx82LplC02bNlXYsR94e/Py5UvatmlDrly52LZ1K1WqVKFX797s3rNH3k70FgiqJAJBNqHIYKCIC7kIAxmXCAVw7do12rZrh7a2Nnt276ZixYoKPf6tW7fQ0dGhatWqABgYGLByxQpat27N6NGjGT58ON7e3vL2PweDgC8f8X31RKE1CYIIBNmMooJBei7ov3pvRu3RyE6ycyjY6+lJdxcXSpYsye5du8ifP7/Cz3H//n1KlSyJtra2fJuWlhYe06czZfJkrt+4QYuWLenUqRMHDx0iJCQEgAK6L7mwcwo9m5diVK+GSJKk8NqE7EsEgmxKEcEgLaFAhIHMI7uFgg+W5Vi4cKFCnyRIyv379ylbLuG/dZlMRteuXTl75gxLFi8mNi4OV1dXKlepQqvWrSlbrhwzZs6kTOmSfP3sxyc/cTtBUJyULcslZFmJXYBTMw/AS5ffUzw4UNwmyHwk79vISiu2uzwjio2NZcLEiWzfvp3hw4bRv39/hQweTExgYCCvXr1iyODBSbbR0tKiSZMmNGnShHfv3nHmzBnOnD1Lp06daNO6Nbly5aKmvT3fXp2iZhFHnn9L33wIggAiEAiJ+Dkk/CogpCQUpCQMiN6BjCmrh4LIqGj+cF/I/gvXmTljBu3atVPq+R48eACQaA9BYvLmzYuzszPOzs7ybZIkkStXLry9vWno6BhvfIEIB0JaiUAg/FJKAkJyoUCEgcwvM4WCiMgoNhw6jXWunDSvUy3JdsGhYWw+fJblu4/w/vNXli1diqOjo0Jr+fr1K8OGD+ft27d8+/aN0NBQwsLCyJEjB7YFCqTpmBERETx99oycOXPGG3j4w49wIIKBkFoiEAipllRASCwUhK4cl+7bEkLGkNFDQVxcHDtPXWLKqu288fsEQP+2TngMdEbnP4P3Xr3/yPI9R9l06AxhEZG0rleDYV1aYvGbYsMAwHQPD+7du0f79u0xMjTE8N9XiZIlU3xL4v79+1y9epVH//zD43/+4aWPD3FxcchkMsqVLZvk+0QwEFJLJolhqukSHByMqakpQUFBaRqAFLpynBKqUq8f8ytkxc8m/F9GCgdnbtxn/PLN3HvqQ/PaVZnctwvnbz1g1KINVChWkLqVyxAVHcNz3w8cvnwTU0MDerZwpG/rxuTNbf7LNQzS4sKFC/To2ZNZM2fStm3bNB3j1KlT9B8wAAN9fYoVL06J4sUpXqIEJUuUoGjRoujr66f6mFklIDQs9//ZItP7c1j4TgSCdBKBQBASp4rA8Or9R4b+tZpT1+9SrXRRpg/oRo2yxeX7bzx8yuA5qwgM+YaOthY5jI3o1rQunRrVwVBfT95O0YEgPDycRo0bU6BAATZt3JigN2DDxo1s3LCBDh060KFDB8zMzBIc4+7du3Tp2pU6deqweNEiNDU1FVrjD5k1IIhAoHgiEKRTev4hijAgZAfKCAa+fp8ICYtg1KL1PH3zjr+G9qRZ7appfjJA0YHA29ubFi1bsnXLFqpXrx5vX0hICHUcHMhtYcHrN2/Q0NCgRYsWuHTvTtGiRQF49eoV7dq3x9bWls2bNqGnp5fYaRQuM4UDEQgUT4whUBMRBoTsQNFhQJIkNhw8xbD5a4mKjgFgw2TXZAcPqkPevHmB74MKf7Z582bCw8JYv349Ojo6/L1jB1u3bmXHjh3Y29vTsUMH/po7F1NTU1atXKmyMACIpxWyOREI1ECEAUFIPUmSGLlwHct3H6VXy4a0rW/Pl6AQmteuqu7SEsiRIwcmJia8efMm3vZv376xdt062rdvT548eQAYOGAAvXv14tjx42zYsIHBQ4Zgbm7Ont27E72VoCoZdVDi/0NLIbXWkRWJQKBiIgwI2YWiewf+2ryX5buPsnBEb3q1bKTQY1v53VXobQOZTEb+/Pm5d/8+d+7cITYujtiYGE6ePElYaCh9+/aN115HR4fmzZrRvFkz7j94gKmJCTY2GeNCnFF6DcQiT8onAoEKiTAgZBfKuFXgsX4XA9o1VXgYUJaiRYuyd+9eTpw4EW9740aNCAgIwNraOtH3lS1TRhXlpYmqew1ECFAtsZaBiogwIGQXyhhEKJPJ0NbSIr9VLoUfW1mmTJ7Mnt27adu2LWVKl8bY2BiAY8eP49ytG5GRkWquMO1+rL6orAu2WPZZPUQPgQqIMCBkRlExsRy+9xQDHW0alSmcovco81FDIwM9voVFKO34imZgYMCx48c5sH8/jg0b0sDRkaJFi2JoaEi3bt04fvw4zZs3V3eZ6abIWwoiBKhXpughmDFjBjKZDFdXV/k2SZKYPHky1tbW6Ovr4+DgwMOHD+O978mTJ9jb25MvXz7c3d3j7bO1tUUmk+Hl5RVvu6urKw4ODgqrXYQBIbN59TmQyfvOUcxtMc6rPWm7bCebLv96ZkllhYFT1+/SYtg0Pn4JRENJCw7B93EEinTnzh3Wrl3L0KFDWbRwIYMGDqShoyP2NWtSrWpVduzcqdDzZQSp/c3+vz0NIgyoX4YPBDdu3GDVqlWU/WmKztmzZzNv3jyWLFnCjRs3sLKywtHRUb5uOMDAgQNxdnZm//79HDx4kMuXL8c7hp6eHqNHj1Za7SIMCJnJl29hDNx8mDITlrHq3C1aVyqB14Re/FGrIgM2H2bDpbuJvk9WuqJSwoAkSczZtIcWw6bxNTiEVeMG8WeXFgo/j7JMmjSJMmXK0KtXrwT72rdvj5eXF69evVJ9YSrw80X+5wu/CAAZU4YOBN++faNLly6sXr063uM3kiSxYMECxo0bR+vWrSldujQbN24kLCyMbdu2ydsFBgZSoUIFypYti7W1NUFBQfGO37dvX7y8vDhy5IjCaxdhQMgsJEliy5X7VJi0kn23HzO7vSPPZg1mbsdGlM6bm0kt6pDbxJAJe88QFxd/HjNl9Qr4fQnAZfICJq/ajluPdlxYPZMuTRzirUmQ0QWHhFClShW0tBLemW3cuDEmJibszIK9BD8TF/7MI0MHgoEDB9K0aVMaNGgQb7uPjw9+fn40bNhQvk1XV5c6depw5coV+TZ3d3ccHR0xMDBAQ0ODRo3ij062tbWlX79+uLm5ERcXl6KaIiMjCQ4Ojvf6mQgDQmbx6P0nGs3dQr9Nh3AsVZDbk/vSv24VDHW/zwLn8ymABnM2ER0Ty5a+rdHQ+H+X/c9hIC4ujuDQsDTX8uT1O4bMWUmFzkMo1KI3R6/cYtOUYYz/o0OaZyBMLUXeNrCzs8Pn5ctE9+np6dGyZUv27N1LdHS0ws4pCOmRYQcV/v3339y+fZsbN24k2Ofn5weApaVlvO2Wlpa8fv1a/mcnJyc+ffpEcHAwFhYWiZ5n/PjxrF+/nq1bt8ZbbzwpM2bMYMqUKan5KIKQIXne+ocea/djZ5GDg66dqFvcLt7+6y/f0W7ZTnLo63FmdHeKWJr/f2epCvj6feLW4xfc+uc5N/95zt0nL/kWHoHL7/WZ0Lsjuc1MU1SHJElMW7uDuVv2YZkzB41qVGBsz/bUqVQmxcfIiAoWLMj58+eT3N+4USM2bdrESx8fiv07ZbEgqFOGDAS+vr4MHTqUEydOJDtt58+/NUiSlGCbrq5ukmEAwMLCghEjRjBx4kQ6dOjwy9rc3NwYNmyY/M/BwcEZZgKR//qx4mBKqLtHIzPVmlUcvf+MHmv306pScVZ0+x1d7YQ/ChadukZEdAynJ3cnl5EBADGxcSw/e4MF45bx8UsgAHlzm1OpeCGGd22FTAbztuxj27HzlC1iS9kitvRu1YjShQokWcvtxy+YuWE3rp1bMOGPDujp6iTZVhUUNUlRQTs7tmzZQnR0NNrJ3OrQ0VHv5xWEHzJkILh16xb+/v5UqlRJvi02NpYLFy6wZMkSnjx5AnzvKfgx/SeAv79/gl6DlBg2bBjLli1j2bJlv2yrq6uLrq5uqs+hSqm5wP5or64LbWaqNbOSJImwqGi+RUTxLTKK+74f6bX+AE3KFma1S3O0NBO/c9inTiX23X7MxSevaVWpBPfe+DFoyxHu+vrh8lt5nJo2pmKJQliZx59e16VZA7YePcfdpy/ZcuQcd5+85PzqmUnW9/qDPwCDO/yu9jDwgyJCQS4LC2JiYvj48SP58uVLsD884vsjlPoqXKtAEJKTIQNB/fr1efDgQbxtPXr0oHjx4owePZqCBQtiZWXFyZMnqVChAgBRUVGcP3+eWbNmpfp8RkZGTJgwgcmTJ9OsWTOFfAZ1Se0F9r/vU/WFNjPVmlkdvf+MXusPEBQefxKcBiULsuGPlkmGgZCISOYdvwrA5iv32eb1gBMPX1A8Ty7OjnKhsp11kgMKzU2NGdKxGZIk4f1iOOY5kl99btPhMwDsPXOFXi0bZpiBg+kNBdu3baNI4cLxfmn5r6tXr6Krq4uBgUGazyEIipQhA4GxsTGlS5eOt83Q0BBzc3P5dldXVzw8PChSpAhFihTBw8MDAwMDOnfunKZz9unTh/nz57N9+3aqVctYK6elVFovsP99v6outJmp1sxqm9cD+m86RKPShWlbuSRGejoY6epgrKdDmXyWSYaB6NhYGs/dwj3fjwBcePqaagXzMqNtA3rXqYi2piYAkvftZJ8yOH71Ng9fvGHenwkfu/uvib07oq2lxZglG9lz5gqb3YdhbWGe7HtUJa2h4MaNG1y8dImlS5ag+e/39V9Xr15l08aNtGnbVizXK2QYGTIQpMSoUaMIDw9nwIABBAQEUK1aNU6cOCGfHjS1tLW1mTp1apoDhbql9wL73+Mo+0KbmWrNrG69ek+fDQdpW7kka3okfVsgMbFxEmXyWdK0XFFqFytAFVvrRMcY/Mr6g6cAkh0/AFCxeGF2zRrDde+ndJ04lxo9RrJt+gjsy5VM9TmVIbWhQJIk5s2bR6mSJeM9CfWDt7c3/fr1o2rVqkycMEGBlQpC+sgkSZJ+3UxISnBwMKampgQFBcmTfmbpek+Osj5DZqo1MwsOj6T2jPXoamtydrQLBjrK6YZPqofgyKWbtBszkwrFCnJ44SRMjQxTdLxPAUF0nTCXhy/ecHX9HGyskh4QrGopDQWXL1+mW/furF61inr16sXb5+PjQ/sOHbCxsWHzpk0YGqbsexESKljo/8sfJ/ZzWEi9DD0PgfBryrjAKuu4manWzM5EX5ctfVvj8ymQIVuPoqzcL3nfTrDtW1g4f85bQ8PqFbi4ZlaKwwCAhZkp2z1GYqivR0/3hcTExCqy3HRJyRwFnz59YubMmZQvV466devG2/f161e6u7hgZmbGmtWrRRgQMhwRCDIxZV8IFXn8zFRrVlE6b26WODvx9zVvCo5aSJslO5h64Dy3Xr1P8j2SJPH841diYlM2UVdirj98xlv/z0THxHLhzkMiIqOYv20/172fpiiY5DQxZv2koXh5P2XGhl1prkPVDh8+TOMmTfD/9IlJkyYleAT61q1bvHv3jmVLl5IzZ041VSkISROBIJNS1QVQEefJTLVmNe2rlOKQa2d61qqAJMGqc7fosXZ/om19vwbRdulOyk9aQZkJy1h4wovAFKwu+HMvQd3KZdg45U/e+PnjNGQy+X/vyfhlm6nbbyxVuw/H+8XrJI70fzXLlWB8z/bM2riHC7e9U/ZhVSCxXoKAgACGuroyZOhQalSvztEjRxKsvQLIBxeammbeyZaErE2MIUgndYwhUMeFL62fKTPVmh0sPOGFx+GLPJkxmBwG359/j42LY8XZm7gfOI+pvh5jf6/Flee+7LrxEB0tTVpVLIGVqREGOtpUss1D/ZIFExw3sbEEkiRRtftwIqOiGN29Lblz5mDs0k2EhUdwYc0szE2THwAcGxvL767uPPP9gNeGv8j1i8cXVenHeIKzZ8/iNnYskZGRTPn3seWkplk+f/48Pf/4g0sXLyb5KKKQcmIMgeKJQJBOqg4E6vwtOLWfKzPVml2ceeRDy8V/o62pQdNyRXEqW4QVZ29y6/V7eteuxOSWDpjof59462PQN9ZcuM3Bu08JiYgkMCyC2DiJ13+5JnjqIKWLHL3+4E+tXqMpV9QOzznj0NJK+Ejef334/JVKXV35o0VDpvbvmrYPnU5bjp7j4p2HTB/gLA8lzwwL4eHhwc5du6hTpw4zPDx+OSnaj8GG58+dS3SiIiF1RCBQPBEI0kn8Q8y4RChInF/QN3Zc82ar1wMevf9E8Ty5WNLVieqFkr9Ieb/zp/rUNewd1IGGpQsl2J/SUHD25n2aD5vGkI7NmD7g1+uHDJu3hv3nr/Fkz4pfBghFe//pC+U7DyUsIhLLnDlYPX4wWpoa9Jq1msDAQMa6udGhQ8oWXzp27BgDBw3iwvnz5M2bVwXVZ20iEChepp2HQBB+RcxTkDgrUyOGNqzOEMdqvP4ShHUOY3R+utDGxUm8+PSVu2/85K8fExXd8/VLNBD8SmxsLJ7nvLh89xGmhgYs2LYfl9/rUyS/dbLvc25aj5V7j3Hq+l0a16yUbFtFG7dsM/q6OpxfNYMRC9bR7E93AKpVrcrWLVtStY7Jpk2b5EuxC0JGJAKBkKWJUJA0mUyGba4cCbZ/CAyh8dwtvPgUAED+nKaUL2DFkAbVqFDAitpFk59oKCk3Hj2j+6T52Fjm4vdaVfitQikK5bP65fvKF7UjVw4T7j59qdJAcOXeP+w8eYllY/pTws6Gg/MnsHLvMTQ1NPi93yg0NFI+Jvv27dtcu36dZcuWqWwpZ0FILREIhCxPhIKU+xYRRdulOwmPjmHf4I5UKGCFuVHK5tr/1VTGlUoUxtoiJ/WrlmPp6P4prkkmk6GjrUVcnOrubsbGxjJ8wVoqlSiMs9P3+QQ0NDTo39YJAL9UhAGANWvXUrhQIRwbNFB4rYKgKOKxQyFbEI8k/tqrz4F0WrGbF/4B7BnUngalCqY4DKSEtpYWvVo0ZMeJi3wNDknVe2UyGXEqHO607sAp7j97xVzXnqnqCUhKSEgIVlZWCjmWICiL+NcpZBsiFCTuXUAwQ7cdpfzEFTx8/4ltfdtQJl/qlxFPiR4tHImNi2PToTOpep+GTEZcXNonS0qKJEkJJkv6EhSC++rtODvVpUqpogo5T5MmTbjq5cXnz58VcjxBUAZxy0DIVsTtg/+Ljo1loudZVp27haGuDpNbOtDHoVK61j341W2D3GamtKlXk/UHTuHauUWKjyuTydJ1yyDoWyjPfT/w9M17nvt+fz19854Xb/3Q1tSkbBFbyhSxpVwRO87evE9MbBxT+nVJ8/l+9uHDBwAiIn490ZMgqIsIBEK2I0LBd1MPXGD5mZuMbmrPwHpV5fMPKJuhvh4aGikfWHfsyi3e+H2ihF3KR/QD3Hn8grHLNvOPjy+fAoLk263MzSia35rKJYrQwbEWUdEx3Hvmw5FLN1m68zAAs4a4YJkzR5LHTs0KiJcvX2b58uUM+/NPMf+AkKGJQCBkS9k9FJx+9JJ5x68yrXU9XBtWV+m5L919xG/lS6Wo7Ru/TwyYtZyG1SvQ3vG3FJ/jwm1v2o+ZhV1eS/q0akRhG2uK5LemsE0ejA30k3xf0LdQXr77SPmidik+V1IkSeL+/fsMGz4c+5o16devX7qPKQjKJAKBkG1l11DwKSSU3hsOUr+kHUMaVFP48ZO7beAfEMTjV28Z3b1tovvff/rCzpOXuPnoGTf/eY7vx8+YmxqzbEz/FD+ud+TSTbpOnIt9uRL87TEKQ329FNduamRIhWIJp2ZOjQ8fPrB//348PT15/uIF+W1smDt3rhhQKGR4IhAI2Vp2DAUfAr8RGBbBndd+LDzpRR+HShjq6qjk3CGhYQCYmRjF2/4pIIi/tniy2vM4mhoaVCxeiNb1alK5RGF+q1CK3Ga/XhAoODSMJTsOMXPjbn7/rQrrJ7mim4LxEJIkERgSipGBHtpaSf9IjI2N5fHrd4SFRxAeGcV7wyAiIyKI+PcVGhrKufPnuXLlCrq6ujRs2JBx48ZRs2ZNtJI5riBkFOJfqSBkM2VtLHkwtT+zj17G/cB5Fp26xvBGNfmjdgX00zGg8IfkBhXaWVtiamTA7tOXef/pC36fA3jz8RO7Tl1GQyZjRNdWDOrwOyaGKX/cMTQ8ghV7jrJg235CIyIZ2rE5k3p3ijfNsSRJPH71lpfv/Hj57iM+7/145/+FV+/9eeP3ieDQMNrWt2fjlD8TPYd/QBDOE+Zy6e6jJOvQ0dGhfLlyzPDwoHHjxhgbJ794kyBkNCIQCEI2lNfMhIWdmzCsYQ1mH73MuL2n8Xr5li19Wiv1vBoaGtQoW5wtR86y5chZcuUwwdI8B31aNeLPLi1/uQLiz7YePce4ZZsJDAnF5ff6jOreGmsLc/n+gOBv/H3iAusOnOLRyzcAyABkMsxNjSlaIC/92zpx6e5D3von/kjg7cfP6Th2DtExseycOZoCeXLzLW859PT00NXVlf+vuCUgZHYiEAhCNlYgVw6WOjelfH4rhv99gvcBIVibKfc32y1ThxMQ/A0LM9Nku+h/5eCF6/T1WEqjGhUY26M91hbmxMbG8ur9R3w/fmbT4TPsOX2FqJgYrMxz0KVxHa4+eEJkVDR9Wjfm9PW7XLn/mC+BwdStXJYLdx4mrPXoOYbMWUnZwrZsmz5CHjb8rGzTXLcgZFQiEAiCQIeqpRm/9wwbr9zFrWmtNB8nJSse6uvqom+Rvkcc7z97xR9TF1HAyoJjV25z7MrtBG0KWOXGyjwHASGhFLGx5sCF65iZGHF08WQK5cvDCOdWnLx2l5bDp1GtdDF8/T5x+sY96lcpR3RMDG5LNrJ891G6Na3HguG9UzQeQRAyMxEIBEHARF+XdpVLsfHSPUY1sUczA3Z/S5LE/eev2H/Oi/UHT1PExpojiyYxeeU2VnkeJ0+unMwY1A0LM1MMdHWYuXEPF+885NCCiVQrXYy4uDhevvvIpbuPsMyZAy1NTeZv24eJoQEuv9fnue97mv85lSY1K/EtLJyrD54wf1gverdqJBYkErIFEQgEQQCgR63ybLh8l4N3n9KyYnF1lyMXGxvLrI172H78Ai/f+ZHDyJDfa1dlcp9OmBoZMn94b+pVKceAmcsYt2wzaycMQUNDg+NXb7NnthvVShfjw+evjFywjv0XrhMXF8eivw+S38qCaw+ecmD+eKqVKcaJpVPxPHuVccs2Ex4ZxZFFk7AvV1LdH18QVEYEAkEQAKhYIA8NSxVi5I4TOBS3JYdByp/fV6bomFgWbj+AhZkp++aOp07FUuhox+++b1a7KhWLF+IP94U4DZ3C4A6/A1C/ajkAJizfwsW7j5g/7A8qlyxCzykLOXPjPjtmjJJf9GUyGa3r1eT3WlWIio7BKJkJjAQhK8p4/YKCIKiFTCZjcdcmhEZG47b7VOrfn4LxA2mhp6vDmB7teO33CSvzHAnCwA95c5szrGsr4uLi5I8tNh82jc1HzrLr1GVGdmtNr5aNKF+0IBfXzOLm5vk0rlkpwXF0tLVFGBCyJREIBEGQy2tmwsx2Ddh85T4nvF+ouxy5ge2cKJzPiiFzVvH2Y9IrBm46dJqSBfMz0rkVGya7EhEZRT+PpRjq69L99/rydob6ehTJb62K0gUh0xCBQMjWstsshSnhXLMsDUoWZODmw3wIDFF3OcD339oXj+rH09fvKNV+IL2nLebF2w/x2vgHBHHo0k16NKuPpqYm7Rr8xtmVHpxfNYP9c8cnu4aBIAgiEAjZmAgDiZPJZCzv1hQNDRmtl+wgODzy1+9R0u2C//qtfEke713BtAFdOXjhOuOXbY63f+vRc2hoyOjYqHa87ZVLFqFKqaIKrcXK765CjycIGYEIBEK2FHZ5j7pLyNDy5DBm76AOvPkSRJeVe4iKiVV3SQAYG+jTt3Vj4iSJyiWLyLdLksTGg6dpUacaOU3ElMGCkBYiEAjZzo8woIrfajOzUnlzs61fGy4/92X4juNJtlP193jN+ymh4RHyJwgALt/7h2e+73Fp1kBldYheAiGrEYFAyFZEz0Dq1Clmy8B6VTh096m6S5E7ff0euXKYULawLQAxMbEs3XmIQvmsqF2hlHqLE4RMTAQCIdsQYSBt9LS10NbUTHSfOnpZvoWHExgSyroDJ3nw/BV1+43l0KWbjOzWRuUzCopeAiErERMTCdlCUmFAVroiknfCefCF/wuJiEJHK/FAoA4zBnVHkmDoX6vR0NCgWH5rziyfpvCBgyll5XcXP6vyajm3IChShuwhWL58OWXLlsXExAQTExNq1KjB0aNH5fslSWLy5MlYW1ujr6+Pg4MDDx/GX6nsyZMn2Nvbky9fPtzd3ePts7W1RSaT4eXlFW+7q6srDg4OSvtcgnr8qmdAjCVI3NH7z3Cav5Ulp69jlytHgv3q+t60tbSY++cfrJs4lMl9OnF53Ry1hQFByEoyZCDIly8fM2fO5ObNm9y8eZN69erRokUL+UV/9uzZzJs3jyVLlnDjxg2srKxwdHQkJOT/z0wPHDgQZ2dn9u/fz8GDB7l8+XK8c+jp6TF69GiVfi5B9VJ6m0CEgvie+H2m3bJdBISGs7FXS/YO7qDukhLo0LAWw7u2yhCrEIpbB0JWkCEDQbNmzXBycqJo0aIULVqU6dOnY2RkhJeXF5IksWDBAsaNG0fr1q0pXbo0GzduJCwsjG3btsmPERgYSIUKFShbtizW1tYEBQXFO0ffvn3x8vLiyJEjqv54goqkdsyACAX/VyS3OUUsc1LQwow2lUsmGEMgvitByHoyZCD4r9jYWP7++29CQ0OpUaMGPj4++Pn50bBhQ3kbXV1d6tSpw5UrV+Tb3N3dcXR0xMDAAA0NDRo1ahTvuLa2tvTr1w83Nzfi4uJSXE9kZCTBwcHxXkLGk9YBhOJC952GhoyB9aty8O5TZh+5zLeIKHWXlOGJXgIhs8uwgeDBgwcYGRmhq6tLv3798PT0pGTJkvj5+QFgaWkZr72lpaV8H4CTkxOfPn3i/fv3eHp6opnIKOnx48fj4+PD1q1bU1zXjBkzMDU1lb9sbGwStAm7vEeMaM/ERCj4rlvNcvSvW5mZRy5RZsIyDtx5AojvRxCyqgwbCIoVK8bdu3fx8vKif//+dO/enUePHsn3//x4kSRJCbbp6upiYWGR5DksLCwYMWIEEydOJCoqZb8Bubm5ERQUJH/5+vom2VaEgsxLVrpitr/w6WhpMqu9I3en9ENHS5N9tx9n++9EELKyDBsIdHR0KFy4MJUrV2bGjBmUK1eOhQsXYmVlBRCvNwDA398/Qa9BSgwbNozw8HCWLVuWova6urrypx9+vJIjQkHmJi6AkM/MhKCIaEpXKq/uUgRBUKIMGwh+JkkSkZGR2NnZYWVlxcmTJ+X7oqKiOH/+PDVr1kz1cY2MjJgwYQLTp09X2ngAEQoyt+wcCmSlK/IqpzXfwiMoV9RO3eVkeGIcgZCZZchAMHbsWC5evMirV6948OAB48aN49y5c3Tp0gWZTIarqyseHh54enri7e2Ni4sLBgYGdO7cOU3n69OnD6ampmzfvl3Bn+T/RCjI3LJbKPjvLZNb/7wAoGwREQgEISvLkDMVfvz4EWdnZz58+ICpqSlly5bl2LFjODo6AjBq1CjCw8MZMGAAAQEBVKtWjRMnTmBsnLZVzrS1tZk6dWqaA0VKhV3eg4F9G6WeQ1Ce7DCrYWLB5/Cl65QrakduM1M1VCQIgqrIJEmS1F1EZhYcHIypqSlBQUHy8QS/6g0QoUD5VNEjkxXCwa96PiIioyjwe0+GdWnJaJe2KqoqcxPTGKtGwUKF5P+d2M9hIfUyZA9BVid6CrKGHxfTzBAMUnvL4/UHf87desCV+4/5Fh5B8zrVlFSZIAgZhQgEaiJCQdahqmCgqnEM7z99oWaPkQSFhlHAyoL+bZ0obptPJecWBEF9RCBQIxEKshZFBgN1DWKUJImBs1agp6vD3e2LsBDjBgQh2xCBQM1evngR716YkPll5icSNh0+wwmvO+yeNUaEAUHIZkQgUILUDip6+eJFittm1eecFdlTIh7xTBtfv0+MXrSBrk51aWJfWd3lCIKgYiIQZDK/ChuZNTAo6vaJCANpI0kS/Wcux8TIgNlDXNRdTqYlnjAQMjMRCLIYRfxAUleoSG8oEGEg7bYfv8DZm/fx/GscpkaG6i5HEAQ1EIFASCAloUJZoSGtoUCEgbT7GhyC25KNtK1vT8PqFdRdTqYlegeEzE4EAiFNfv7hp8iAkNpQIMJA+kxasY2o6BhmDnZRdymZlggDQlYgAoGgEIn9QExPSEhpKBBhIH28Hjxm3YGTzPvzD/LkMlN3OZmSCANCVpEhFzcSsgY/q/LyV1r86mIvwkD6RMfEMOSvVVQsXoheLRuqu5xMSYQBISsRPQSCSqT1FkNSPQUiDKTf/K37+cfnLRdWzUBTU1Pd5WQ6IgwIWY3oIRDUIjW9Bz9f/EUYSL+zN+8zde0ORjq3okLxpCfGEmufJU6EASErEoFAULuUhIMfIUCEgfR7+/EzLpMXULdyGcb1bJ9kuw0HT2Hj1IO/NnsSExOrwgozNhEGhKxKBAIhQ0kuHIgwkH6RUdF0nTAXfV0d1k0cmuStgkV/H2TgrBWULGjDlNXbqd9/HFHR0SquNuMRYUDIysQYAiHDUuajjdnVmMUbuPfMh1PLppErR8J14yVJYsb6XUxft5PhXVsxpW9nJq3cxvLdR9RQbcYiwoCQ1YlAIAjZQExMLHO3eLLK8ziLRvShUonCibb7EQYm9+3MSOfWAFzzfkLdymXQ0dZWZckZhggCQnYhAoGQafhZlRe9BGnw5PU7+k5fwq3HLxjj0paeLRwTbef94jUzN+7GrUc7eRj4HBjMpbuPWDq6nypLzhBEEBCyGxEIBCGLio2NZcnOw0xZvZ38lhacWjaVaqWLJdpWkiSGz19LQWsrRnVrLd++8+RFtLW0+L1WVVWVrVYiBAjZmQgEQqYieglS5tmb9/SbsZRr3k8Z1P53JvXpiL6ubpLtd568xKW7j9g/b3y8WwObj5ylSc2KiY43yEpEEBAEEQgEIUuJio5m8Y5DeKzbRd7cOTmxxJ2a5Uok+55vYeGMXbqJlg7VaVC1vHz7vWc+3H/2igl/dFRy1eojgoAg/J8IBEKmI3oJEnf+tjfD5q3hme97+rd1YmKvjhjq6/3yfS/ffcTvSwB9WzeOt33r0XNYmJniWL28kipWHxEEBCEhEQgEIZP78DkAtyUb2XXqEjXLFufy2tmUKWyb4vcXzGsJwFv/L/JtUdHR7DhxkU6N6qCtlTV+TIgQIAjJyxr/TxfSzefVK/w+fMDAwAB9fX2MjIywtrZWd1lCEqJjYvD/GoTnuatMW7MDXR1tVo4bRJfGdZDJZKk6lpGBPtYWOXn25r182wmvO3wODKZLkzqKLl3lRBAQhJQRgUAAoG/fvrx48SLetn59+zJy5Eg1VZS8rH7bIC4ujoCQUMxNjQG4+egZczbvxffjZz58DuBTQBCSJKGhoUHvlg2Z0KsjZiZGaT5fuSJ2HLxwDbcebdHR1mb57qNUKFYwVT0NGYkIAYKQeiIQCADYFiiAkZER06dNIyw8nLNnzrB8xQpq1KjBb7/9pu7yspXQ8AhcJi/g1PW7rJ/kyst3fkxZtZ1itnmpUaY4eXKZkSdXTqzMzShWIC+21pbpPueE3h2p1Ws0i/4+RJVSRTh36wHbp2fMMJgUEQIEIX1EIMhm4uLi0NDQSLDto78/xsbGlCjxfUR6hfLlefDgASNGjuTY0aPkyJFDDdUmLyv2Enz8Gki70TN58uotv5UvSZfxfwEwrEtLJvbuqLT7+eWK2DGo/e/MWL+LgvmsqFi8EM1qZ/y5B0QIEATFEYEgG7n/4AHt27fHtkABatrb4/vmDZ8+f6Z8+fJ4e3uz4++/5W01NDSYPXs2DnXrsmPnTvr26aPGyrO2uLg4vB48YcfJi+w5fQUdHS2OL3WnTKECLPz7IBWLF8KhUhml1zGuZ3v2nrnCo5dvODB/QqrHIqiCCACCoDwySSx4ni7BwcGYmpoSFBSEicn3yVte/nQvXtXi4uLw9fXl2bNnPH/+nG/fvqGlpYXXtWv4+vri4ODA6dOn+fr1KxUqVODmzZs4NWnC4sWLExzrz2HDuH//PqdOnsyQFwhQz6JHMTGxnLv9gAu3H1KsQF7sy5WgQJ7cqfqOHr96y44TF9lx8iKvP/hjY5mL9o616NemMdYW5kqsPmnXvJ9w+vo93Hq0U+vft7jwC79SsFAh+X8n9nNYSD3RQ5BFxMXF4e7uzu07d3jx4gUREREAGBsbY2pqSkxMDLGxsQwZPJjOnTszZfJkPn/+jJWVFc+ePUvyiQKnJk04cOAAfn5+5MmTR5UfKUOSJImNh04zedV2PgUEkSuHCZ8DgwGwtshJzbIlsC9XgobVK8jv7UuSxOV7//D09Tue+b7nxdsPPH39nme+78lhZEirujXo2Kg2NcsWT3A7R9l+vvAWsCpPzwYd+KjSKgRByAhEIMgiQkJC2LxlC/b29gz780+KFi1KkSJFsLS0TPQ3PS0tLaysrAAoUqRIkse1sbEB4MOHDxk2EKhqLMFz3w8Mnr2CC3ce0qlRbQa2/53yRe0ICPmG1/0nXL7/D1fu/cPes1fJa5GTx3tWALBk5yHGLN6IhoYGBawsKJQvD/WrlmNKv840rlEJXR3VrSIofvMWBCEpIhBkEcbGxmhqatK4USM6d+6ssOPmy5cPHW1tLl++TMWKFRV2XEVTZiiIjolh4faDeKzfSR5zMw7On0i9KmXl+3OaGOP0W2WcfqvM0zfvqOI8jO6/15fv3378As1rV2XjlD9VuoSwuPgLgpAaqu2fTKEZM2ZQpUoVjI2NyZ07Ny1btuTJkyfx2kiSxOTJk7G2tkZfXx8HBwcePnwYr82TJ0+wt7cnX758uLu7x9tna2uLTCbDy8sr3nZXV1ccHByU8rmUSUNDA1NTUwICAxV6XCMjI7p27crqNWv4/OXLr9+Qxdx5/IJavcYwZfV2+rd14sbm+fHCwM+evn5HTGwsLR2qA/DynR/3nvrQ3rGW0sOAn1X5eC9BEITUyJCB4Pz58wwcOBAvLy9OnjxJTEwMDRs2JDQ0VN5m9uzZzJs3jyVLlnDjxg2srKxwdHQkJCRE3mbgwIE4Ozuzf/9+Dh48yOXLl+OdR09Pj9GjR6vscynT2XPnCAoKwtDQUOHHHjhwIJqamkycOJG4uDiFH19RFH0RvHT3EfX6j0MmgwurZjB9gDMGekmvGAhQr0o5jA308Tx7FYC9Z65ioKdLoxqK710RAUAQBEXKkLcMjh07Fu/P69evJ3fu3Ny6dYvatWsjSRILFixg3LhxtG79fe32jRs3YmlpybZt2+jbty8AgYGBVKhQgbJly2JtbU1QUFC84/bt25fly5dz5MgRnJycVPPhlODu3bsMHjyYug4OdO3SReHHz5EjB7NnzaL/gAHMmj0btzFjFH6OjOYfH186jJlFjbLF8ZwzLsX3+Q30dGnhUJ2Nh84QERXNrlOXcKxW/pdBIiXERV8QBGXKkD0EP/txIc+ZMycAPj4++Pn50bBhQ3kbXV1d6tSpw5UrV+Tb3N3dcXR0xMDAAA0NDRo1ahTvuLa2tvTr1w83N7cM/ZtvUsLDw9m4aRN/9OpFyZIlWbhwIVpKmrjG0dGR8ePHs2bNGrZs2aKUcyiCIi6aHz5/pdWI6eS1NGf79JGpHvTXroE9X4KCWeV5jIioaDQ0NNh69Fyq6xA9AIIgqFKG7CH4L0mSGDZsGL/99hulS5cGwM/PDwBLy/hTtlpaWvL69Wv5n52cnPj06RPBwcFYWFgkevzx48ezfv16tm7dirOz8y/riYyMJDIyUv7n4ODgVH+m9AoMDGTz5s1s2rSJoOBgfm/alIkTJ6Kn9+ulbtPDpXt3fH19meLuTkBgIDVq1KB0qVJKP29qpWeAYUhYOK1HehAbF4fnnHGYGqXsFszjV2/ZdPgM5295c++ZD5IkYZszNzlNjXnw7BWeZ69ilcuM+lXKJVmzIAiCOmX4QDBo0CDu37/PpUuXEuz7+XE6SZISbNPV1U0yDABYWFgwYsQIJk6cSIcOHX5Zz4wZM5gyZUoKq1esDx8+sG7dOv7esYPY2Fjat29Prz/+IF++fCqrYaybG2FhYaxYsYIFCxZgYmLCpYsXlTJ2IT3SGgqmrNrOq/f+nFw2lby5UzY50MU7D2k/Zhb6ejrUq1yWfm2bUKdiafJbff93J0kSVbsPZ9KKrfECgQgBgiBkJBn6lsHgwYM5cOAAZ8+ejXfR+/H8/I+egh/8/f0T9BqkxLBhwwgPD2fZsmW/bOvm5kZQUJD85evrm+rzpcXu3bupW68eu/fsoUePHly4cIHJkyapNAwAaGpqMsPDg7t37uDk5CRfLjkjSm1Xe1xcHJ5nr9Lt93qULlQgRe85fvU2LYZPo2LxQtzbvpg1E4bg7FRXHgYAlu8+wqOXb3CsVkHcAhAEIcPKkIFAkiQGDRrE3r17OXPmDHZ2dvH229nZYWVlxcmTJ+XboqKiOH/+PDVr1kz1+YyMjJgwYQLTp0//5S0AXV1dTExM4r2U7eChQ4xxc6NVy5ZcvHCBYX/+SS5z9Uxt+4O2tjaamprIZDLCwsLUWsuvpPQCfPPRc/y+BNCsVsoX9Vm26wilCuZn75yxGBskDEbHrt5m5ML19O7dmz4TZqambEEQBJXKkIFg4MCBbNmyhW3btmFsbIyfnx9+fn6Eh4cD328VuLq64uHhgaenJ97e3ri4uGBgYJDmSXn69OmDqakp27dvV+RHSbfTp08zYsQIWrRowfTp0zEySvua94o2fNgwgoOD8ZgxQ92lpMivfju//ugpAIVtUj4jo7aWJnlymcUbePjf88zfd57y5coxetSoDLsWhCAIAmTQQLB8+XKCgoJwcHAgT5488teOHTvkbUaNGoWrqysDBgygcuXKvHv3jhMnTmBsbJymc2prazN16lT5GgAZweUrVxg0eDD169dn1syZKp/n/ldsbGwY6+bGjh07OHf+vLrLSZXEgkGbevbkymHCwFnLSemaX/q6OgRJuomGjUePHnHp8mU6de4swoAgCBmeWO0wnZS12uHNW7dwcXGhatWqrFi+HB0dnXQfUxkkSaLnH3/w+PFjjh45Qo4cOdRdUrqcPXeOXr16MWHCBFy6d5dv/+8Axf9e9IePGMGNGzeY4eFBjRo10NDQ4OvXryxZupStW7eSN29eDh86lGHHWfzs8OHDbP93GWxNDQ0cHBxo3749MpmMNWvW0LZt2yQXwhIEVRKrHSqeCATppIxA4OXlRb/+/SlZogTr1q3LcI/1/czPz48mTk44ODgwf948dZeTbtOmTWPr1q3s2bOHkiVLJtv2woULTJ02jZcvX5InTx4sLCzw8fFBioujf//+uLi4ZPi/vx8kSaKBoyPa2toUL16cb9++cfHfJ0hy5crFixcv6Nqli9qeshGE/xKBQPEyVh+0wI4dO+ju4kKZMmVYtWpVpriYWFlZMezPPzlw4ACBCl5LQR1GjhxJ4cKFGerq+ssBk7Vr1+bE8ePs2rmT2rVrY2BgQIvmzTl95gz9+vXLFH9/P9y/f59Xr14xYfx4Fsyfz5rVqzl75gytW7WSP1aaw8xMzVUKgqAsGX4eguwiNjaWWbNmsXbdOrp07syECRPQVuHKeOlVq1YtAO7eu4dDnTpqriZ9dHV1WbhwIc1btGC6hwfTp01Ltr1MJqNixYoZejXIlNi3fz+5c+emevXq8m3W1taMHz+eJ0+e4NS0KWXLlFFjhYIgKJPoIcgAXrx4QcdOnVi/YQMTJ05kypQpmSoMABQoUICcZmbcuXNH3aUoRMGCBZkwfjx///03x0+cUHc5ShcXF8ehQ4do1qwZmpqaCfbr6+ujoaHBx48f1VCdIAiqIAKBGsXExLBy5Up+b9aML1++sG3rVrp365YpR6TLZDIqVKjA7du31V2KwrRv355GjRoxduzYBJNgZTWhoaF8/fqVcmUTX9o5f/78NG7cmFWrVxMTE6Pi6gRBUAURCNTk5cuXtG3Xjr/mzqVbt24cPnSIKlWqqLusdDHLmZOvX7+quwyFkclkeEyfjp6uLiNGjsyUC2Cl1I8FxExNTZNs079fP3x9fTn602qkgiBkDSIQqMnsOXP4/Pkzu3buxG3MmEzzWFpSJEni8uXL8e4/J+fQ4cM0atSIx48fK7my9MmRIwd//fUXXl5erF6zRt3lKM2PQGCSTCCwsbFBS0uLwIAAVZUlCIIKiUCgJmFhYVQoX57y5curuxSFeP78OR8+fJAPLkxKZGQkkydPZujQobzx9WXOX3+pqMK0q1GjBn379GHevHls2bIlxZMWZSZB/07ZbZrMI1tnz50jJiaG+vXrq6osQRBUSAQCFZIkibt379KnTx8uX75MXhUvTKRMFy9eREdHh2pVk14H4PHjx7Tv0IEdO3bgPmUKc+bM4dy5c9y8eVOFlaaNq6srHdq3Z9Lkybi4uPD+/Xt1l6QQ0dHRbNu2jffv3gHJ3zI4eeIEpUuXFhMTCUIWJQKBCoSEhLBt2zZatGhBm7Zteenjw19z5jBi+HB1l6YwFy5epGqVKone+ggPD2f27Nm0aNmSiPBwduzcSZcuXXBq0oQSJUrw19y5Gf63bm1tbdzd3dmwfj3Pnz+niZMTez091V1Wur148YIJEycyYcIEgESn/g4LC2Px4sWcOnWKRg0bqrpEQRBURMxDoCTXr1/nyJEjvH//nitXrxIVFUVdBwf+/PNPateuneijXZnZgwcP0NPVZfny5bRo0UL+W+T58+eZOGkS/v7+DBkyhN69esmnYdbQ0KB/v34MGTqU9+/fkzdvXnV+hBSpVasWR48exX3qVEaOHImGTEbLli3VXVaa6erqAqCto4NpjhwJ/l3eu3ePAQMG8PXrV7q7uNCzZ091lCkIggqIQKAEkZGR9B8wAAMDA4oUKUK/fv1o26YNVlZW6i5NaVavWsXWrVtZsnQpf82di5mZGZaWljx+/JgaNWqwYcMG7GxtE7yvVKlSALx69SpTBAIAExMT5syejSRJjJ8wgdKlS1O4cGF1l5UmP2ZSnDVzJqVLl06wf8vWrejo6nL8+HHy58+v6vIEQVAhEQiU4MTJkwQGBrJzxw4K/We+7azsx0x9kydP5vLlyzx7/pzXr1/Tu1cvWrRokeTcCvny5UNLS4tXr15hb2+v4qrTTiaTMdXdnYfe3gwaPJi9e/ZgYGCg7rJS7cctHg0NDWxsbBLs9/b2xt7eXoQBQcgGRCBQgh07dlClSpVsEwb+y9jYmMaNG9M4he21tLTIly8fr169UmZZSmFgYMDixYtp1bo1s+fMYfKkSeouKdUMDQ3R1dXl1evXCfaFh4fz/PlzunXrpobKBEFQNTGoUMEiIyO5evUqTk2aqLuUTKNAgQK8TuSClBkUKVIEZ2dnjh49muEHRiZGW1ubug4OHD50KEH9b9++JS4uTvQOCEI2IQKBgunq6pLTzCxLrPqnKra2trx4+VLdZaRZjerV+fz5Mz4+PuouJU06duzIw0ePWLZ8OZcvX5av3WBra4uRoSF3795Vb4GCIKiECARKUKhw4Ux9gVO1ChUq8OrVK/z9/dVdSppUrFgRTU1NvK5dU3cpaVKrVi1chw5l3rx5DBgwgAEDBjBj5ky0tbWpaW/PhQsX1F2iIAgqIAKBEhQqVIgXL16ou4xMo2aNGgBcunxZzZWkjZGREWVKl+b69evqLiXNBg0aRMuWLfkWGgrAw4cPAahduzZ37txh9uzZHDp8mCVLl9Krd29Wr1lD8L+zGwqCkDWIQKAEhQsX5uXLl8TGxqq7lEzB3NycUqVKceniRXWXkmZVq1Xj2rVrmXIcAXx/amKGhwcA1atXZ83q1QD83rQpTk5O7N+/n6FDh7J69WrCQkOZO3cuv9WqxdRp03jz5o06SxcEQUHEUwZKULhQISIjI3n37p0YkJVCtX77jd179hAXF4eGRubLqVWrVmXVqlW8ev060fkWMgMdHR1MTEywsLCQr+yora1Nn969adyoEYULF8bW1hYtLS38/f3ZsnUr27ZtY9OmTTg6OjJ0yBCKFSum5k+Rds+/JXzsMiUKG/kquBJBUA8RCJQg379rFLx//14EghT67bffWLFyJXfv3qVixYrqLifVKleqhIaGBte8vDJtIJAkiSZNmrBr1y4uXLiAqYkJvm/fyns98tvYsGnTJvLly8fLly8ZOGAAA/r3x3PfPv766y8WLlrEsqVL1fwpUi6tAUBZxwERLgT1EoFACUz+XTEuOCREzZVkHpUrV6Z48eKMHDWKfZ6eic6pf/nKFRYvXkxsbCySJCHFxdG5SxfatG6thorjMzY2plSpUty4eZOOHTuqu5xU83n1imbNmhEbG4uRkRExMTHo6Ooy1d2d4sWLY2BoSP/+/enQsSMdO3Rg4aJFtG/XjhkzZtCpY0eWLl1KgQIF1P0xfkmRF29l+FV9IjAIyiQCgRLIA4EYdJVi2traLF2yhJatWjF6zJhEf9M8e+YMT548wdHREZlMxqFDh3jw4EGGCATwPRRERUWpu4w0sbK0JHfu3Hz+/JnevXoR8u0bG9av5+KlS7Rr1w4tLS12/P033bp3Z+GiRRQuVIidu3bhULcu9erW5dOnT3z48IGoqCj5WhUZQUYPAKmV2T6PCDCZiwgEShAXF4eWlhah/47YFlLG1taWgQMHMmvWrETHEgQGBVGkSBFmz5pFWFgYe/bsoWSJEmqqNqGAgAAK2tmpu4w00dfXZ/asWXTs1AkdHR1GjxqFbYECjB03jmfPnlGiRAksLCzYvm0b27dvp2vXrowaPZrhw4fzp6srY8aMYdasWRgYGOAxfbraPkdmu2BmdWn5+xAhQn1EIFCCgwcPEhMTQ63fflN3KZlOXGwsJiYmiQ4sDAoMxCxHDgCePn2KJEk8efqUdevWER0dTaFChahXr57aBiUGfP1KDjMztZxbESpXrkwPFxdmz5lDzZo1+fT5M0aGhhQsWFDeJkeOHPTv3x+Av+bMYe68ecyYOZOSJUtiZmaGpoYGgYGBaGlpoa2tjba2ttL/PkQIyFpS+vdZ8NdNhFQSgUDBJEli7bp11K9XL94PUiFlvgYEkOPfi/7PAgID432nurq6bNu2DR1tbTS1tAgKCqJkiRK4urpSr169JBdUUgZJkggIDMQsEwcCgGHDhnHr9m369uuHoYEBtWvXli+R/DNDQ0MmTphAi+bNGTd+PP7+/mzbvp1t27fHa7N82TKFLlwlAoAgKEfme74rgzt58iRPnz4V68anUeB/egH+S5IkPn78KA8L5cuX59HDh/zz6BH37t3j9q1bbN+2DSMjI/r07UvrNm3kk+uoQnh4OJGRkYnWnpno6+uzdMkSYmJiePb8OfXr1//le8qVK4fn3r2sXrWKypUrI5PJGOvmxl9z5lC6VCmGDR/Oly9f0lXX82828pcgCMohAoGCrVixglIlS1KtWjV1l5IpBQUFYWBomGD7A29v3r9/z2/J/KZZtWpV+XPxYaGhjBg5Uv48vbL9WLsis/cQAOTJk4c1q1fj5ORE/fr1CQ8P59OnT8m+R1tbm3r16rF0yRIsLS05cuQITk5OLFq0iM+fP3Pw0KE01SJCgCCojggECvbx40dKlCyp0u7qrKRypUpcu3aNZ8+exdu+d+9ecufO/cuuZ5lMhn3NmkyfPp2nT59y8tQpZZYr9/XrVwDMcuZUyfmUrVSpUixetAhjY2PWrFnDb7VqMW78eN6/f5/s+3LlysXy5ct59M8/zJs/n1y5ctGgfn1O/LtgUkqJICAIqicCgYJl1qlrMwpnZ2fyWlszY+ZM+baoqCgOHTpEixYt0NTUTNFxKleuTLVq1Vi6ZInS/06CgoKYv2ABmpqa5MmTR6nnUody5coRExPDzp07qVe/Pvb29tS0t6dx48aE/GeuDUmS2LRpE48ePqRs2bI8uH8f+D4V8p07d4iMjPzluUQQEAT1EYMKFUySJETfQNrp6urSqXNnZv37aKGBgQHnzp8nICCAVq1apepYgwcNoquzM2fPnqVevXpKqffJkyf069+foKAgVq1aRS5zc6WcR9EkSaJPnz5Uq1aNXr16Jdu2xr+LT02bOpWoqCgCAgJ49eoV+w8cICQkBGNjYyRJ4tTp00xxd4/33lWrV1PQzo6oqCju3r2b5K00EQIEQf1ED4GCSZIkbhek05kzZ6hWrRoGBgbA99sFpUqVoljRoqk6TvXq1alcuTJz/vqL8PBwhdYoSRJ7PT1p07YthoaG7PP0xKFOHYWeQ5lOnz7NmbNnOZ6Crvwfv9nr6+vj7OzMoEGDMDIyQkNDg7i4OKKjo9mwYQP9+vUjX758tGzZEk9PTwBmzZpF3379APDy8kpwbNEjIAgZR4YNBBcuXKBZs2ZYW1sjk8nYt29fvP2SJDF58mSsra3R19fHwcEhwajyJ0+eYG9vT758+XD/6TcXW1tbZDJZgh9Srq6uODg4KOMjCSnw/Plzbty4QadOnYDvk/2cO3eO1mmYjVAmkzFl8mTevHnDhIkTFXbr4N69e7Tv0IGRI0fSqGFDdu3cmanWrIiNjWXuvHnoaGvj7e39y9kV3759C3xfoyMyMpLRo0ezdds2NDU1qePgQO06dZg5axbwfQzIiRMnWLFiBQC9evVi3ty5NGzYkMKFC8c7rggCgpCxZNhAEBoaSrly5ViyZEmi+2fPns28efNYsmQJN27cwMrKCkdHx3j3NAcOHIizszP79+/n4MGDXL58Od4x9PT0GD16tELrliQJRA9Bmh04eBBTU1MaOjoCcOjQISRJotnvv6fpeMWLF2f6tGl4enrSo2dP/po7l4OHDuHz6lWqj/X+/Xv+HDaM1m3aEBYWxqaNG5k7dy76+vppqk1dDh48yNOnTxnj5kZUVBSPHz9Otr2W1vc7izt27qSOgwP7DxwAkIc2f39/+diOPn360LJlS44fP06+fPk4duwYzZo1Y/myZTRt2hQQvQKCkFFl2EDQpEkTpk2bluhvhpIksWDBAsaNG0fr1q0pXbo0GzduJCwsjG3btsnbBQYGUqFCBcqWLYu1tTVBQUHxjtO3b1+8vLw4cuRIuus9efIk06dP582bN+KWQTpoaWqipaUlnwxn779d8ebpuDffsmVL3KdMAUli7969uLq60qBBA2bOmkVMTMwv3y9JEitWrKCBoyNXrlxhhocHB/bvV+hkO6oSGhrKgoULsbe358rly2hoaMgv+En58d3v378fhzp1mDJ5MgDNmzWTt+nWrRt6enoULVqUoUOHAlCtWjXevn3LlStXABEEBCGjy5SDCn18fPDz86Nhw4bybbq6utSpU4crV67Qt29fANzd3XF0dCQ8PJzff/+dRo0axTuOra0t/fr1w83NjcaNG6dritW2bdtibm6OlZUVNWvWTPNxsjsbGxu+fPlCWFgY79+/5/79+yxNopcoNbp06UKXLl2A77chdu/Zw5w5c7h79y4LFyzA0tIyyffOX7CApUuX0rt3bwYNHIiRkVG661GHmJgYhrq64uvry8ePH9HR1mbVqlWULFky2feZmZmxbu1aihQpQu7cuenfvz85zcyI/XeOh9GjR7Nn927s7OyQyWQY//v97Nmzhxw5cvBVZieCgCBkApkyEPj5+QEk+CFuaWnJ69ev5X92cnLi06dPBAcHY2Fhkeixxo8fz/r169m6dSvOzs6/PHdkZGS8x6d+rGhYrVo1rl69ikwm497du7x69QpbW9vUfrRsL1++fMD3+9ZHjx7FxMSEunXrKvQcZmZm9O7ViwrlyzNk6FCaNW/Orp07E12+d/GSJSxdupTRo0fTp3dvhdahSpIk4e7uztmzZ4Hv/19ZtXIlRVM4ULPOvwMmPWbM4Oy5c6xevZrKlSpx8cIFOnbq9P2Rw3/HDejq6tKzRw+0c5agSZs/0DfInAFKELKbDHvLICV+7ppPbIS/rq5ukmEAwMLCghEjRjBx4sQULV07Y8YMTE1N5S8bm++/+cydO1d+7jlz5tCwUSM2bdok5iVIpVevXqGhoYG5uTnR0dEYGxsnOZd+elWuXJlRI0fy5csXIiIiEuxfsWIFCxYsYPiwYZk+DCxZupSt/95OMzc35+/t21McBn64fOUKa9euZdSoUdT9d+Ct5759fPL3Z9vWrcRa1JbfFugwdAWtnYfi88ybDvVs2LH+L6Kifj0PgSAI6pMpA4GVlRXw/56CH/z9/ZPt+k3KsGHDCA8PZ9myZb9s6+bmRlBQkPzl6/t9qc7SpUsD33/4nj13DisrK6a4uzPGzS1FE7II3506dYqKFStibm5OLgsLPn36pNRQtWfvXipVqkSxYsXk26Kiopg2bRpz/vqLoUOGMGDAAKWdX9mio6MZO3YsC/6dOEkmkzF//nz5/4dSw9raGhMTEy5cuEBUVBTfvn1j3bp1NGr9B5Fmid8mCw76QuBXf9YtHEffNhW4diH943UEQVCOTBkI7OzssLKy4uTJk/JtUVFRnD9/Pk33742MjJgwYQLTp0+X3wJIiq6uLiYmJvFeACtXrgS+P+r4/v17pkyZwl9z5nDgwAF6/vEHsbGxqa4ruwkPD+fS5cvyBXVyW1gQFRVFV2dn+vbrx9q1axV6vnfv3nHlyhU6dewo3+br60uHjh3ZunUrkyZOZPDgwQo9pyoFBwfT848/2LlrF7lz5yY2NhZXV1fs0zjGxc7WlhXLl3Pr5k1GjR7NkNHTCQ0No0PPkUm+x8T0+4BEt1lbyG2dn4lDWnF49+o0nV8QBOXKsIHg27dv3L17l7t37wLfBxLevXtXPorf1dUVDw8PPD098fb2xsXFBQMDAzp37pym8/Xp0wdTU1O2/2fp1tT4sajNsWPH0NHRoVrVqrRq1Yp1a9dy7do1Nm7cmKbjZieXL18mIiICxwYNgO8z5HXt0gVzc3OCgoLwmDGDf/75R2HnMzQ0xMjIiPsPHgBw/PhxmjVvTmBAADt37aJbt26Z9omR6Ohouru4yEf4f/36FbcxYxg0cGC6jlutWjVGTNvAoUOHuHx6H6NnbMLCMl+8NlFRkaxdOI6/JvZm66rpAJjlzM3MFUcpXfE37nidSVcNgiAoR4YdVHjz5s14g8mGDRsGQPfu3dmwYQOjRo0iPDycAQMGEBAQQLVq1Thx4gTGxsZpOp+2tjZTp05Nc6Do0KED8P2iUqVKFfksezVq1KBbt27MnTePevXqiYGGybh9+zZ58uTBzs4O+B6ypkyZAny/wDnUrcv6DRuY/e8kOOmVI0cOBgwYwNy5cwkODmbfvn04NWmCh4dHmv8dZRQLFy3i/r9rCdjZ2TF//nzK/HtbKz2ef7OhTiMbtHV0MMlhjq6eAc8e3aZIyYryNlfPHmTn+r8oUbY6evoG1HJsQ/6CxZHJZBQsWoa718+muw5BEBRPJolRb+kSHByMqakpQUFBaGtrY25ujuvQofHmhw8LC6Np06bkzZePLZs3q7HajO2PXr2QyWSsXLEi0UWMVq1ezbx587hw/jy5c+dWyDkjIyNp1LgxH/38GD9+PJ07d860vQI/nDp1Sj5dcPv27Zkwfrw8oKbVz48NRkdHsWXFNHaun4OungGLtl7GxrYY/9y/xvJZw9DU0mLBpgsJjnNkz1oWewxm3+Uv6OplrgmdhIylYTkd+X//9+fwj9u4Qupl2FsGmdHFixcJDw+nVu3a8bYbGBjgNnYsV69e5dbt22qqLuN7+eIFL54/p3KVKly7di3B/o4dOqCtrS0fLa8Iurq6bN60iSNHjtClS5dMHwYABvx7W2DxokXM8PBQaBiIiY7m3LGdDO5cg10b59Kl73gsrGwYP7A5PZqX5M/udfj62Q/n/hMTPVbBomWIi43lzUvF3foRBEExRCBQoHv37mFgYEDRIkUS7GtQvz6FCxVi1b+DD4WEihQpwhtfX/lguMv/3v/+wcTEhAYNGnDp4kWFntfGxkZ+myIrOHjgAFevXMHJySndx/pvGLh4yhOXZiWYMcYZ05wWLNx8ia59xzFx3g70DYwoU7EWs1YfZ9PRZ1Sq0SDR49nYFQfgjU/y0yULgqB6IhAoUJ48eQgLC0t0ZT0NDQ169+7NqdOnefbsmRqqy/h+/3e9gj59+lClShV69+6dYPGpsmXL8uiff1I0Z0R2VaxYsXTfUvl5muHQb8EsmNKP/HbFWLbjBrNWHqNIiQoEB35hx7q/GDphGcOnrKJ8FYdEb/f8YGhkQk6LPLx99TRd9QmCoHgiECjQj5nu3r17l+j+5s2bY2Vpyeo1a1RZVqZRv3596tSpQ/t27Vi5YgWVK1emT9++8sFx8D0QREVF8fSpuKAoS2LTDB/Zs4aI8FD+nLySgkXLEBz0ldiYGOaM78nJA5sY8Ud9dm2YS9y/0xknJ2/+wrz3faGM0gVBSIcM+5RBZvTjCYJ3799TJJHbBjo6OpQtV45XaVhpLzswNDRk3X/mGli+bBndXVzo0bMne3bvxtbWllIlS6KlpcX+/fvlk0FlZsnN8V/YyFeFlXyXWD1RUZF4bllMXadOaMg0GNWrIfdvXUAmkyFJElMW7sH7zhXWLBjLk4e3GD8n4RiPL/7vCQz4TKFiZcmVOy+f/RMPzYIgqI8IBApkbW2NlpYW7/5dPz4xurq66VpEKTsxNDRk7Zo1NGrcmE2bNzNxwgT09PQYPnw4s2bNwszMLNPOIpiSxX7+20YV4SCpmm5fPcmXT++xsStG/w5V0dLSZtjkVcTGxmCZJz+VajpSqWZDLp/ex+ePCf/t+/v5MsylLuFh39h+6jWmOcx59uiWsj+OIAipJAKBAmlqamJjY8PbJG4ZwPe5+ov/Z5pcIXmmpqb83rQphw4fxm3MGLS1tenTuzeRERHMnTePr1+/4uDgQMmSJcmZM6e6y/2ltK769/ybTbKhQJIkPDw8uOrlhZaWFiOGD+e3335TSF12RcqgraPLuoXjqFSjAaOmrydHzvhjFDy3LMLv/SvGz4k/sVdQwGfG9m9KTHQU34IDuHHpGLevnaZwiYoIgpCxiF9VFaxQoULcuXMn0fn3JUkSqyCmQdu2bQkMDGTQ4MHydSEGDRqEq6srO3ftoruLC1WqVsVjxowMu5jUz4P0FO3Q4cOsW7+eYsWKoaurS+8+fTh//nyKa0uOpXUBho5fSt/hs5m29GCCMADw2f8dOXLmxrZI/Ns4B3euxNfnCbNXH6dw8fKsXzyBNy8f49i8a8o/nCAIKiECgYK5urpy48YNjh07lmDfiRMnCAkJyVKPuKlC8eLFWb58ORcuXGDEiBHA95UuBw8axN07dzh18iTDhw1j7dq1eHh4ZLhQoKggkNRxvn79iru7O00aN2buX3+xaeNGav32G/369eP69esKqc2xuTOtnYcmeburftMufP30gdtXT8bbXr1OUwBev3xMXaeO+Po8wdzCmgrV6qfovIIgqI4IBArWtGlT6terx7Tp0wkLC8Pf3599+/YxYOBABgwcSP169eRrywspV9fBgVkzZ3Lk6FFu3Lgh366hoYGdnR0DBgxg8qRJrFu/niFDhvD8+XM1VvudsnsF4Huv09Rp04iNjWXSpEnA93EqS5YswSpPHg4fPpxsfYpStFQl7IqUxnPrYiLCw+TbCxcvT+mKv7Fv2xLqNu6AhoYG9Zp2SvbRREEQ1EMEAiUYP37893vbdetSo2ZNho8YwevXr5k9ezYrV65ET09P3SVmSr///jvFixdn7bp1ie53dnZmzpw53Lt/n3bt2+Pt7a3iCv9P2UEAIDY2lgkTJ3LgwAEmTpiAhYWFfJ+Ojg62trZcu3493mObyqpPJpPR8Y/R3L1xju5Ni7Frw1zCw74BUM+pI963LwEwe81JOvd2U+i5BUFQDLGWQTolNof2yxcv2L1nD3fu3KFGjRpUr16dXObmaq40a+j87+qHixctSrJNSEgI3V1ceP36NVs2b6ZEiRIqq08VQaCwkS+RkZG4/vknp0+fxmP6dNq2bZug3aVLlxg3fjxv376lXLlydOzQgSZNmmBsbKy0Ov3e+bBj3RxO7N+EgZEJbZxduXBiNxqamizcfEn0DAgKI9YyUDwRCNIpqUCQ3YWHh7Ns+XIATE1MyGFmRr68ecmXLx9WVlZoaaXtAZea9va0bduWYX/+mWy74OBgujo78+H9ezw9PcmXL1+y7RVBFWEAwCzyLgMHDeLBgwcsXrSIevXqJdk2NjaWs2fPsnnzZi5fufJ9ae46zWjYohtV7BsprUb/D2/YsW4Ox/dtICYmmoWbL1GsdGWlnU/IfkQgUDwRCNJJBILEPX36lCZOTuTIkYOYmBi+ffsm36epqYmVlRX58uYlb758tG3ThmrVqv3ymBEREZQqXZqp7u4pWqY6ICCAZs2bU7RoUdauWaO0hYtUFQQkSeL04W2smTscgFUrV1KxYsof3/vw4QMb9lzk+P6N+Po8YcvxF1hYKjcoffr4lo/vX1O6gr1SzyNkPyIQKJ4YQyAoRYECBdDU1GT4sGHcu3uXRw8fcurkSTasX8+UKVNo3qwZuS0tuX/vHj169kzRKpC6urqUL1eOdevXExER8cv2ZmZmTJ40ifPnz3PkyBFFfKwEVBUGPr5/zfhBzZkzvie//fYbx44dS1UYCAsLY9/ZJwDkyVcQbR1dcppbKatcOQvLfCIMCEImIXoI0kn0ECStXfv2+Pv78/f27eTJkyfRNpGRkbi4uPDk6VP+3r6dokWLJnvM58+f06x5c1xcXBg9alSK6ug/YAB37tzh8iXF3sNWVRjwvnOZiYNbYWykz1R392RvESRl3d7rTB/VGQNDY0zNclHZvhGD3BYqoVpBUA3RQ6B4oodAUJqFCxYQFxdHdxcXPn/5kmgbXV1dVq5ciZWVFT169uT9+/fJHrNw4cJ069aN3bt2pbiOtm3a8OnTJ75+/Zqq+pOjyjAwtn9TypQuwbGjR9MUBgDKV6uLtrYOzv0nsuHQYxEGBEFIQAQCQWmsra3ZtGkTQUFB9HBxITg4ONF2JiYmrF+3Dk1NTXr27ElAQECyx61QvjxfAwL4kkTI+Jn5v094pLR9RvHu9TMmDWlNuTKlWbtmDcbGxmk6zvPnz1kz343YuFiePfr1rRlBELInEQgEpbKztWXTxo28//CBnn/8QWhoaKLtLC0t2bB+PV++fKFjx468TWaBqMKFCwPw7NmzFNVgamoK8MugkVKq6B2ICA9l6oiOWOQyY9WqVWmau0KSJMZPmECjxo25efkEPYdMY9DYpB/XFAQhexOBQFC6YsWKsX7dOp4+fUrffv0ICgpKtF3BggXZuXMnUVFRtG3XjgdJTCxUoEABdLS1uXTpUorO/2PWwgIFCqTtA6hYXFwc86f0x+/tC5YtXZrmnoFjx46xfft23MaMYcPhx7TrPgxDI3F/VRCExIlAIKhE2bJlWbN6NQ8fPqR5ixbcvXs30XZ2dnbs2r0ba2trOnfuzJkzZxK00dbWplfv3qxYuTLRNSN+9sDbG3Nzc6ytrdP7MVRi3cJxnDu2g1kzZ/5ykGVSQkJCcJ86FUdHR3r16oWOjq6CqxQEIasRgUBQmapVq3Lo4EEscuWiQ8eOrFmzJtGFiHKZm7N1yxbs7e3p3acPf82dS0xMTLw2f7q64uTkxLDhw5MMFz/Y2dry5csXPn/+nO7PoOzbBef+nsSujfOYMGECTZs2TfNx5syZQ1hoKJMmTlRgdYIgZGUiEAgqlTdvXrZv307Pnj2ZMXMm27ZtS7Sdvr4+y5YuZdTIkaxatYpu3boREhIi36+hocGc2bMpVaoUAwcNIi4uLslzVq1aFSDJWxDqJkkSX/zfc3nvdGbMnEn/fv1w6d49zcd78eIFW7dto3///kk+7ikIgvCztM0fKwjpoK2tzehRowgMDGTOX3/RqFEjcuXKlaCdhoYGffv2pUKFCvTp25eBgwaxZvVqdHS+P3+sq6vL0CFD6O7iwsuXL+WDDX/2Y6rk9+/eKfVzpVREeBhXzuznycOb+DzzxufZA4IDvz8B0aFDB4YPH56u4+fOnZv8NjYcOXIEFxcXsZiWIAgpInoIBLUZNXIkWlpazJg5M9l2VatWZcXy5dy4fh23sWPj3WYoX748GhoabN68mejo6ETfr6mpibW1NceOH483hXJqKeJ2wf6/l+HcpDCzx/fgxqVj5MmpS08XZ1YsX865s2eZPm1auqdYNjY2ZunSpTx/8YLJkyenu2ZBELIHEQgEtTEzM2PUyJHs27ePs2fPJtu2evXqzJo9m3379jFv/nz5diMjI0aMGMH2v/+mTZs2PHnyJNH3Txg/nvv37tG2XTvCw8MV+jlSKiI8lJV/jaR81bqcOX2aC2eOsXTpUgYPGoSjoyM2NjYKW2+hZMmSTJ06lV27d7Njxw6FHFMQhKxNBAJBrdq2bUvt2rXp07cvf82dS1RUVJJtmzdrxujRo1m2bBnb//5bvr1vnz7s2bOHqOhoWrRsydJlyxIMQqxXrx47duzgxYsXeHp6Ku3zJOfxg+vExsQwxrUn+fPnV/r52rRuTceOHZk8ZQqfPiY9r0NGERsbq+4SBCFbE4FAUCsNDQ1Wr1qFq6srq1evpm27dvJ5AxLTu1cvnLt2Zfz48RQtVowSJUtSpmxZnJ2dKVmyJC4uLixYsIA2bdsmOE7x4sVp6OjI+g0bkh2EmB5fPn1g/eKJ+DxLOIDR+/ZlTE1NKZLEWAdlKFumDDExMchQzkqPihL6LRinSgY0q2aq7lIEIdsSixulk1jcSHEeeHszfPhw3r59y5o1a6hZo0ai7WJjYzl+/DiBQUHExsQQExtLcFAQq9esoWDBggwZPJjZc+bw4cMHZs6YEe/xvVu3b9O+fXvWrF5N3bp1U11jcuMIQkOCGP5HfXyePgCgaq0mtOg0gMCvn/C+fYkrZw9QqXwZVq9enerzplWXrl0JDAxkwfa7Slv+OSmSJKX4nBMGteD6pe9zSuy99ElMoCT8kljcSPFEIEgnEQgUKzw8HOdu3YiLi2PP7t2puog9evSIvv36ERkZybx589i1axeHDh3ij549GTVqFFpaWkiSROs2bchtYcHKlStTXV9SgSAqKpIJg5rz/J+7zFp9HJ9n3uzaMJfXLx4BYFu4FPZVy/HHH3+odMbEtWvX4jFjBrUbtmX4lNXo6Ruo5LwP71xh9vgeVK3VhIFjFiTbNuDLRzrWz8/v7fpwaNcq8tkWJb9dceo5daKWY2uV1CtkPiIQKJ4IBOkkAoHiXbhwgR49e7J58+YkewmS8vnLFwYNGsTdu3fZtHEjDx8+ZMbMmVSuVImePXvy9etXNm/eTM6cOdm4cWOqa0sqECycOoCTB7cwY/lhylSqBXyfgvjF47tYWhegYr6wVJ9LUTbsv8XscT2wsSvG5AW7sbDMl2TbuLg4ju5di5aWNrUc22BgmLppk2NjY9mxbg6bV7ijpaVNVGQES/++RuHi5ZN8z/nju/EY3YWtx19y/eJRfJ57c+faGWKio9hw6HGqzi9kHyIQKJ4IBOkkAoHiSZJEixYtyGFmxqY0XLSjoqLo6uyMv78/hw4e5J9//mHQ4MHymQpz5szJHz170q9fvzTVl1go6Fg/Pw1bdKPnkGkJ9hU28k3TeRTl+TcbXjy+x+Q/2xITHcXEeTspUbZagnZRkRHMHt+TS6f2AqCjq0+tBq2xr98Cq7x25LLMi7GJWZK9Nl8+fWD2+B7cu36Ohi2643X+EPlsizFr1TG0tXUSfQ/A4umDuXvjHGv3PZBv+xES/j79BjNzy3R+A0JWJAKB4omJiYQMRyaT0at3b/78809evXqFra1tqt6vo6PDnNmz+b1ZM6ZPn86MGTM4d/YsQUFBmJubo62tna76/nuBf/7NhsiIcAK+fMTGtliybdVh99kXvH5+gC+fPlCgYAluXD7OyF6OLNx0kULFy8nbBQd+YbJrW579c5sJc3dQpGRFTh3cyokDGzl1aIu8na6eARaWeTE0zoGOrh6R4WFERoYTFRlOwBd/DIxMmLp4H5uWT0VbR48Jf21PNgwAvH39lPx2xeNtMzL+PrgwKjJCgd+GIAjJyTaBYNmyZcz5d6BZqVKlWLBgAbVqfe/a9fPzo0ePHty7d4+WLVuyZMkSNDTEAxjq5NigAQYGBhw+coSBAwak+v0FChRg3NixjBs/HgcHBxo1aoS+vr7C6yxs5MuLj997hCoW0k+wT50uXrzI6N490NbWIadFHnLmysNvDVqRK3declpYydv5vXvFuAG/ExIcwOzVJ+S9B517j6FTr9F89n/H54/fX58+vuWz/zu+BQcSEx2Fjq4eunoG6OrpY2hkSqOW3Vkzfyyvnnszb/3ZFP12X7BYOS6div8oaOi3YACMjHMo7gsRBCFZ2SIQ7NixA1dXV5YtW4a9vT0rV66kSZMmPHr0iPz58zN+/HiqVKnCzJkzcXNzY/v27XTp0kXdZWdr+vr61K9fn8OHD6cpEMD3aYDPnT/PwEGDaN++PSOGDydnzpwKrhTevv3+jH/evHnJp+YQ8IMkSSxesoRipauwcPPFZAdnLpw6gOio77cSwsO+sW/bEt69eU54WCjRURFER0USFRlBVFQk0VGRREdHYpXXjiIlK1K0ZEUKl6hAcMBn7t04zwL3AVw9d5DRHhspUrJiimotXcGevZsX8unjWwK/+PPs0W3e+75AJpOhn8oxDIIgpF22CATz5s3jjz/+oFevXgAsWLCA48ePs3z5cmbMmEFgYCCOjo6UKVMGOzs7goKC1FyxANDUyYmDBw9y6/ZtKlVM2cXlv2QyGUuXLGHbtm3MnTeP48ePM27cOFq3aqXQOn+srZDcpEqq5uXlxa1bt3Bf5JlsGPC+c5nbXqcBGN6jHgDa2jpY5y+MoZEpOrq6aGvroqOrh6FxDrR1dNHU1OL9m+dsXz2D8LD/TwWtoaFB0VKVGTxuMfWcOqa41pLlqgPw8O5V9m1dzD/3rwFgapZL9NQJggpl+UAQFRXFrVu3GDNmTLztDRs25MqVKwCMGTOGpk2b0rVrV6pUqcKsWbOSPF5kZCSRkZHyPwcHB8f7XyDeqnxC2lWqVInSpUvTs2dPlixZQvly5X79pkS0bNmSWrVr06dPH2bMmIFjgwYKrdPK6nv3+wNvbywsLBR67LQ6fuIE5rnzUqqCvbz7PTGHdqzEJEdOggO/0rbbn9Rt0gHLPAXQ0Pr1j4a4uDje+z7n5eP7GBiZULJ8DflTCcmd82c6uvrkyVcQr3OHeOx9gx6Dp1KyXA00NDVTdRwhewkOjj+oUFAAKYt79+6dBEiXL1+Ot3369OlS0aJF5X+Ojo6WPnz48MvjTZo0SQLivYyMjBJsEy/xEi/xEi/VvaysrKTw8HCFX0OykyzfQ/DDz92m0k+zqGlpacl/00uOm5sbw4YNS/ZYwcHB2NjY4OvrKx6BUSDxvSqH+F6VQ3yvypHU96qjoyOW+k6nLB8IcuXKhaamJn5+fvG2+/v7Y2mZ+uebdXV10dXVTVFbExMT8YNACcT3qhzie1UO8b0qh/heFS/Lj9jR0dGhUqVKnDx5Mt72kydPUrNmTTVVJQiCIAgZS5bvIQAYNmwYzs7OVK5cmRo1arBq1SrevHmT5pnqBEEQBCGryRaBoEOHDnz58gV3d3c+fPhA6dKlOXLkiNIWmdHV1WXSpEkpvrUgpIz4XpVDfK/KIb5X5RDfq/KItQwEQRAEQcj6YwgEQRAEQfg1EQgEQRAEQRCBQBAEQRAEEQgEQRAEQUAEgiTFxMQwfvx47Ozs0NfXp2DBgri7uxMXFydvI0kSkydPxtraGn19fRwcHHj48GG84zx58gR7e3vy5cuHu7t7vH22trbIZLIEr5kzZ6rkM6rChQsXaNasGdbW1shkMvbt2xdvf0q+w8jISAYPHkyuXLkwNDSkefPm8hUGf7h69Srly5enQIECrF69Ot6+xL5jmUzG33//rZTPrArJfa/R0dGMHj2aMmXKYGho+L/27jwoqjNrA/jT7HsrsjQNgai4EsVt4lqCG6ISmVEnLhlGo/HTymhivoQZE60hZWJiNkGTIiaZCZlo8mmMmjjEwSUiUYNxgVZw3EVUFnEBGlCkoc/3h2WXLSAN9IL6/Kq6St779r3vOV5eTt+lL9RqNf785z+jsLDQaB3Ma8Oa2mfvNW/ePCgUCiQlJRm1M7f1mZLXEydOYOLEiVAqlfD09MSgQYNw8eJFw3Lm1cJs+b3Jbdnbb78tHTp0kNTUVMnLy5ONGzeKh4eHJCUlGfqsWLFCPD09ZdOmTZKTkyNTp06VgIAA0Wq1hj6jRo2STz/9VA4fPiwDBgyQffv2GZaFhITIsmXLpKioyOhVWVlp1Vgtadu2bbJkyRLZtGmTAJAtW7YYLTclh/Pnz5fAwEDZuXOnZGVlyYgRIyQ8PFxqa2sNfbp37y7ff/+97N+/Xzp37iz5+fmGZQAkJSWlXp4f5u89f1Bey8rKZPTo0bJhwwY5efKkZGZmysCBA6V///5G62BeG9bUPnvXli1bJDw8XNRqtSQmJhotY27rayqvZ8+eFW9vb4mPj5esrCw5d+6cpKamypUrVwx9mFfLYkHQiAkTJsjs2bON2iZNmiR/+tOfREREr9eLSqWSFStWGJZXV1eLUqmUNWvWGNr69+8vBw4ckJqaGpk4caL89NNPhmUhISH1JpJH2f2TgCk5LCsrE0dHR1m/fr2hT0FBgdjZ2UlaWpqhLTg4WM6fPy+VlZUyYMAAOX78eKPbfdSYEt/BgwcFgGFyZF5N01iMly9flsDAQMnNza33e8zcNq2h+KZOnWqYXxvCvFoeTxk0YtiwYfj5559x+vRpAMDRo0exb98+jB8/HgCQl5eH4uJiREVFGd7j7OyMiIgIw2OVAWDZsmUYM2YM3NzcYGdnh7Fjx1o3kDbMlBweOXIEOp3OqI9arcZTTz1llOe///3v6NGjB5RKJQYNGoSePXtaL5CHQHl5ORQKBdq1aweAeW0NvV6PuLg4xMfHIywsrN5y5rb59Ho9fvrpJ3Tt2hVjx46Fn58fBg4caHRagXm1vMfimwpb4m9/+xvKy8vRvXt32Nvbo66uDsuXL8f06dMBwPCwpPsfkOTv74/8/HzDz+PHj8fVq1eh1Wrh6+vb4HaWLl1q1JaamorIyEgzR9T2mJLD4uJiODk5oX379vX63PvAqjlz5mDatGmoqamp1xcApk+fDnt7e6O2Y8eOoVOnTmaJpS2rrq7G4sWLMWPGDMPDYJjXlnvvvffg4OCAl156qcHlzG3zlZSUoLKyEitWrMDbb7+N9957D2lpaZg0aRLS09MRERHBvFoBC4JGbNiwAevWrcO3336LsLAwaDQaLFq0CGq1GjNnzjT0a+qxysCdT70NFQMAEB8fj1mzZhm1BQYGmieIh4QpObxfQ33c3d3h7u7eYP/ExESMHj3aqO2JJ55owWgfLjqdDtOmTYNer0dycnKT/ZnXBzty5AhWrVqFrKysJvfR+zG3jbt7sXZsbCxeeeUVAECfPn3w66+/Ys2aNYiIiGj0vcyr+bAgaER8fDwWL16MadOmAQB69eqF/Px8vPvuu5g5cyZUKhWAO58GAgICDO9r7mOVfXx8EBoaat7BPyRMyaFKpUJNTQ1KS0uNqv2SkpJmPa1SpVI9dnnW6XR49tlnkZeXh927dxs9KpZ5bZm9e/eipKQEwcHBhra6ujq8+uqrSEpKwoULF5jbFvDx8YGDg0O9w/s9evTAvn37AHCftQZeQ9CImzdvws7OOD329vaGSrZjx45QqVRGj1WuqalBRkYGH6tsIlNy2L9/fzg6Ohr1KSoqQm5uLvP8AHeLgTNnzmDXrl3o0KGD0XLmtWXi4uJw7NgxaDQaw0utViM+Ph7bt28HwNy2hJOTE373u9/h1KlTRu2nT582PISOebU8HiFoxDPPPIPly5cjODgYYWFhyM7OxsqVKzF79mwAdw5zL1q0CO+88w66dOmCLl264J133oGbmxtmzJhh8nYqKiqMzn8BgJubm9GnuYdZZWUlzp49a/g5Ly8PGo0G3t7eCA4ObjKHSqUSc+bMwauvvooOHTrA29sbr732Gnr16lXvsN+DlJWV1cuzp6dno4cV27oH5VWtVmPKlCnIyspCamoq6urqDLF7e3vDycmJeX2ApvbZ+4srR0dHqFQqdOvWDQD32cY0ldf4+HhMnToVw4cPx4gRI5CWloZ///vf2LNnDwDm1SpseYtDW6bVauXll1+W4OBgcXFxkU6dOsmSJUvk9u3bhj56vV4SEhJEpVKJs7OzDB8+XHJyckzeRkhIiACo95o3b54lQrKJ9PT0BmOcOXOmiJiWw1u3bsmCBQvE29tbXF1dJSYmRi5evGjyGBraPgB59913zRmqVT0or3l5eY3GnJ6eblgH89qwpvbZ+zV0+zBzW58pef3nP/8poaGh4uLiIuHh4fLDDz8YrYN5tSw+/piIiIh4DQERERGxICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiKwICAiIiIADrbceHl5OXbs2IFbt27ZchhEREQ25erqiqioKCiVSpuNQSEiYs0N1tbWYseOHZg590PcKN4PF/dAeHVQW3MIbY67h6Oth2BT7i5W3QXbJFf7alsPwaacayptPQSbk6oKWw/Bpmq0j/c+UFxciSLoMFDhgcWp6xEVFQUHB+t+ZrdKQSAi0Gg0iJn8Lq4W7ILCzh6+gWPgFxQFN8+O6PZ0T0sPoU0L6+1j6yHY1FNP6mw9BJsL9bhk6yHYlKpYY+sh2JzkZtl6CDZ1JfOorYdgUye+OYN8uY10vRbpUoE6CCIUnngzKx3h4eFQKBQWH4NFy4/CwkIMGf0Wrl7ejuqbRegQEIGu/ZZC2aEPFAp7S26aiIjooRKicMYse1/EiQ9y5CZ+Fi0G9e2HADjiLx8sx4wZM6BWW+6IutkvKqyqqsI333yD9n5PIygoGGVXDyGw83Q8PWYzuvZ5He18+rMYICIiaoS9QoE+du541T4A6+w7Y5KdN775awKCAwPRz84d33zzDaqqqsy+XbMcIdDr9cjIyMC0P7+Pa0UZcHb1h19QFEJ7x8PZ1c8cmyAiInrsuCrsMFLhhZHwwjXRYY9U4I0/zcZcxGGowhNv/PwDIiIiYGfX+s/3rSoITpw4gaiJy1FyeSdEXwOfwFHoNWQV3L26WOV8BxER0ePCR+GIKQpvTFa0xzncxm69Fn8YOQZOUCBS4YVl/92P7t27t3j9zS4Irl27hoGRb6Hk8g5UVZyDt/9QdO61CO18n4adnU3vYiQiInrkKRQKhMIFofYumC2+yJIq7BYtevfoiSfhhJc+/hDTpk2Dj0/zLlg36RiDTqfD5s2b0UE1DH5+AbhWlA7/4Al4evRmdO//Jrz9h7AYICIisjIHhQJP23lgsb0aa+07YaydEp8ujEeAry8G23lg8+bN0OlMu5PLpL/iubm5mDx5Muwd3BAa/jf4Bo7mKQEiIqI2xENhj2hFO4xVKLFHKpCsL8HkyZORlZWFvn37Nvl+k44Q9OnTB/v27YOPehTOH1+FrD1xuHT6a1TfLGp1AERERNR6xaLD/+mv43/qLmCNvgQRCk/s378fffr0Men9Jh0hUCgUGDp0KIrzt6K6uhqpqan4nwWJuHTma3i2D4NfUBQ6BETAwdGjNbEQERFRM1RJHfZLJXbrtTiJW+incMfqjd8iJiYGLi4uzVpXs0/8u7i4YMqUKZgyZQpKSkowaOTbKMr/EedzV8FbNQx+QWPvfNcArykgIiIyuzoRZEkV0qUCB6QSIXDCglXvY9q0afDza/mt/q36q+3n54fzuasBAMePH8fY2OU4e+wDiNTBVz0avkFRcPcK5fUGRERErSAiyMNt/KzXIkMqYA8FRig8kX08Fz17mufr/832MT4sLAyXz36Luro67NmzB9NnfYCcXxfCxU0Nv6Ao+ASOhrPL4/2d/URERM1xXWqRIVrs1mtRDB2GKDzx/a7tiIyMhL29eb/11+zH9e3t7TFq1CiUXBqFyspKbNmyBQv/dxXyT34BpU8/+AWNhbdqGOztm3dug4iI6HFQLXpkSiV2ixbH5CZ6K9yw7Ot/4A9/+AM8PCx3rZ7Zn2VwLw8PD8TFxaHs6mFcvHgByg79cOnMOhzc8Qec0axA2bVsiOgtOQQiIqI2Ty+CY/qbSKorRlzdOWzU38C0FQm4cOkSsvRViIuLs2gxAFjp8cf3EhFkZ2cjZso7uFbwM6Cwg7uXrzWH0OY4uzzeD3tydrTqLtgmOds93o+AdqittvUQbE5uP945qLv5eMd/rfwW9AAiFJ5IOPwz+vbta/Xr76xeENxLp9MhIyMDX331FaZNmwZHR0dbDcVmdDod1q9fz/gf0/gB5uBxjx9gDhi/Dps2bcLHH39s8aMAD2LTggAAtFotlEolysvL4eXlZcuh2ATjf7zjB5iDxz1+gDlg/G0jfoteQ0BEREQPBxYERERExIKAiIiI2kBB4OzsjISEBDg7O9t6KDbB+B/v+AHm4HGPH2AOGH/biN/mFxUSERGR7dn8CAERERHZHgsCIiIiYkFARERELAiIiIgIFioIKioqsGjRIoSEhMDV1RVDhgzBoUOHDMsrKyuxYMECBAUFwdXVFT169MCnn35abz2ZmZkYOXIk3N3d0a5dO0RGRuLWrVuWGLLZNZWDK1euYNasWVCr1XBzc0N0dDTOnDnT4LpEBOPGjYNCocAPP/xgpQhM98svv+CZZ56BWq1ucIwigjfffBNqtRqurq6IjIzE8ePHjfrcvn0bCxcuhI+PD9zd3TFx4kRcvnzZsPzChQuYM2cOOnbsCFdXV3Tu3BkJCQmoqamxRohNMkcOPv/8c0RGRsLLywsKhQJlZWX1tlNaWoq4uDgolUoolco7Dw9roJ+1WSv+06dPIzY2Fj4+PvDy8sLQoUORnp5uwchM09r4b9y4gYULF6Jbt25wc3NDcHAwXnrpJZSXl9fb1k8//YSBAwfC1dUVPj4+mDRpkqXDM4k59oF58+ahc+fOcHV1ha+vL2JjY3Hy5MkGt3f79m306dMHCoUCGo3GQlGZzhzx39u3oTnf0vOgRQqCF154ATt37sTatWuRk5ODqKgojB49GgUFBQCAV155BWlpaVi3bh1OnDiBV155BQsXLsSPP/5oWEdmZiaio6MRFRWFgwcP4tChQ1iwYAHs7B6OgxoPyoGI4Pe//z3Onz+PH3/8EdnZ2QgJCcHo0aNRVVVVb11JSUlWf8hFc1RVVSE8PByffPJJg8vff/99rFy5Ep988gkOHToElUqFMWPGoKKiwtBn0aJF2LJlC9avX499+/ahsrISMTExqKurAwCcPHkSer0en332GY4fP47ExESsWbMGb7zxhlVibIo5cnDz5k1ER0c/MKYZM2ZAo9EgLS0NaWlp0Gg0iIuLM3s8zWWt+CdMmIDa2lrs3r0bR44cQZ8+fRATE4Pi4mKzx9QcrY2/sLAQhYWF+PDDD5GTk4OvvvoKaWlpmDNnjtF6Nm3ahLi4ODz//PM4evQo9u/fjxkzZlg8PlOYYx/o378/UlJScOLECWzfvh0igqioKMM8cK+//vWvUKvVFounucwR/12NzfkWnwfFzG7evCn29vaSmppq1B4eHi5LliwREZGwsDBZtmyZ0fJ+/frJ0qVLDT8PHDjQ6OeHSVM5OHXqlACQ3Nxcw7La2lrx9vaWL774wug9Go1GgoKCpKioSADIli1brBFCi90/Rr1eLyqVSlasWGFoq66uFqVSKWvWrBERkbKyMnF0dJT169cb+hQUFIidnZ2kpaU1uq33339fOnbsaP4gWqklObhXenq6AJDS0lKj9v/+978CQA4cOGBoy8zMFABy8uRJs8fRUpaK/+rVqwJAfvnlF0ObVqsVALJr1y6zx9FSrY3/ru+++06cnJxEp9OJiIhOp5PAwED5xz/+YbGxm4u5cnD06FEBIGfPnjVq37Ztm3Tv3l2OHz8uACQ7O9vcIbRKa+Jv7pxvznnQ7B+3a2trUVdXBxcXF6N2V1dX7Nu3DwAwbNgwbN261fBpOT09HadPn8bYsWMBACUlJfjtt9/g5+eHIUOGwN/fHxEREYb3t3VN5eD27dsAYLTc3t4eTk5ORjHevHkT06dPxyeffAKVSmWdwZtZXl4eiouLERUVZWhzdnZGREQEfv31VwDAkSNHoNPpjPqo1Wo89dRThj4NKS8vh7e3t+UGbyam5MAUmZmZUCqVGDhwoKFt0KBBUCqVzVqPtZkr/g4dOqBHjx74+uuvUVVVhdraWnz22Wfw9/dH//79LTF0s2hp/HcfdOPg4AAAyMrKQkFBAezs7NC3b18EBARg3LhxjR52bktakoOqqiqkpKSgY8eOeOKJJwztV65cwdy5c7F27Vq4ublZfOzmYGr8LZnzzTkPmr0g8PT0xODBg/HWW2+hsLAQdXV1WLduHX777TcUFRUBAFavXo2ePXsiKCgITk5OiI6ORnJyMoYNGwYAOH/+PADgzTffxNy5c5GWloZ+/fph1KhRjZ5nb0uaykH37t0REhKC119/HaWlpaipqcGKFStQXFxsyBFw59TKkCFDEBsba8NoWufuoVx/f3+jdn9/f8Oy4uJiODk5oX379o32ud+5c+fw8ccfY/78+RYYtXmZkgNT1+Pn51ev3c/Pz+aHzB/EXPErFArs3LkT2dnZ8PT0hIuLCxITE5GWloZ27dqZc8hm1ZL4r1+/jrfeegvz5s0ztN07Ly5duhSpqalo3749IiIicOPGDQuN3jyak4Pk5GR4eHjAw8MDaWlp2LlzJ5ycnADcObc+a9YszJ8/HwMGDLDO4M3A1PibO+ebex60yAn5tWvXQkQQGBgIZ2dnrF69GjNmzIC9vT2AOwXBgQMHsHXrVhw5cgQfffQRXnzxRezatQsAoNfrAdy5wOT5559H3759kZiYiG7duuHLL7+0xJDN7kE5cHR0xKZNm3D69Gl4e3vDzc0Ne/bswbhx4ww52rp1K3bv3o2kpCTbBmIm958PE5Emr4torE9hYSGio6Pxxz/+ES+88IJZx2lJLclBU+to6XpsobXxiwhefPFF+Pn5Ye/evTh48CBiY2MRExNjVEi3VabGr9VqMWHCBPTs2RMJCQmG9rvz4pIlSzB58mTD+XaFQoGNGzdadvBmYkoOnnvuOWRnZyMjIwNdunTBs88+i+rqagDAxx9/DK1Wi9dff91qYzanB8Xf3DnfEvOgRQqCzp07IyMjA5WVlbh06RIOHjwInU6Hjh074tatW3jjjTewcuVKPPPMM+jduzcWLFiAqVOn4sMPPwQABAQEAAB69uxptN4ePXrg4sWLlhiy2T0oB8Cdi2c0Gg3KyspQVFSEtLQ0XL9+3bB89+7dOHfuHNq1awcHBwfDYcPJkycjMjLSVmE1293DXvd/CigpKTFUyyqVCjU1NSgtLW20z12FhYUYMWIEBg8ejM8//9yCIzcfU3Jg6nquXLlSr/3q1avNWo+1mSv+3bt3IzU1FevXr8fQoUPRr18/JCcnw9XVFf/617/MOmZzak78FRUViI6OhoeHB7Zs2QJHR0fDsobmRWdnZ3Tq1KnNz4vNyYFSqUSXLl0wfPhwfP/99zh58iS2bNkC4M4+cODAATg7O8PBwQGhoaEAgAEDBmDmzJlWiKRlTIm/OXO+peZBi16y7+7ujoCAAJSWlmL79u2IjY2FTqeDTqerd7eAvb29oQJ+8sknoVarcerUKaM+p0+fRkhIiCWHbHYN5eBeSqUSvr6+OHPmDA4fPmxYvnjxYhw7dgwajcbwAoDExESkpKRYO4wW69ixI1QqFXbu3Gloq6mpQUZGBoYMGQLgTnHk6Oho1KeoqAi5ubmGPgBQUFCAyMhI9OvXDykpKQ/NHSem5MAUgwcPRnl5OQ4ePGho++2331BeXt6s9VibueK/efMmANT7f7ezszPMHW2RqfFrtVpERUXByckJW7durXcNUv/+/eHs7Gw0L+p0Oly4cKHNz4ut2QdExHDd1erVq3H06FHDnLht2zYAwIYNG7B8+XLLBdBKpsRv6pxv0XnQLJcm3ictLU3+85//yPnz52XHjh0SHh4uTz/9tNTU1IiISEREhISFhUl6erqcP39eUlJSxMXFRZKTkw3rSExMFC8vL9m4caOcOXNGli5dKi4uLvWuNm2rmsrBd999J+np6XLu3Dn54YcfJCQkRCZNmvTAdaKN3mVQUVEh2dnZkp2dLQBk5cqVkp2dLfn5+SIismLFClEqlbJ582bJycmR6dOnS0BAgGi1WsM65s+fL0FBQbJr1y7JysqSkSNHSnh4uNTW1orInbsOQkNDZeTIkXL58mUpKioyvNoCc+SgqKhIsrOz5YsvvjBcTZ+dnS3Xr1839ImOjpbevXtLZmamZGZmSq9evSQmJsbq8d7PGvFfvXpVOnToIJMmTRKNRiOnTp2S1157TRwdHUWj0dgk7rtaG79Wq5WBAwdKr1695OzZs0b7993fARGRl19+WQIDA2X79u1y8uRJmTNnjvj5+cmNGzdsEve9WpuDc+fOyTvvvCOHDx+W/Px8+fXXXyU2Nla8vb3lypUrDW4zLy+vzdxlYI7fgfvdP+dbeh60SEGwYcMG6dSpkzg5OYlKpZK//OUvUlZWZlheVFQks2bNErVaLS4uLtKtWzf56KOPRK/XG63n3XfflaCgIHFzc5PBgwfL3r17LTFci2gqB6tWrZKgoCBxdHSU4OBgWbp0qdy+ffuB62yrBcHd28Tuf82cOVNE7txyk5CQICqVSpydnWX48OGSk5NjtI5bt27JggULxNvbW1xdXSUmJkYuXrxoWJ6SktLgNixU0zabOXKQkJDQ4DpSUlIMfa5fvy7PPfeceHp6iqenpzz33HP1bs+zBWvFf+jQIYmKihJvb2/x9PSUQYMGybZt26wYacNaG39j7wcgeXl5hn41NTXy6quvip+fn3h6esro0aONbl+2pdbmoKCgQMaNGyd+fn7i6OgoQUFBMmPGjAfeUtuWCgJz/A7c7/4539LzIB9/TERERHyWAREREbEgICIiIrAgICIiIrAgICIiIrAgICIiIrAgICIiIrAgICIiIrAgIHroRUZGQqFQQKFQQKPRYM+ePVAoFCgrK7Podp988knDdi29LSKyPBYERI+AuXPnoqioCE899ZRJ/b/66ivDH3OFQoGAgAA8++yzyMvLM3mbhw4dwqZNm1o6ZCJqY1gQED0C3NzcoFKpDE9IM4WXlxeKiopQWFiIb7/9FhqNBhMnTkRdXZ1J7/f19YW3t3dLh0xEbQwLAqJH1JEjRzBgwAC4ublhyJAh9Z4eqlAooFKpEBAQgBEjRiAhIQG5ubk4e/YsDh06hDFjxsDHxwdKpRIRERHIysqyUSREZA0sCIgeUUuWLMFHH32Ew4cPw8HBAbNnz35gf1dXVwB3HqlbUVGBmTNnYu/evThw4AC6dOmC8ePHo6KiwhpDJyIbMP34IhE9VJYvX46IiAgAd561PmHCBFRXV8PFxaVe38uXL+ODDz5AUFAQunbtWu9ahM8++wzt27dHRkYGYmJirDJ+IrIuHiEgekT17t3b8O+AgAAAQElJiaGtvLwcHh4ecHd3xxNPPIGamhps3rwZTk5OKCkpwfz589G1a1colUoolUpUVlbi4sWLVo+DiKyDRwiIHlGOjo6GfysUCgCAXq83tHl6eiIrKwt2dnbw9/eHu7u7YdmsWbNw9epVJCUlISQkBM7Ozhg8eDBqamqsFwARWRULAqLHlJ2dHUJDQxtctnfvXiQnJ2P8+PEAgEuXLuHatWvWHB4RWRkLAiKqJzQ0FGvXrsWAAQOg1WoRHx9vuOiQiB5NvIaAiOr58ssvUVpair59+yIuLg4vvfQS/Pz8bD0sIrIghYiIrQdBRC0XGRmJPn36ICkpyerb3rNnD0aMGIHS0lK0a9fO6tsnIvPhEQKiR0BycjI8PDyQk5NjtW2GhYVh3LhxVtseEVkWjxAQPeQKCgpw69YtAEBwcDCcnJysst38/HzodDoAQKdOnWBnx88XRA8zFgRERETEUwZERETEgoCIiIjAgoCIiIjAgoCIiIjAgoCIiIjAgoCIiIjAgoCIiIjAgoCIiIjAgoCIiIgA/D9AdmrDQ8HfAQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "# Plotting\n", "Plot = mslp_mask.plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(986,1048,8), \n", " cmap='coolwarm', \n", " add_colorbar=True, \n", " extend='both', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': '[hPa]'}) #設定color bar\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(0,70,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines() \n", "ax.set_ylabel(' ') \n", "ax.set_xlabel(' ')\n", "ax.set_title(\"MSLP, Dec. 2021\", loc='left')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "edb583ef", "metadata": {}, "source": [ "Regions exceeding 3000 meters in altitude are set as `NaN`, so no values are plotted over these areas." ] }, { "attachments": {}, "cell_type": "markdown", "id": "33fa05a9", "metadata": {}, "source": [ "## Calculate Relative Vorticity and Divergence\n", "\n", "Simple statistics can be done with xarray's methods. When it comes to meteorological variables, we can use the MetPy library. MetPy supports xarray, which means that we can apply DataArray to MetPy functions. Below is an example to calculate relative vorticity using [metpy.calc.vorticity](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.vorticity.html).\n", "\n", "**Example 5:** Calculate relative vorticity at the 850-hPa level in December 2017.\n", "\n", "**Step 1:** Read data and select the spatial and temporal ranges.\n" ] }, { "cell_type": "code", "execution_count": 31, "id": "0e066184", "metadata": {}, "outputs": [], "source": [ "latn = 30 \n", "lats = -20\n", "\n", "uds = xr.open_dataset('data/ncep_r2_uv850/u850.2017.nc')\n", "vds = xr.open_dataset('data/ncep_r2_uv850/v850.2017.nc')\n", "u = uds.sel(time=slice('2017-12-01','2017-12-31'), \n", " level=850,\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).uwnd\n", "v = vds.sel(time=slice('2017-12-01','2017-12-31'), \n", " level=850,\n", " lat=slice(latn,lats),\n", " lon=slice(lon1,lon2)).vwnd" ] }, { "attachments": {}, "cell_type": "markdown", "id": "5e0d0550", "metadata": {}, "source": [ "**Step 2:** Calculate relative vorticity. Ensure that the vorticity function requires units for the wind field. Import `metpy.units` and attach it to the wind variables." ] }, { "cell_type": "code", "execution_count": 36, "id": "452521b4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 21, lon: 33)> Size: 6kB\n",
       "<Quantity([[ 2.27227035e-06 -6.35822645e-06 -1.46749070e-05 -2.08053115e-05\n",
       "  -2.30204190e-05 -2.14179636e-05 -1.73882539e-05 -1.29046760e-05\n",
       "  -9.84929500e-06 -9.54206099e-06 -1.12507049e-05 -1.23807539e-05\n",
       "  -1.01248504e-05 -4.97617877e-06 -9.28601335e-07 -2.13257232e-06\n",
       "  -8.04519296e-06 -1.36745794e-05 -1.37081362e-05 -8.49913312e-06\n",
       "  -2.77764758e-06 -1.18851542e-06 -3.59719131e-06 -6.00788240e-06\n",
       "  -5.68558831e-06 -3.57765352e-06 -2.98596786e-06 -5.61280440e-06\n",
       "  -9.78352706e-06 -1.28709753e-05 -1.36409031e-05 -1.30405734e-05\n",
       "  -1.21284570e-05]\n",
       " [ 1.59641488e-06  1.27951490e-07 -2.96147587e-06 -6.09627077e-06\n",
       "  -7.14075885e-06 -6.30349598e-06 -5.16875042e-06 -4.56615673e-06\n",
       "  -4.01070010e-06 -3.29133037e-06 -3.14996178e-06 -4.03313727e-06\n",
       "  -5.06772766e-06 -5.30085544e-06 -5.33611754e-06 -7.06711890e-06\n",
       "  -1.08910896e-05 -1.43131536e-05 -1.42338578e-05 -1.03047389e-05\n",
       "  -5.71612173e-06 -3.96175474e-06 -5.53658936e-06 -7.88921794e-06\n",
       "  -8.64479278e-06 -8.03751306e-06 -8.04710263e-06 -9.82336098e-06\n",
       "  -1.24495122e-05 -1.41660453e-05 -1.44190610e-05 -1.42504704e-05\n",
       "  -1.44654921e-05]\n",
       " [-2.25853323e-06  1.13172266e-06  2.50715062e-06  3.24109081e-06\n",
       "   4.54796451e-06  5.22032636e-06  3.42384104e-06  8.61968466e-08\n",
       "...\n",
       "  -8.52059086e-06 -1.10716107e-05 -1.19881288e-05 -1.13950856e-05\n",
       "  -9.98141214e-06]\n",
       " [ 3.40814844e-07 -1.87193747e-06 -2.55199434e-06 -1.83217317e-06\n",
       "  -7.07930811e-07 -2.45485863e-07 -7.17219789e-07 -1.21135839e-06\n",
       "  -6.77305687e-07  1.98063110e-07 -8.42058040e-07 -4.36596747e-06\n",
       "  -7.21982209e-06 -6.11138032e-06 -2.24744337e-06  6.50249030e-08\n",
       "  -5.85517420e-07 -8.93727851e-07  1.92617077e-06  5.34523983e-06\n",
       "   4.91827661e-06  6.98802749e-07 -2.36916696e-06 -8.49899076e-07\n",
       "   3.18171194e-06  5.20927594e-06  3.40469449e-06 -5.15668196e-07\n",
       "  -4.15454945e-06 -6.51466556e-06 -7.57468620e-06 -7.70031620e-06\n",
       "  -7.32678885e-06]\n",
       " [ 3.86059996e-06  4.83366406e-07 -1.67842807e-06 -2.14714011e-06\n",
       "  -1.31075583e-06 -6.41593796e-07 -9.82999754e-07 -1.46979384e-06\n",
       "  -7.01365099e-07  5.12796672e-07 -4.05116393e-07 -4.63963087e-06\n",
       "  -8.87224706e-06 -8.92474419e-06 -4.83957896e-06 -1.08197146e-06\n",
       "  -7.43141058e-07 -2.15767543e-06 -1.95926642e-06 -1.83126193e-07\n",
       "  -9.75771821e-09 -3.08505634e-06 -6.80966442e-06 -7.53604087e-06\n",
       "  -4.54671714e-06 -6.88500940e-08  3.41230334e-06  4.97175514e-06\n",
       "   4.77222735e-06  3.07068630e-06  7.25767405e-07 -1.38476001e-06\n",
       "  -2.89335635e-06]], '1 / second')>\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n",
       "  * lat      (lat) float32 84B 30.0 27.5 25.0 22.5 ... -12.5 -15.0 -17.5 -20.0\n",
       "    level    float32 4B 850.0
" ], "text/plain": [ " Size: 6kB\n", "\n", "Coordinates:\n", " * lon (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n", " * lat (lat) float32 84B 30.0 27.5 25.0 22.5 ... -12.5 -15.0 -17.5 -20.0\n", " level float32 4B 850.0" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import metpy.calc as mpcalc\n", "from metpy.units import units\n", "vor = mpcalc.vorticity(u*units('m/s'), v*units('m/s'))\n", "vorm = vor.mean(axis=0)\n", "vorm" ] }, { "attachments": {}, "cell_type": "markdown", "id": "087fa996", "metadata": {}, "source": [ "In the preview of the variable `vorm` above, it includes information such as \"Magnitude\" and \"Units\". A DataArray with unit information is referred to as a **unit-aware array type**. When applying this DataArray to follow-up calculations, the unit information will be preserved. However, some libraries and functions other than MetPy may not recognize unit-aware array types, leading to errors. In such cases, we can use `.dequantify()` to convert it to an ordinary DataArray, which is called a **unit-naive array type**." ] }, { "cell_type": "code", "execution_count": 33, "id": "3ea7ec27", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray (lat: 21, lon: 33)> Size: 6kB\n",
       "array([[ 2.27227035e-06, -6.35822645e-06, -1.46749070e-05,\n",
       "        -2.08053115e-05, -2.30204190e-05, -2.14179636e-05,\n",
       "        -1.73882539e-05, -1.29046760e-05, -9.84929500e-06,\n",
       "        -9.54206099e-06, -1.12507049e-05, -1.23807539e-05,\n",
       "        -1.01248504e-05, -4.97617877e-06, -9.28601335e-07,\n",
       "        -2.13257232e-06, -8.04519296e-06, -1.36745794e-05,\n",
       "        -1.37081362e-05, -8.49913312e-06, -2.77764758e-06,\n",
       "        -1.18851542e-06, -3.59719131e-06, -6.00788240e-06,\n",
       "        -5.68558831e-06, -3.57765352e-06, -2.98596786e-06,\n",
       "        -5.61280440e-06, -9.78352706e-06, -1.28709753e-05,\n",
       "        -1.36409031e-05, -1.30405734e-05, -1.21284570e-05],\n",
       "       [ 1.59641488e-06,  1.27951490e-07, -2.96147587e-06,\n",
       "        -6.09627077e-06, -7.14075885e-06, -6.30349598e-06,\n",
       "        -5.16875042e-06, -4.56615673e-06, -4.01070010e-06,\n",
       "        -3.29133037e-06, -3.14996178e-06, -4.03313727e-06,\n",
       "        -5.06772766e-06, -5.30085544e-06, -5.33611754e-06,\n",
       "        -7.06711890e-06, -1.08910896e-05, -1.43131536e-05,\n",
       "        -1.42338578e-05, -1.03047389e-05, -5.71612173e-06,\n",
       "        -3.96175474e-06, -5.53658936e-06, -7.88921794e-06,\n",
       "        -8.64479278e-06, -8.03751306e-06, -8.04710263e-06,\n",
       "...\n",
       "        -7.17219789e-07, -1.21135839e-06, -6.77305687e-07,\n",
       "         1.98063110e-07, -8.42058040e-07, -4.36596747e-06,\n",
       "        -7.21982209e-06, -6.11138032e-06, -2.24744337e-06,\n",
       "         6.50249030e-08, -5.85517420e-07, -8.93727851e-07,\n",
       "         1.92617077e-06,  5.34523983e-06,  4.91827661e-06,\n",
       "         6.98802749e-07, -2.36916696e-06, -8.49899076e-07,\n",
       "         3.18171194e-06,  5.20927594e-06,  3.40469449e-06,\n",
       "        -5.15668196e-07, -4.15454945e-06, -6.51466556e-06,\n",
       "        -7.57468620e-06, -7.70031620e-06, -7.32678885e-06],\n",
       "       [ 3.86059996e-06,  4.83366406e-07, -1.67842807e-06,\n",
       "        -2.14714011e-06, -1.31075583e-06, -6.41593796e-07,\n",
       "        -9.82999754e-07, -1.46979384e-06, -7.01365099e-07,\n",
       "         5.12796672e-07, -4.05116393e-07, -4.63963087e-06,\n",
       "        -8.87224706e-06, -8.92474419e-06, -4.83957896e-06,\n",
       "        -1.08197146e-06, -7.43141058e-07, -2.15767543e-06,\n",
       "        -1.95926642e-06, -1.83126193e-07, -9.75771821e-09,\n",
       "        -3.08505634e-06, -6.80966442e-06, -7.53604087e-06,\n",
       "        -4.54671714e-06, -6.88500940e-08,  3.41230334e-06,\n",
       "         4.97175514e-06,  4.77222735e-06,  3.07068630e-06,\n",
       "         7.25767405e-07, -1.38476001e-06, -2.89335635e-06]])\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n",
       "  * lat      (lat) float32 84B 30.0 27.5 25.0 22.5 ... -12.5 -15.0 -17.5 -20.0\n",
       "    level    float32 4B 850.0\n",
       "Attributes:\n",
       "    units:    1 / second
" ], "text/plain": [ " Size: 6kB\n", "array([[ 2.27227035e-06, -6.35822645e-06, -1.46749070e-05,\n", " -2.08053115e-05, -2.30204190e-05, -2.14179636e-05,\n", " -1.73882539e-05, -1.29046760e-05, -9.84929500e-06,\n", " -9.54206099e-06, -1.12507049e-05, -1.23807539e-05,\n", " -1.01248504e-05, -4.97617877e-06, -9.28601335e-07,\n", " -2.13257232e-06, -8.04519296e-06, -1.36745794e-05,\n", " -1.37081362e-05, -8.49913312e-06, -2.77764758e-06,\n", " -1.18851542e-06, -3.59719131e-06, -6.00788240e-06,\n", " -5.68558831e-06, -3.57765352e-06, -2.98596786e-06,\n", " -5.61280440e-06, -9.78352706e-06, -1.28709753e-05,\n", " -1.36409031e-05, -1.30405734e-05, -1.21284570e-05],\n", " [ 1.59641488e-06, 1.27951490e-07, -2.96147587e-06,\n", " -6.09627077e-06, -7.14075885e-06, -6.30349598e-06,\n", " -5.16875042e-06, -4.56615673e-06, -4.01070010e-06,\n", " -3.29133037e-06, -3.14996178e-06, -4.03313727e-06,\n", " -5.06772766e-06, -5.30085544e-06, -5.33611754e-06,\n", " -7.06711890e-06, -1.08910896e-05, -1.43131536e-05,\n", " -1.42338578e-05, -1.03047389e-05, -5.71612173e-06,\n", " -3.96175474e-06, -5.53658936e-06, -7.88921794e-06,\n", " -8.64479278e-06, -8.03751306e-06, -8.04710263e-06,\n", "...\n", " -7.17219789e-07, -1.21135839e-06, -6.77305687e-07,\n", " 1.98063110e-07, -8.42058040e-07, -4.36596747e-06,\n", " -7.21982209e-06, -6.11138032e-06, -2.24744337e-06,\n", " 6.50249030e-08, -5.85517420e-07, -8.93727851e-07,\n", " 1.92617077e-06, 5.34523983e-06, 4.91827661e-06,\n", " 6.98802749e-07, -2.36916696e-06, -8.49899076e-07,\n", " 3.18171194e-06, 5.20927594e-06, 3.40469449e-06,\n", " -5.15668196e-07, -4.15454945e-06, -6.51466556e-06,\n", " -7.57468620e-06, -7.70031620e-06, -7.32678885e-06],\n", " [ 3.86059996e-06, 4.83366406e-07, -1.67842807e-06,\n", " -2.14714011e-06, -1.31075583e-06, -6.41593796e-07,\n", " -9.82999754e-07, -1.46979384e-06, -7.01365099e-07,\n", " 5.12796672e-07, -4.05116393e-07, -4.63963087e-06,\n", " -8.87224706e-06, -8.92474419e-06, -4.83957896e-06,\n", " -1.08197146e-06, -7.43141058e-07, -2.15767543e-06,\n", " -1.95926642e-06, -1.83126193e-07, -9.75771821e-09,\n", " -3.08505634e-06, -6.80966442e-06, -7.53604087e-06,\n", " -4.54671714e-06, -6.88500940e-08, 3.41230334e-06,\n", " 4.97175514e-06, 4.77222735e-06, 3.07068630e-06,\n", " 7.25767405e-07, -1.38476001e-06, -2.89335635e-06]])\n", "Coordinates:\n", " * lon (lon) float32 132B 80.0 82.5 85.0 87.5 ... 152.5 155.0 157.5 160.0\n", " * lat (lat) float32 84B 30.0 27.5 25.0 22.5 ... -12.5 -15.0 -17.5 -20.0\n", " level float32 4B 850.0\n", "Attributes:\n", " units: 1 / second" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vorm.metpy.dequantify()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "dd031e58", "metadata": {}, "source": [ "The unit will be converted to an ordinary text attribute.\n", "\n", "This example highlights the advantages of using `xarray.DataArray` over `numpy.array`. With `numpy.array`, you would need to specify the number of latitude and longitude axes, as well as provide the longitude and latitude arrays. However, since the latitude and longitude labels and dimension names are already stored in the `DataArray`, you only need to provide the wind DataArrays. This makes the code significantly simpler." ] }, { "attachments": {}, "cell_type": "markdown", "id": "e6386fd6", "metadata": {}, "source": [ "**Step 3:** Plotting. " ] }, { "cell_type": "code", "execution_count": 37, "id": "0b72ee9e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGkCAYAAAAIQJ5PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3RURRuHn03vPaRCEkroLVTpvVfpIF16R1T4QEAQEFAEBUVRiiKgCIgU6RCU3kLvECBAeu/tfn/EXbLJbrI12YT7nJNzsvfOnZnbZn73nXfekQiCICAiIiIiIiIiUoQYFXcFRERERERERN4+RAEiIiIiIiIiUuSIAkRERERERESkyBEFiIiIiIiIiEiRIwoQERERERERkSJHFCAiIiIiIiIiRY4oQERERERERESKHFGAiIiIiIiIiBQ5ogARERERERERKXJEAaIm165do1evXnh6emJlZUWVKlVYtGgRycnJculGjBiBRCLJ91elShWF+X7zzTdUqVIFc3Nz/Pz8+PTTT8nIyFCpTgsXLkQikRAZGVloWl9fX7n62NjY0KhRI37++WeVyiqIvXv3IpFIWL9+vdI0R48eRSKRsGrVKq3LA1i6dCl//vlnvu2nTp1CIpFw6tQptfLbvHkzEomE4OBg2bZt27axevVqreqpKtJ7Kf2zsrLC29ubjh078s0335CQkFAk9SgKfH196datW7GVn5WVxapVq+jUqRPe3t5YWVlRtWpVZs+eTWxsrMJjVHlPQ0JCmD59Oi1btsTBwQGJRMLmzZvz5RUcHKywjZD+derUSQ9nLSJiQAgiKnP79m3BwsJCqF27tvDbb78Jx48fFxYsWCAYGxsLPXr0kEs7fPhwwdLSUjh37pzcX1BQUL58P/vsM0EikQhz5swRTp48KaxYsUIwMzMTxowZo1K9FixYIABCREREoWl9fHyEpk2byuqzc+dOoVGjRgIgfPvtt6pdCCVkZGQI7u7uQoMGDZSmGTRokGBqaiqEh4drVZYUa2trYfjw4fm2x8XFCefOnRPi4uLUyi88PFw4d+6ckJqaKtvWtWtXwcfHR8uaqob0Xh46dEg4d+6cEBgYKGzfvl14//33BQsLC6Fs2bIKn6GSiI+Pj9C1a9diKz8hIUGwtbUVxo4dK+zcuVM4efKk8OWXXwqOjo5CtWrVhOTkZLn0qr6nJ0+eFFxcXIR27doJgwYNEgBh06ZN+cpPTU3N1z6cO3dO+PjjjwVAWL9+vT5PX0Sk2BEFiBrMnTtXAIRHjx7JbR87dqwACNHR0bJtw4cPF6ytrQvNMzIyUrCwsBDGjh0rt33JkiWCRCIRbt++XWge6gqQvI1+TEyMYGdnJ1SsWLHQ4wvjo48+EgDh5s2b+fbFxMQIFhYWQp8+fbQuR9o5KBMguqQ4BIiiexkUFCTY29sL5cqVkxNIJZWiECDZ2dn5hISUzMxMITIyMt/2nTt3CoDwyy+/yLap855mZWXJ/r906ZJSAaKMVq1aCVZWVmqLZxGRkoY4BKMGpqamANjb28ttd3BwwMjICDMzM7XzPHToEKmpqYwcOVJu+8iRIxEEQeHwgjLCwsIYNGgQ9vb2uLm5MWrUKOLi4go9zsHBgcqVK/Ps2TMALl++zMCBA/H19cXS0hJfX18GDRok218Qo0ePBmDTpk359m3fvp3U1FRGjRoFQGpqKnPmzMHPzw8zMzO8vLyYNGlSPvO31FS/e/du6tati4WFBZ9++ikSiYSkpCS2bNkiM1u3atUKUD4Ec+HCBbp3746zszMWFhZUqFCB6dOny/bnHYJp1aoVBw4c4NmzZ3LmcUEQqFSpEh07dsx3nomJidjb2zNp0qRCr5c61K5dm7lz5/L8+XN+++03uX3Hjh2jbdu22NnZYWVlRdOmTTl+/Hi+PO7du8egQYNwc3PD3NyccuXKMWzYMNLS0mRpQkNDGTduHN7e3piZmcmGGjIzM2VppMMHK1euZPny5bJnpVWrVjx48ICMjAxmz56Np6cn9vb29O7dm/DwcIXntWfPHmrVqoWFhQXly5fn66+/zpcmPj6eWbNmyT0r06dPJykpSS6dRCJh8uTJrF+/nqpVq2Jubs6WLVsUlmtsbIyzs3O+7Q0bNgTgxYsXsm3qvKdGRpo3q48fPyYwMJD+/ftjZ2encT4iIiWCYhZAJYqnT58KDg4OQt++fYXHjx8L8fHxwr59+wR7e3thypQpcmmHDx8uGBkZCW5uboKRkZHg5eUlTJo0SYiKipJLN3v2bAEQEhMT85Xn4uIiDBo0qNB6Sb+aK1euLMyfP184evSosGrVKsHc3FwYOXKkXFpFX53p6elCmTJlBE9PT0EQcr4A58+fL+zZs0cIDAwUduzYIbRs2VJwdXVVycrSrFkzoUyZMkJ6errc9gYNGgheXl5CZmamkJ2dLXTs2FEwMTERPvnkE+HIkSPCF198IVhbWwt169aV+8L38fERPDw8hPLlywsbN24UTp48KVy8eFE4d+6cYGlpKXTp0kVmvpZ+iZ48eVIAhJMnT8ryOXTokGBqairUqlVL2Lx5s3DixAlh48aNwsCBA2VpNm3aJADC06dPBUHIGXZr2rSp4O7uLmcmFwRBWLNmjSCRSIQHDx7Inee6desEQCXrVV4Ks2bdu3dPAITRo0fLtv3yyy+CRCIRevXqJezevVvYt2+f0K1bN8HY2Fg4duyYLF1QUJBgY2Mj+Pr6CuvXrxeOHz8ubN26Vejfv78QHx8vCIIgvH79Wihbtqzg4+MjfP/998KxY8eExYsXC+bm5sKIESNkeT19+lQABB8fH6F79+7C/v37ha1btwpubm6Cv7+/MHToUGHUqFHC33//Laxfv16wsbERunfvLncuPj4+gpeXl1CuXDlh48aNwsGDB4UhQ4YIgLBy5UpZuqSkJKFOnTqCi4uLsGrVKuHYsWPCmjVrBHt7e6FNmzZCdna2LC0geHl5CbVq1RK2bdsmnDhxQrh165Za90D6DOzdu1e2TdP3VF0LyP/+9z8BEP7991+16iwiUhIRBYia3L17V6hSpYoAyP6mTp0q1wgKgiCsWrVKWLVqlXDkyBHhyJEjwty5cwUrKyuhSpUqQkJCgizdmDFjBHNzc4Vl+fv7Cx06dCi0TtJOa8WKFXLbJ06cKFhYWMjVzcfHR+jSpYuQkZEhZGRkCE+fPhWGDx8uAMKHH36oMP/MzEwhMTFRsLa2FtasWVNofaQN+O7du2Xbbt26JQDC3LlzBUHIEQOK6vzbb78JgPDDDz/I1dnY2Fi4f/9+vrKUDcEoEiAVKlQQKlSoIKSkpBRad6kAEQTlQzDx8fGCra2tMG3aNLnt1apVE1q3bq20jIIoTICkpKQIgNC5c2dBEHI6Zycnp3yde1ZWllC7dm2hYcOGsm1t2rQRHBwcCvS/GTdunGBjYyM8e/ZMbvsXX3whJ6qkAqR27dpyQw6rV68WgHw+UdOnTxcAuWEFHx8fQSKR5PNpad++vWBnZyckJSUJgiAIy5YtE4yMjIRLly7Jpfvjjz8EQDh48KBsGyDY29vLDYeqQ0hIiODm5ibUr19f7rw0fU/VESCZmZmCl5eXUKVKFY3qLiJS0hCHYNQgODhYZr7/448/CAwMZMWKFWzevJn3339fLu2MGTOYMWMG7du3p3379nz22Wf8/PPP3Lt3jw0bNsillUgkSsuU7hMEgczMTLm/vPTo0UPud61atUhNTc1n+j548CCmpqaYmpri5+fH77//zpQpU/jss8+AnCGEjz/+mIoVK2JiYoKJiQk2NjYkJSVx9+7dQq9T//79sbW1ZePGjbJtGzduRCKRyEzYJ06cAHJmC+WmX79+WFtb5xs+qFWrFv7+/oWWrYwHDx7w+PFjRo8ejYWFhcb55MbW1paRI0eyefNm2VDAiRMnuHPnDpMnT9ZJGXkRBEHu99mzZ4mOjmb48OFyz0Z2djadOnXi0qVLJCUlkZycLDPtu7q6Ks1///79tG7dGk9PT7n8OnfuDEBgYKBc+i5dusgNOVStWhWArl27yqWTbn/+/Lnc9urVq1O7dm25bYMHDyY+Pp6rV6/K6lSjRg3q1KkjV6eOHTsqHGZr06YNjo6OSs9RGdHR0XTp0gVBEPjtt9/yDaWo8p5qw6FDh3j58qVsGFNEpLRjUtwVKEnMnj2b+Ph4goKCsLa2BqBFixa4uLgwatQohg0bRsuWLZUe37t3b6ytrTl//rxsm7OzM6mpqSQnJ2NlZSWXPjo6mnr16gE5DX/r1q3l9j99+hRfX1+5vHJjbm4OQEpKitz2Zs2a8dVXX8mmeVaoUEHOf2Xw4MEcP36cTz75hAYNGmBnZ4dEIqFLly758lKElZUVAwcOZNOmTYSGhuLi4sLWrVtp2bIlFSpUACAqKgoTE5N8naFEIsHd3Z2oqCi57R4eHoWWWxAREREAeHt7a5VPXqZMmcLatWv59ddfGTt2LGvXrsXb25uePXvqtBwpUj8cT09PIMfvB6Bv375Kj4mOjsbIyIisrKxCzz8sLIx9+/bJ/J3ykneqt5OTk9xv6XOkbHtqaqrcdnd393xlSLdJn4GwsDAePXqkcp00eVZiYmJo3749L1++5MSJE5QvX15uv6rvqTb89NNPmJqaMmzYMK3zEhEpCYgCRA2CgoKoVq2aTHxIadCgAQC3bt0qUIBAzhds7i+rmjVrAnDz5k0aNWok2x4aGkpkZCQ1atQAoF69ely6dEkuL2knpC729vbUr19f4b64uDj279/PggULmD17tmx7Wloa0dHRKpcxevRoNmzYwM8//4y/vz/h4eF8+eWXsv3Ozs5kZmYSEREhJ0IEQSA0NFR2TaVo+4UpLSMkJESrfPJSsWJFOnfuzLp16+jcuTN//fUXn376KcbGxjotR8pff/0FIHO2dXFxAXLiUzRu3FjhMW5ubmRlZWFsbFzo+bu4uFCrVi2WLFmicL+mz5wyQkNDlW6TCmoXFxcsLS3lLGq5kV4DKeo+KzExMbRr146nT59y/PhxatWqlS+Nqu+ppoSHh7N//3569OhBmTJltMpLRKSkIAoQNfD09OTWrVskJiZiY2Mj237u3Dmg8K/rP/74g+TkZLmOolOnTlhYWLB582a5hk06G6NXr15AjrlfmWjQJdIZHlLriZQff/yRrKwslfNp1KgRNWrUYNOmTfj7+2Nvb0+fPn1k+9u2bcuKFSvYunUrM2bMkG3ftWsXSUlJtG3bVqVyzM3NVbLK+Pv7U6FCBTZu3MjMmTPznZ82ZUybNo0OHTowfPhwjI2NGTNmjMp5q8P169dZunQpvr6+9O/fH4CmTZvi4OCg0rBPy5Yt2blzJ0uWLMnXaUvp1q0bBw8epEKFChoNY6jL7du3uX79utwwzLZt27C1tSUgIEBWp6VLl+Ls7Iyfn59Oy5eKjydPnnD06FHq1q2rMJ2q76mm/Pzzz2RkZIjDLyJvFaIAUYPp06fTq1cv2rdvz4wZM3BxceH8+fMsW7aMatWqycbJnz17xuDBgxk4cCAVK1ZEIpEQGBjI6tWrqV69upy/iJOTE/PmzeOTTz7BycmJDh06cOnSJRYuXMj7779PtWrVivQc7ezsaNGiBStXrsTFxQVfX18CAwP56aefcHBwUCuvUaNGMXPmTO7fv8+4ceOwtLSU7Wvfvj0dO3bk448/Jj4+nqZNm3Ljxg0WLFhA3bp1GTp0qEpl1KxZk1OnTrFv3z48PDywtbWlcuXKCtOuW7eO7t2707hxY2bMmEG5cuV4/vw5hw8f5tdffy2wjN27d/Pdd99Rr149jIyM5MRg+/btqVatGidPnuS9995T+AXbqlUrAgMD8/lwKOPKlSvY29uTkZHBq1evOH78OL/88gtlypRh3759siENGxsbvvnmG4YPH050dDR9+/alTJkyREREcP36dSIiIvjuu+8AWLVqFc2aNaNRo0bMnj2bihUrEhYWxl9//cX333+Pra0tixYt4ujRozRp0oSpU6dSuXJlUlNTCQ4O5uDBg6xfv16nw1ienp706NGDhQsX4uHhwdatWzl69CjLly+XDXVMnz6dXbt20aJFC2bMmEGtWrXIzs7m+fPnHDlyhA8++EBOFKhKSkoKHTt25Nq1a6xevZrMzEy54VFXV1fZkKG67+kff/wBwJMnT4Ccqe3SjxZFw2U//fQTZcuWVTitW0Sk1FKMDrAlkhMnTggdOnQQ3N3dBUtLS8Hf31/44IMP5AIaRUdHC7179xZ8fX0FS0tLwczMTKhUqZLw0UcfCbGxsQrzXbNmjeDv7y+YmZkJ5cqVExYsWJBvGqsylM2cUDSjQ5XgTyEhIUKfPn0ER0dHwdbWVujUqZNw69YtwcfHR62gXxEREYKZmZkACBcvXsy3PyUlRfj4448FHx8fwdTUVPDw8BAmTJggxMTEyKUrqM5BQUFC06ZNBSsrKwEQWrZsKQiC4lkwgiAI586dEzp37izY29sL5ubmQoUKFYQZM2bI9iu6ZtHR0ULfvn0FBwcHQSKRCIpem4ULFwqAcP78eYX1rFevnuDu7q5wX26k91L6Z25uLnh4eAgdOnQQ1qxZI5sum5fAwECha9eugpOTk2Bqaip4eXkJXbt2FXbu3CmX7s6dO0K/fv0EZ2dn2bM2YsQIuWnPERERwtSpUwU/Pz/B1NRUcHJyEurVqyfMnTtXNg1VOgsm93RZQXhz3fOWK72uuWeySO/rH3/8IVSvXl0wMzMTfH19hVWrVuU7v8TERGHevHlC5cqVBTMzM8He3l6oWbOmMGPGDCE0NFSWDhAmTZpU6HXOfQ7K/hQ966q+pwXlm5czZ84IgDB//nyV6i0iUlqQCIKKn2QiIiJKqV+/PhKJJJ+fDkBCQgJOTk6sXr1a58HJREREREoq4hCMiIiGxMfHc+vWLfbv38+VK1fYs2ePwnSnT5/Gy8tLb74hIiIiIiUR0QIiIqIhp06donXr1jg7OzN58mQWLlxY3FUSERERKTGIAkRERERERESkyCnWSKjfffcdtWrVws7ODjs7O9555x3+/vtv2X5BEFi4cCGenp6yha5u374tl8f9+/dp2rQp3t7eLFq0SG6fr68vEolEzrMdcrzqpXEURERERERERIqeYhUg3t7efP7551y+fJnLly/Tpk0bevbsKRMZK1asYNWqVaxdu5ZLly7h7u5O+/btSUhIkOUxadIkhg4dyt69e9m3bx9nzpyRK8PCwoKPP/64SM9LREREREREpGCKVYB0796dLl264O/vj7+/P0uWLMHGxobz588jCAKrV69m7ty5vPvuu9SoUYMtW7aQnJzMtm3bZHnExsZSt25datWqhaenZ77l58eNG8f58+c5ePBgUZ+eiIiIiIiIiBIMZhZMVlYWO3fuJCkpiXfeeYenT58SGhpKhw4dZGnMzc1p2bIlZ8+eZdy4cQAsWrSI9u3bk5KSQrdu3fIF8vH19WX8+PHMmTOHTp065VtgShFpaWmkpaXJbRMEQScLTomIiIiIiOgaMzMznS20WVQUuwC5efMm77zzDqmpqdjY2LBnzx6qVavG2bNngZx1LHLj5uYmW5ALclbjjIiIID4+Xukqn/PmzWPTpk38+uuvKkXYXLZsGZ9++qncNhsbGxITE9U9PREREREREb3j7u7O06dPS5QIKXYBUrlyZYKCgoiNjWXXrl0MHz5cbsnvvFYHRZYIc3PzApcYd3V1ZdasWcyfP58BAwYUWqc5c+Ywc+ZM2e/4+HjKli3LixcvsLOze1OXx/mDTgGkedVUuP1RTJrC7QD/Po9RuP1g0OtC6xt8J7zQNIp4eeWwSum86ukmPLRvNfUX2epSR7tVcEsrzcqpv05LRUfV17/RhoKecynKnncpkSHPWDmqh+y3c/UmeDbphlOlAK3qpurzpMr1LarrqQhVrnFRoqtroe15FfZcFYQqba2h8Ne4d+R+S/uo9PR0UYCog5mZGRUrVgRyokleunSJNWvWyBxHQ0ND5ZbXDg8Pz2cVUYWZM2fy7bff8u233xaa1tzcXOFiZdLZOlIEW+t8aQCIf0Kad518mwPs4EG04hesU/WcfAOD5Vec7dPUFoC9V18qrW/Fem8W6HpyM0xpuryUfae3ymk1oXxN9e8TQM8ALx3XpHTR0tep8EQKCM0Efyf9d5o2mYV3IpbWmUr3vXx0V058uAW0pXzX0ViVKat13Y7cj1fp+boSlVnodS6q65mXB9Fp2NgWn/hRRKiS26nq9ZG2i9qcV2BwNJbWthodu/fqS0wslbTnBkjufqgkU+wCJC+CIJCWloafnx/u7u5yK1Smp6cTGBjI8uXL1c7XxsaGTz75hIULF9K9e3ddV1tntPR1yidC4E2nXJAQgTedvjpCRFdoKjhA/6JD004b8ovC4kSb84Cchl6fnaYygZ2bwq6nqbn8F5xr7RY6ER+lAVWuryFRVPXV5h0trE0V0R/FKkD+97//0blzZ8qWLUtCQgI7duzg1KlTHDp0CIlEwvTp01m6dCmVKlWiUqVKLF26FCsrKwYPHqxReWPHjuWrr75i+/btGq2eqQ7mIUEKrSD+TuaFvpTKRAjId9QFvTjKxIAuhIk2QiM3+hAd2nbQ6uRZ1MJEV+cmff50LUR0IT4Azu37Te63VZlyGtdJGwKDowu95voWdHnLEsmPKD5KLsUqQMLCwhg6dCivX7/G3t6eWrVqcejQIdq3bw/ARx99REpKChMnTiQmJoZGjRpx5MgRbG01M7OZmpqyePFijQWMuhQkQqDgBkXa8BX0cqkqRnKjK/GgKboWHfoQHLoqW5uGsSjOS5edp67EB0CjLn05/usPANSZtAobrwpa1U3fFIUIEcWHYkTxUbIRQ7GrQHx8PPb29sTFxcn7gDw6X8BRb1AkQnJTWOOizktmKC+VvoZUilNwlFY07TzV7RRVfY6f37vJF6N7YmJlR8vlBzSpWqGo+nyq87zpS4SI4kMx2logDaWt1IRjk5vJ/VbWRxk6BucD8jZSmEUkdyNY2EuXt2EtipdMn/4bouDQP+p8wWvaGarTWYQGPwKg1pilGpWlS5QNw6SmpHDqyN+sXjKfRV99S8OmLfRiCRHFh2LeZvFRmhAFSBGgbCgmL+oMzYBqL6E64kD6UhbXLBRRbBQfBXWe2naCqnYWT25cZtP8qaRl5fyOvn8Jx4q1tSpbH5w5dYyJQ/rKfkeEhcr+15V/jSg8FKMLvytRfBgOogApIlQVIaCaoyqoL0YKo6iEhyg0DJPcIkRXHaAqz6UgCDy7c51ty2YTFxEKSHCp0QTnKg11UgdtyWsF2bRujez/rzfvoGX7TvmO0UaIiOIjP7py+BbFh2EhCpAiRF0RAqo3Rnk79eKcOioKjJJLcXR+r58+YNXYdwGwcHLHq1lvfNvr11F879WXagvuzMxMtm/8ngkfzCbk2VMGjBijUHzkRt1hGVF8vEHXbZgoPgwPUYAYOJp+kaoiAlR9wUuzoBDH7PWHqs/XzX+OATDw46VEeDfXZ5W04nXIC774dC7l/Cpw6OItlY9T1RpiCM+OontW1O+/Pj6eRPFhmIgCpIhRxwqSm7yNly4aq9IsLKB4olSqUqYhdDT6RtVOJD0tlYMbVuFfvwlNegw02I4iMDia5uV8GD5+CmV9y2uUhzIhUpzPgyr3qahEib6stob6TImIAqRYMA8JAgqfnlsQuRuxt6FDU0RxCAxdYEgdkD5QpyN5/fg+giBQs1k7g+8ojIyMmPnJYq3z0YevjaroqpM3pOjABWHoz9TbjihAihFdCBEoGWKkpIqFoqC4OiN9oE7HdPfCabYsmIZv9bq802Mgf9+O0mPNtEeVyKiqUhz3uqSIBl0hig/DRxQgBoCuhAjoV4yIIkK/lAQhWRCqdnAxYa/Izs5m47zJlKtSk1FL1hms+BAEgdTkRNkiZ7oUISL6QxQfJQNRgBgQmvqHKEMUDCWXkmIVUeerOjr0JUuHdCA9NQU7Z1dMzcx5f9l3HHmQoMcaakZGehqXDu3h2NbviXz5jOnf/U75WvWLu1oGx81/jyMI2dRq3r64qyJDFB8lB1GAGBi6tIaIlHwMzSqirRk/PTUFgPioCBp17YuljR1geALk8pG97Fj+P9lve5c3ayiJVpA33Pr3GHcvnKZKg2aYWVgWd3VE8VHCEAWIgSIKEZG8qBqgTtfoynfAyd2LUZ+tY+O8Sbh6+9B3+gKD7DDiIsPZvmw2AEbGxny0aR/OnmWLuVaGSZ8ZCwh98kAUHyIaIQoQLUjzriMTCvpCFCIixYEuHRbDnj3mzrlTlKtaiwM/fgVA2yHjOXQvVmdlaIKyYGQ3Th+W/b/88HXMLa3ypRGtIDmYmVtQrmqt4q6GKD5KKKIA0ZKiECFAoWXoQqAUxXlIKQ2CqqDrpa/z07cVRB8zJW6fO8mf37xZWG70km8Jtqup83J0RWZ6OgDvzftCofiQIooQw0AUHyUXUYDogKISIQVR3OWrS+76ljQxosq1LgrBqEv0OUWzZd8RPL97g6vH9gNw7t4rPBoargBpPXA0zfsMxcTUrLirIlIIovgo2RgVdwVKC4bWoZQkzEOCDF5ASeuoq3pqk5cuZzcFBkfrPT7E/hth2HaaQoVuY0BixJ1fPiMu+I5ey9QWVcXH2xZbw5AQxUfJR7SA6BBDsISUZAzRKlIUPj7Fda767Dxzdw6vLx3mzs+fye2Pe3ITe99qSo9PT4jB1MYBiUSitzrqCnEopugRxUfpQBQgOqa0ipDki0cLTWPVUHexAIpTjBT1/dNEhGjjC1JUwgMg+v5lmfgwtbHHys0HJ//6eDfvrfD4pNBnPN6/gYjrgbjUaIp/v+lYOrnrrb66QhQhRYcoPkoPogDRA9LOxJCFiCqCQld5aitMimomUHHer6I4x6Je7EvIzubR3vUgkeDRsBPl2g7CxsNPcVpB4N725bw6dwBjC2vKtR7A81M7SXz1mIYf/YSptZ1e6q5LRBGiX0ThUfoQBYgeMVRriD7ER2Hl6dI6IqI+uhYfhXUGGUlxXF41keTw53g27UHVgR8WmD7ieiCvzh3Av880PJt2x9jUnLT4KCJunEYQsrWq6/XvZ5OZmkTtccsxsciZ1aJo+q0ukF5nQxQi0jqVNL8VUXiUXkQBomdKgjWkKCgJIqS475W+rB9FJT4ykuK5uWkBRiamGJtbkRz+HIeKtanS/4MC80t8/ZS725bjUrMZZVv1fZNfYizO1d/BzMZB5bqFXj6GjVcFOUtL5K0zACSEPGBE/64q56UNhmwNaenrVOJEiEjpRBQgRURxd24lnaL0AymOe6Xu+anq/6HLjqagL9HEV4+5sGyE3DY73+pUH/YJEiPlk+2yM9K5+dMnWDiWofqwT+T2ZaalYGJpU2i9Xp0/QHLYC2Kf3CDuyU083+lG1cEfy/a3+uIIrctb4ejmWWhebwsl1RoiUroQBUgR8zYLkZJgBclNUQ2h6Ut86JLCzOCmNo6y/x0qBSBkZVJnwkrZkIcynh3fTkpECA1nb5JLm/jqCfHBt/EeOrfA4zPTkrn76+cAmNu7AODTfohsv76GWlTBkK0gUkQhIlKciAJEC6QdgSZxGXJ3Om+TGCmJIgT0d49KgtOpKmPwkTf/xcjEDGt3H+pOWImRCnE0UiJfEXzkZ8q1GZDPOfXJgZ+wKlMWt7ptCsyjzzuV8Fv0DZEhwTTq2hdTMwus7OwLLbuoKAkiBMRhGZHiQRQgOkAbIQJvt1WkpKCPe6SJ+CjqoZfCxEdaXCTX1s0k6fVT7MvXpPbYz1USH4IgcH/nV5jaOODXaQTwxlohCAKXXt6jWbd+dGukeNZMbgLaFo1fh6aUJBECojVEpOgQBYgO0ZUQAf2JEVVmwKRlZPLP3ae0q1VJb3VQxwpiKEHJoHjFYlEPvSgTH9kZ6TzY/Q3Zmem8Pn8QAPcGHag2dJ5KgcN6Bnhx53wgJ+6c5/1l66n1TkW5/eHPnxIfFY5v9Tpan4OI+ohCRKSoEAWIHtBWiEDxDdEs2HGUL/f9A8DF5ZOp5l2myMouSRQmRIpTNOmi41AqPrIyCflnDy///VO2zaVms3wOpIrI7Y8Rcv8WVrb21GyeX4g+vXUFiURCxTqN1K+4gVJSrCC5EYdlRPSNKED0iC6ECBRtPJG9l96s0XHvZbgoQAqhqIRGUVo/Chp2ufHDHKLunMehQm0Cpq5BYmSsUp55nUGzsjIRhGyFFpMHV87hUaEyFtaFz4ApSYgiREREHnExuiJAF51HUXV0176YSkV3ZwBCIuOKpEyRglHn+SmosxAEga8nD2Jq0/JEhyoWGcrER1Z6KgkvHhB15zwSI2PqTPpSJfHRM8BL4UyUpzev4lUp/1owKUkJ3Pr3GLVadCg075JISezMS5poEik5iAKkiHgQnaa1ECkKESIIAo9CowDYdf6WbNvav8/y+5kbOitH1Wis2pyzLq55caMr8QFwePNaHl27AEBKQrzcPkEQyM7OJis9jYibZ0iNCeflmb8IPvorjw/8yPmlw7i4YjQADWdvwti0cKteQVNg/es34cmNKyTGytf54IavyMrI4J3uAwrNX6ToEEWIiD4Qh2C0QJOwy7pwVNXncExEfJLs/ytPXvLD0YtcfPiCHWeuA9C9QVUszUz1Vr6uyN1x5+3EdbmcvT7RtXiytn8Tq2Pzwml8+NNejIyNeX7vJtuWfkx0RDim1vakROaygkgkGJtb4lS5AR4NO+NUpb7S9VykqBJ7o2Gnd9n33QpunD5Ckx4DATj7128E7txMn+nzcSzjodlJlgBK4lAMiMMxIrpHFCA6oKiFiDoiJDMzExOTwm/zmXvBPIuIZVCz2ng52fEyOucLeebm/Zib5JjaJcDsrYdYM6q72nUuSgrruEuCIFFXfKjSMTR/9z1unTnO3fOBhAU/Yl6PRrj5VOTZnSBZGnN7FwKmfUPC83uYWtvjVr89CAJGJoWLTnWCftk5u4JEwo7l/8O1rB/OHt7s/HI+TXsOokXf4SrnU1IRRYiIiChAdEpRChFVRIggCJhVbc67HVqxc+3SfA5/giDw7eHz9GxQjY6LNwIwuHkd5vVtw4Qf/nxTVmYWRhIJ2YLAT8cv4e5gw5x3W6tV36JCE6tB7mMMQYzoY9goPjoCaztH3MqV58GVc1ha25AYGy0THwM+/IzG3fqz73ooEokEx4p1ZMfqK5roJztOsKh/K9ZOHUKVhs0xMTOn15S5Kk3lLemURPEhRRQhIrpCFCB6QJOvG02ESGFTQaUN+e4jp+g0cjpLZ03gs03H+KxrAL8EXuP9tg34+Je/+e2/4RUAmyHzsbeyyJfX2aUTiElMpvOSzdx/FalyHZWhShyQ4ghRXpzWEU3qr6wjEAQBITsbI2Njwp49YcngdrJ97n6VCH8RLPvdpOcgmvYaDECvet5q10FTXLzKsfr0Q1aO6sHd84GUrVwDc8uCQ7eXZEqy6MhLUYqQngFe4oq4pRRRgOgJTZfl1lSIKBMh4we/y/ptu4lLSGTB6g0cDDzL3mOnAahXPufL9uqTV3LHSD9AuwRUpq6fJ7V8PKhRzh2ANjUqcOVxiDqnlA9DFR+q5KtrQSLN/+CenVw5f5aps+dj7+hYyFE5KOoAXjy4TWJMFHfOnSJw52Za9R/Jv3/+CoCbTwVaDxxN3bZdEbIFhOwskhPicfYsq7sTUhMjY2NqNG3Ly0d3c4ZlSiGlSXjkRhQhItoiChA9o+lY74PoNI1FSGZmJjfuP+aXP/9m/bbdAFy8cSffMSPW7pT9/9mgDuy9eIdLj0NYN6YXPRvknyIJcOLWYwBuPw+l+n+iRFVUjX5qKOJDlbLy3iNN6nLnRhBzJo8BID0tlX7DRlOpajWSk5L4bfMGBgx/H2dX+Xgsihr+M39u44+vPiUrM0O27dTvmwBo0Xc4fWcsyHdMbsfU4qLtkLEgkVClQdN8+/TReRdFp1laRUdeRBEiog0SQRCE4q6EoRMfH4+9vT1xcXHY2dnJtn9z9qla+WjaKKkqRB4+fMjs2bMJPHWSpOQUbK2taNGgDgdOnVWYvnXjejQJqEmbMiY0qlSOrOxsIuKScHe0VVpGhYnLCYtLYl7f1szurbofSGkQH7okJjqKX3/8jscP7nHi7/0K03To3psj+/YAMH3up4yYMBWJRCJr8G/+c4z7l8+QlpLEi3s3efX4PuVr1af1wNG8uH+LW/8e49Xj+wCsOHLD4AJ7lbROurCOtqSdjy4pKhEiCpAcjk1uJvdbWR9l6IgCRAV0JUCk6EOIBAcH06JFC+zs7Bg5ciQtK7pQr0YVLMzNiYiKITk1lczMLCKiYynj7IinmwsW5m/yUzUux9bAa0z56S8+6NGMeX3bFppe3ZVv1REgJVF8pKWm8vXni9i/6zdSkpOoVqsudRo0olGzltSsW4+khASWffIRJw8dQCKR4ODoREx0TlyWo1fu8uNvu4l69Zyb/x4nLPgRAM6e5ahYtyH+9ZpQv0NPme9PUnwsUa9ekJ2VVWzrqrzNnfLbRFE6pYoiRBQgbxXKbm67tf9qNUNAk8ZZmQiZMGEChw8f5uLFi7i4uADqryGjqghpPf8H3B1t2T5jUIHp9CU+SqLwkLJhzResXfEZAH/9cxmf8hXzpclIT+d58BM8vLz5ef8xvps5gqa9BtP83ff4fFgXAMqU9aPz+9Op0bRtsTtuiiJDBIo+yuvbLERKiwARfUC0RPoSaCJENJ0to0iECIKAtbW1THyA+iu35hUMygTJsFYBTPnpLw4HPaBjHf9C81GF0io+0tPS6N68HulpaWRkpJMQlxPe3tXNPZ/4kGvAzcoQEpEui1zad8YCZncOkO3uM2MBVRu10P8J5KEoxUZGejopKcnY2TsUWZkimlPU03NFn5CSjyhAdISmQkRXsUPat2/Pli1bCAkJwdtbfiqlptFTcwuJ3GJkROt67Dp/i3Hf7+H80olyPiMlVXwoajh10dkam5gQ+jJn1pCZuQUt2nXi9LFDtOncXaXGWmrdeHH/NlJjZc3mHagU0FjruhWEIVg11q9azpH9f7Lv3yvFXRURFSkOEQJvtzWkJFOsAmTZsmXs3r2be/fuYWlpSZMmTVi+fDmVK1eWpREEgU8//ZQffviBmJgYGjVqxLp166hevboszf379xk1ahTPnj1j7NixzJ8/X7bP19eXZ8+ece7cORo3ftNoT58+naCgIE6dOqXTc9p79aXG1hBQX4hIRciTJ08AePz4cT4BAtqHcM8rRtaP603zeesJ+PBrWlQvz6Zvv8LZ0V7j/AtDW/GhSaOoi4b06vEDAFSo3QATcwu6fLCMvp9+q/LxbYeM48jP3/Lv7q2M+fx71k0bStSrZxgZ6/7VNQTRkZvHD+/h6uZOdFQkTs4uhR8g8tYiCpGSSbEuRhcYGMikSZM4f/48R48eJTMzkw4dOpCU9GY9khUrVrBq1SrWrl3LpUuXcHd3p3379iQkJMjSTJo0iaFDh7J371727dvHmTNn5MqxsLDg448/LrLz2nv1pcYvQmBwtFod34PoNF6+fMnixYsZNmwYLVooN8vrajE7q4bt8e/cl+Pbvyc+JY39l+/i2rATH37+jdp56XOBPem1LM6ojecP7KRMWT+mrN3OpK+2YGWnnkgzNjHByd2bi4d28/Dqebz9q/Pq8X3iIkJ1VseWvk4GJz4AFqz8mivnz7Dsf7OKuyoialCcz5Ky1ZdFDJNiFSCHDh1ixIgRVK9endq1a7Np0yaeP3/OlSs5JldBEFi9ejVz587l3XffpUaNGmzZsoXk5GS2bdsmyyc2Npa6detSq1YtPD09iYuTX0Z+3LhxnD9/noMHDxbp+elbiGRkZHDm1HEaNGqMsYkpH374YaFhrNO86+is06/hX4HvP5st+/3lT9sIDnmNqn7N+hx6Ke5Q0YIgcGDDV9y7cJqAdt0wMtL8Ves7cyEAR7asI+TBbQLadePuhdMqX2dFSEWHIQoPKY5Ozkyc9T8Gvz++uKsioibF/VyJIqRkYFA+IFLh4OSU8/A+ffqU0NBQOnToIEtjbm5Oy5YtOXv2LOPGjQNg0aJFtG/fnpSUFLp160bHjh3l8vX19WX8+PHMmTOHTp06FdoZpKWlkZb2ptOLj48vIHXh6MpRNeRZMGbm5pRx9yArK4thPdpz50YQdRu+w+drN5DtpHoYbV2tqjtmQE8ePw9hxQ9bASjf+l1q+lfg0+lj6NmuhVJBVJrFx5Mbl9nzzRKe3blOt7Ef0G7oBLXzSIqP5dmd69z85ygJ0ZHUaNaOexf/ITM9javH9nP12H4u/r2bkYu+wd7VTeV8i7Jj0EXU2C8Xf6Jy2pLmoCyiX3K3twV9COparIjDQKpjMNNwBUGgZ8+exMTE8M8//wBw9uxZmjZtysuXL/H09JSlHTt2LM+ePePw4cOybWlpacTHx+PqKh/O2dfXl+nTpzNkyBAqVKjAunXrGDp0aIE+IAsXLuTTTz/Nt13RNFx10fRhv/3Her7/agUAnXv15eyp48TFxgAQePMJDk5vOhZ1Gn5diJCQ1+GUa9ETACMjI7KzswF48c9evNzL5EtfmsVHVmYGiwe2xdTMnM6jphHQrptGecxomeMHZW5lg1/NALIyMvCpVovE2GhePrxL5QZNOb5tA11GT6fjiMkq5atr8WEIC/epgyhQiofifidLEqqKF3Earo6ZPHkyN27c4N9/83fqilZxzbvN3Nw8n/jIjaurK7NmzWL+/PkMGDCgwLrMmTOHmTNnyn7Hx8dTtqz262VoKj4eXDkrEx8A927dYMCI92nWuj01A+prZd7XhSXE26MMJ7eu4/7T5zjZ2zHr8695/iqMlT/+ypdzpmJsbCwrS98U90qdV47tJ/p1CB9vOYBXxaoK0xTkqJyRlsb25XMAqFCnIeNW/KgwgunTW9c4+dsmXty/VWiddCE8SprYUERB5yCKE/1R3O9kSeJtGzoyCAEyZcoU/vrrL06fPi03g8PdPWetkdDQUDw8PGTbw8PDcXNT3ewsZebMmXz77bd8+23BsxDMzc0xN9dtg6vpg5Wdnc3DYznruVhYWrHul9+p17ipwS1Z3rJRAC0bBRAbn0AZZ0eevwrj6y2/8yoskt+/WfLWhFgPvnUVN58KeFWsWuDXTN59PQO8ePX4HhvnTSYm9CX9PviUpr2GKBSXCTGRbPh4LC6eZQu0fug79L++OHbsGGfOnOGTTz7RSlyrg7JzLqnPoaEhihARRRSrE6ogCEyePJndu3dz4sQJ/Pz85Pb7+fnh7u7O0aNvYlCkp6cTGBhIkyZN1C7PxsaGTz75hCVLlmjt16EOmoqPtJRkNs6dyJF9e5i1YAnnH76k/jvNdC4+dGmZeB0exeWb92S//zh0osjFR1E7wEmdjfdefcnN6zfIsnVTexx479WXrPvfNJIyBAI++IHm7w5V2vnuXbccQchmytptlK1cQxenAOR0wsUtPrZt20b37t35/PPPefHiRbHWBd5ck9x/IppR3I6pIoZHsQqQSZMmsXXrVrZt24atrS2hoaGEhoaSkpIC5Ay9TJ8+naVLl7Jnzx5u3brFiBEjsLKyYvDgwRqVOXbsWOzt7dm+fbsuT0Up2pjUDm/+hltnTrBm03aGjp2kV6uHrkRI1Yq+DOvdRW5bcbgZFVVjl1tohAcFEvfkJm711A/GBpAWF4VbQBtsPMvLiZrcZaSnpnD5yF5a9huBnZPyIUd1z98QOlZBEBg9ejReXl7s2bMHBwcH/ve///H48ePirpocoijRHFGEiOSmWAXId999R1xcHK1atcLDw0P299tvv8nSfPTRR0yfPp2JEydSv359Xr58yZEjR7C1Vb5ia0GYmpqyePFiUlNTdXUaStFGfFw/dYhjW79nzNSZtGzfSYe1Uo50iq42YuRGkiU/75Gf7rxjxw6Vjy/JJu+0uAgA7MpVLiSlYrIz05FIlFg9/hMh9y+dITsrk7ptumpWSQUYSgcqkUj4448/WLVqFZ06dWLmzJl89dVXOg8WqA9EMaI6ikRI+PMn7F6zmPQ0/bfLIoaDwcyCMWQKWoxOGdqIj+f3brJ26hCat2rLyu83a2T50EdDWJizapp3HeLi4mS+O59//jmzZ+fECUlOTi70PPQhPvQ57px3mCUrPZVziwdj51uNWqM/Uzu/K2smY2rjoPDY7KxMTK78zqnfN+Fa1pePNx9Qej3V+crU9jnJ/UxoKlzDw8PZsmULr1+/BmDw4MHUr1+fQ4cOcenSJebMmYOxsbHB+T2pQkkW1Pom97t54/QRbp05QesBo/Aon399KRF5pjSRd1coqbNgRAGiAuoKEG3Ex6sn9/l64kBcy/qxfc8+rG00s/QU1ZeYeUhQvo4nPDycwMBA+vbty2+//cbIkSMJCgqSC7GvCH011voQIcp8PF5fPMSdX5ZQ7b25eDRSz3L1cPdaXpzehVeznng26oK1Z3mMjE0Iu3Kch3vWkhYXSdshY2k9YDR2ztoNv6j7fGgyU0oVQZKamkq5cuVISEigfPnyZGRk8OLFC3r37s2HH36Ih4cHLVu2xN3dnWPHjmFqaqp2PQwFUYzkR3RM1QxRgLxFqCNANBUfmRnpXDjwB39vXIONgxO/7Tus1SqghmIKTklJoWbNmjRu3JitW7cqTVfUC81pQ0EOpoIgcG/7Cl6dP4h3s15U7D0RY1PV7kVWeirPT/7O8xM7yExOwMjUDHu/msQ8uIK1R3navTuAtoPHFJiHLsSHLmLDKEKRIDl//jytW7dm165ddOnShezsbLZv387ChQsJCQnJl7Z27dp6qVtRI4oReQKDo4mLCCM1ORE3nwrFXR2Dp7QIEIOYhlta0FR8PLl5hS0LphEb/pq6bbrSY+LHpWYJcktLS6ZOncrcuXNJT0/HzMysyOugyymAhc1ukUgkVBk4C0tXb57+vZGUyJfUGve5SovHGZtZ4NdxGD5tBhL37C6xj64Rdfcifp1G4NdlFIk6GIIoSHzoS3goyz/Nuw7bt2/H29tbFu3YyMiIIUOG0L9/f06fPs39+/f59ttv8fT0pGpVxXFVSiK574MoRnLe0Y79WpCSnMTiA+Lqx28LogDREZqKj9DgR3w/axQe5Ssz/stNePhVKnWe4gEBAWRmZvLw4UO5VYylFEUDXJRxCCRGxvi2H4KxuSUPdn5F5K2zlKmds0jgk5thsnTlayqOZWNkaoZjxdo4VqyNX6cRKpdb2HNTnOJDEWYvrnH04H56tHoHExP5psjU1JS2bdvStm1bli5dytChQ4tFvBYF0vvytguRn/ce5tqlC3LPsThEU7oRBYgO0FR8vHhwm+9njcLB1YNxK3/E0qbkmM7UoVatWtjY2LBz5858AqQoG11tRYi6sT1CLx0B4MXVIBKN8vu/PLkZplSE6BpDEx8Aj56F8DTkFR2bNZLVIe8wTXZ2NlFRUQVGOdYFiq5BUUTuzc3bLkTcPL3o1PNduW1SMSIKkdKJKEC0RBPxkRQXw/FtGzi54yc8KlRmwpcbZeKjtFk/AOzs7GjTpg2XLl1S+Zh7t25QxsMTJ2cXPdZMdTRZYMqu8QTigycTd/MAtlXaYWLjnC+N1CKiqhApKIy7IorL30MVwiJzOhUHuzeO1nln1UgkEry9vTl79iwjR47UaiaMuudaXKLkbRciisjbLoqCpHQgChAtUFd8ZGdlcXTreo7+8h0IAu2Hjqf9sIm08/co/GAVMBTHU0VERUVRpoz8wnQFNbADOuYMWew+eZ4K/lV0Vo+i+KKSigpTO3fKDdvEy12zeL1/AW7tZ2Hm7Kv0GG2sIZoI1+IUHwCN61TH2NiYq7fv07xBHYVpJBIJ06ZN48MPP8Tf35+PPvpI5fz1cX7K8tSHMPF3MhdFiBLUfd5FwWKYiAKkiMjOzmbDnHHcOXeK1gNG88mcj3XydW/IokPKw4cPOXPmDOvXrwdU+7KzsLAkNTWFEb07sev4Ocq460akSdGnEClf000mQowtbPHovojwoyt59dc83DrOxtJT8/DpurJ+aNM5J188qnC7VUP1IsAaGxsjCAIW5op9O6RTvCdPnsz+/ftZsGABvXr1wt+/8DgRRS2udBEPRRGiNUQ3GIJlWVlbYwh1Ky5EAVJEPL5+idtnTvDpqrX0GvCeVnmVBNGRm8DAQACqNu1QYEMaHxcrm/3j7uVNQnwcURHh3L99U+cCRIqqQqRngJdGwzAApnZuePT4jNCDi4n65wfcOv8PUzt3jfIqapSJDV0QFRNHdna2UgGSm06dOhEYGIi9vX2haYvbsqPMn0UbRGtIyedtFhrKKNZQ7G8DLX2daOnrRO/m9QFISkjQKJ+SHOr59z37aNCkOQ5Oyl/AK+fP0LyaL8cO7OWf40cIfvyQ/y39Alc3d/7ambNujz5D1ui6ccg7nGJkaoFz09FkZ6Xzctcskp5e0FlZ6ta9oA46+eJRuT91UDf91r2HMDczo0tL5QtLmocEIQgCf/31F02bNi10FeziFh+5MQ8J0ml9Sur7LyKiDFGA6AGp6JB2DLevX+Oz2TOQSCQENFZ9Fd+SLDogx2x86sZDLp39h/rvNGXhrCkEP3qoMK2Hd1kAPhg7nOmjBtOiXUfadOrG+1M/4Mi+PdT2cqBJ5bJ6rW/ue6YIbSLcApi7lMe731eY2nsSfnQl8XeOaJVfQWjyzOjT2qGI4JevKV/WE1dnxwLTHT16lHPnzvHhhx8WmM6QxEdu9CFESiNpRbA+l4hhIQoQHZFbdBw7sJcW1f1oVs2HDvWrM7hLa+5cD2LZ2g1UrVFwJMeSLjogR3hIzcVXzp0hNTUFI2Nj9mz/hZ9/WJsv/aP7d5k+8s3qxlNmz+eL77dgZGREzwFDcHXLGa5w8/AsmhPQI0amlnh0X4RtlfZE/fsDIb9NJS3icZFNx9V3J12YiImOjaPH2Fls3XsID1cXXoSGk5pW8NDCjz/+SO3atWXByvKi6w5eX+iyniW5fVDE86dPWPTRNG4FXS3uqogUIaIPiBYo+loWBIGvP1+MX0V/WnboTExUJPUaN6F5244YGxsrzKe0NCaKxqifPc1ZSn3diiUA7Pp1C+279SIrMxNjExNuXr3MupVLsLC0YuYnixk4YgzmFhay4y0trRg1aTrL58+mSau2Sssu6BqqO3ZeULwQdXxBcjuj5sbI1ALnZu9jZGZF4uMzvNrzMWWrbMbGUzchqJVdi8KGXoqCE+eusP/kGfafPEOz+rVJTErm8s17NKsvL8wzMzP5fsefrP1lJ/efPGflypUKp+DqWnjkvQ7qOtaqgq58REqTX4ipmSluHl74VaxU3FURKUJEAaIDoqMiObj7dzIyMrC1s+fZk0fMWbKSd1q0VnpMaREdUHAHb2qa38Fww+qVXLlwFgBrG1t69B/M3KVfYmFpqTCPHv0Hs3z+bDIzMzW6bprMJNCVCFGGxMgYp8ZDsavVjRdbx3BvxxcETP0aIxPli60pGgIyRMe25ItHlXbcUhHRvmlDjp65SJXyPtSsnF94vffBQnb+fYKBXduxePo4uo6emC+NLsWHMgFWkDDTVpwoWshRXUqLCPHwKsvUOfOLuxoiRYwoQLTk3xNHmTlmKNnZ2WSkpwPQvmtPGjVrmS9taRIdUgpr/EZNmk5keBg7f9mIt48fL4KfyMQHgLOLKzM/WaxUfAAE+LgyZcoUNm7ciPDtGo2DURliY21i5Yh7t4WEHviUkH//pFyrfnopxxCsHwDd2zSjdpVKWFqYk3bnH0xMjPPdz+zsbHYfOcWk9/ry9fyZORtf3ZDrrItCfGhynLqiRBfWEEN8rkVEVEEUIFqQkZHBkv99QN0GjVn+7UZuXL3E9csXeW/sRIyMctxrSqPokKJKo2dqZsbcZV8y+7MVvHz+jMiIMOwdHDl97DCvQ14wYdYcHJ3yRwjNS4sWLfjmm294/fo1np6a+4KoYw3RhRVE2TBMbiw9a+DVrBeP/1qPrbc/jhU1X/FV3edNX+JDmRXEzMyUhrWrcfX2fUxNFTc/9x4/QyKR4Oai2LqjK/Ghj3MvyPpTENpaQ8R4IdqhTTstXnPNEQWIFuzftYNXL57z9abtODg50aJdR1q066hT0aFNY6vPsNHqvnTGxsaU8ytPOb/yACpHN5VeS2kU1VevXmklQPLmW9h5FNUidpV6TSI59BnX1k6n9rjlOFdtqLO8Dc1B09u9DH8cOkFWVpZCv6gPlq3B260MM0YOlNtuyMJDUf6aWEPe5iGZ0JchpKWl4VNeNV8oQ/m4M5R6lETEWTBaEHjkb+q/04xKVXMWWNPV7BWpt7y2Da6+ZgcUVQOX+1pKV0KNiIjQWxnqouq0XFVmuBibmVNnwkpsPPx4cfJ3lfLV1v+jqDrivHRu+Q4xcQmcOKd42fWnIa/x9yuLlaUFj569IDMzU2f1KcrhJk3K08X7WhI7xJcvntGxYQ2mvPeu3EzAgv5ESj6iANGC1y9DKOdXXicvhK5Eh7K8dUVxfV3Vrl0biUTCy5faOX8qorD7p29HT6lAMTI1w61+B2IeBZGVrn5MBEXnYGjWD4B6NapgZ2PN1dv3Abj98AlZWVmy/XPGD+PwPxf4bN0m/Nv1p9+UuVqVV9TCQ1H56lCaRYgyMXFq968ATJ06tZhrKFKUiAJEC6pWqkDEi6caH69P0aGoLG0pTtOuRCLB3NycKVOmEB8fr5cyNGm0tbWC5N1epnYLsjPTeXV2f4HlqCKKDMXxNC8SiYSA6pWZ88W3fLxiHTW7DKFKhwHsOXIKgCE9OlLG2ZGfdv4FwKNnIRqVU9zCIzfq1kUX7UJxWwvUsVr4+/szfPhwJk7MP9tJpPQi+oBoQdOmTZkzZw6JiYnY2NiofJwhfpWWBCpXrsz169f55ZdfmDRpUpGWrQtfEJUcUl08ca7aiLBrJyjbqi+gmshRp5Mp6mEIRb4QGz+fR+8JH7Nyw1YAgl+G0n/qPF6e+Ysyzk5UKe/Dncc54r5KeR+NytWE50cvFZqmXPsGGuUN6vuH6DJmSEFo+nGhK3EzZMgQhgwZopO8REoOogDRgoCAADIyMggODqZGjcJXOBWFh3Zs3LiRevXq4e3trbcy9O3El1uEKLOK2JatTMg/e8jOzKB3Q1+NyjH0Z83X24P9G76gbPOeAGRlZWFrbYWZaU4clEp+5XgZFsGRTV9TuXw5omLi2H3kFI52trRtUh9HezuleWsiPlQRHqqkVVWcaCJE9OlUbqhDNiKlG3EIRgsuXryIqakpXl4Ff6EaSqhoQ6iDNlStWpWyZcuybdu2Yilf2bCHumvElK/pVqBjqltAazKT46mY/liteqhCYZ3z86OX1OqMtcHLvQw3D+aM/bu7OnNi6zoc7GwBGN67C4+fv2TVxm2898FCKnfoz7h5n9N/6lx8Wvbm1IWrZGTIO6cKgsCL43vVqoOuz1fdvIp6WMbQOHfuHEuWLCnuaogUE6IA0QKL/0KGS2N+5KU0NRiGMLVPIpHQu3dv/vrrL65cUTyDQhfo0xdEFaw9ymPnXIYHl8+olF7V+qoiPhT9ry8EQaB6pfJYWpjTvmkDalWuKNvn7pojsrbuPcyeI4FEx8az4uPJnP/jRxrUrEqHEVOxqd2a1kMmcvL8FdLTM5g+bRZ+E5bzz93C/bL0KbTUzbs4/EMMhUWLFnH8+PHiroZIMSEKEC3o2rUrGRkZ7Nq1S257aWogihNFokcaN0LZwmTFia5EiEQiIT4qnMCdm/Pt09b5VB101UEr6lyXf/8LdnXacvzsJVJS0/jlz0M06jOKB0+fs3XvIap2HJTvmI+Wr6VJ/7E0b1CHzMwsMjIyCbx4jbZDJ1O1dU8OBz0gWxDo/8U2UtMzlJ5TUVl4NBEi6lAa2pmDBw9y4sSJ4q6GSDEhChAt+PLLLwFYuXKlbJuhNwj6qt/Na1e4fvmiXvLOjaurKwDJyclERxfsFCoIAi9evODIkSNs2bKFmJgYrcsvTADoQoSok4c+rB+qbNcWv7IeJCWn8PWW35n1/hDGDerNi9dhVO88mGGzPqVFgzoE7fuZMQN6YmpigqebC5ATpn3RNz8BUL9mVTrX9QcgISWdB68jc/5PTcPEWL5pK0rhkRd9ihAomULkyy+/pGfPnnqb0SZSMhCdULVAGhwrODhYLw1AUazMqQvOnT7J+EG9cfPw4sjl23otSzr7ZcWKFSxatIjVq1crTBccHMzgPj25dueBbNv48eOZO3cu8+bNK7QcbZxRtVmsTio+6rTuTEJMlNy+orR+5Ob50UtazfxQRP8u7TA1NqHP5DnsO/GvbLu9rQ3tmjbgx6X/Y8qnX7J17yEAklNy4qIYGxtTvZIfN+49okuVnIi4f197wOfvdWLTyctcD37NR71aYvKfpUwT0fHo0BPZ/xU7ldf4HHMjrYcq11GbSKqg3wjIumDHjh2ydzAiIgJ7e/tirpHmqPO+Gfp9KQ5EAaIFy5YtI/zxXXYcOEp2drZSXxBVKezrR9OGKS+69qg/eegAAGGvdR8kLC9mZma8++67hIWFsXnzZubMmYObW36HztWL/se1Ow/YsWMHfn5+WFlZUbduXR48eKAgV/VQZUquJiIkt+XD3MqaV4/uFZhe39aPvGl0LUJqVamIrbUVCUnJzJkwHCsLC77e8ju7Dp2kY/PGGBm9WaRuw5L/0W/K/8jKyuLPb5fz6aIlrPgzkMsrpnDh4XPe/24XkZs+wdTEGOP/3kN1xUdu4VHQtryoI1LUFSKarisDhtvhXbyYYyn96quvqFixYiGpix59WZN0mm/FxrrLqxgRBYgWWL66gYuTA5XLl9NYfGhictWVEFGVgiwBCfFx/HPiCABNWrUtkvpUqZKzjoypqSl//vkn48aNy5emTtVKADR0M8OjVi0AypYti4uLS5HUEdQTIXmHXao1bsWFA3/w6sl9PMtX1tj6ocuYH9qIEEWdaQUfb67s3UzPcR+xfd8R7h3+jTnjh9F26GTGzl3GjQO/YmtjTfWKfrzbsRUzRw/CSGJEjxETufU8ZyrzyLU7qeSZc0/Ljf+c1SO7M7h5HbXEhyoiQ9XjVRUjql5Lbd51QxUic+bMoXLlygwbNqy4qyKjpA1hlRZEHxAtufPoCTUqqbZ4khSp17u2nYMhRHr8/eefePXiOQB93xtRJGWOHz8egIoVK3Lt2rV8+81DgoiJT8DC3AwHOxvMQ4IQBIGQkBD8/f1VLkcXsRFU8edQlKZKo+YABJ04qFB86Cpug7pWAl37UVT0Kcv6xR8THPKaoLsPMDIyol3ThhgZGVG1gg/fzP+A8YPfRSKR8MXsqSxsXZkRrevLjn8WGcu2f4IASE7L4K9Ld1Su46NDT7QWH9rkqY5fijbveVFGXFYFV1dXxo0bh6WlZbHWw9Cuy9uIKEC0ICsrixv3HlOtkp9K6fUlGDR1XNMFtnYOsv+jdLxQHCi2vgwcOJCAgAB8fHy4d0/xMMWBk2fo2qqpLK5EREQEGRkZzJgxg+bNmzNgwACqVKlCkyZNOHXqFIIgqFUvdWJxaOKYunl+zpoYz+/eUPtYKfoSp7oWITUrV8DaypLFazcCOZFPs7OzCYuM5trt+7zT931W/bSNpAs5lrbxHRrxzegeADjbWOLj6iDLKysqnouvIwmOS+RedByBL8I49ypC7v7qQ3jkRZ381REh2t7Tt7nTzX3ub+P5GyLiEIwWHD1zkciYWLq0bFJguqKwUhT1sIwUT++ysv8z0vUbK0QQBFasWEFWVhZXr17F2toaDw8PhWmtLCzkOh3vtJd8+OGHhIaGymbHdO7cmYsXL9K5c2cqVarE0aNHFfqT6AJlwzHKxMnd84EAvNurV759ulp0ThshoclwjHQYRnpfJJIcHw8HO1tWfDSZSQtXcvdRMEf+vYCNtRUZN/+l8+xvCY9LJPz1K2aFxzCta1MWDWyPpVlOxNR7ryIQBHA0NyMhI4NzryP4O/hVvrIn16nMxDr+ehceuZGWpcqwTFE4qeYl9zNjaMM0ukIUGoaNKEA0JDY2lkkLvqBJQE0a1q5W3NUpNmKiImX/d++XP3aDtuTubC9fvsyKFSsw/S9ctyAIPHr0SOFx7q5OPHnxpiOSSCQsWrQoX7rs7Gy+//57Zs6cSd26dVm6dCkDBgxQyTys7vowUrGx9+pLlawiFhaW9Bs6Um6bquJDF46nhaGpCOmz/gBnrt7kxC9rqV2lEqamJgzu0YFvfv6d6p1znqHpXZuSlJpBeFwiAD0aVGPNgTOsOXCGWT1b8J92QaoxzY2NONynIx+dvsb51xGsb9cIcxNj3Kws+OrKXdYG3cf4aSJtLR20Pm910bcQAd2KESklXZSI4sPwEYdgNOTLL78kLCqaX75YKPuSK240nbZXGAX5G5w59SaKoYWFfsd069Wrh5ubG3Xq1GHhwoWkpSm2uGRkZBJ09yGeZd44nCprTI2MjJgwYQKOjo7ExMQwYcIEhg0bJvtK18caGYWJD+nwzpD3JxSal7riQx+hx9XN79njJyQmJdPw3VF4N+5E8sWjmN49x+6pfWhe1ZeJnRozvXszyrm8mZ65ZHBH/p43kj9mDcHR2pKj1+WFZ2hyKp+cvc7Qan6kZmXz850nOJqb4W5tSa8EaywlRuxOisxblSJF3WEZTaKp6tLamnfIoqQMXZSUeoqIFhCNyMrK4vvvv2fMgJ74lfUsNL1Vw/bF7iyqLYriYkSGh/H3n3/IfneoX41TNxWvX6JpmbkxMjLi8uXLXLx4kUWLFpGVlQVAXFycXCyB77bt5u7jYH74bI7KZXl6ehITE0PHjh3Zv38/+/fvp3v37ro5ETVo6evEyxfPANi+6Qemzpkv25f3eqgjPvQdhEsda4iZ6Ztmp7F/Odn/5Vwd+HveKNnvqIRkqni54Gpnw5l7wTSv+sbXShpufVWresw8lROW/3Dwa6YFVGFliwBWXr7D0D//YaGTD2VNzLE3MsbftGCBfCA0scD9Xd1VX/FaGepYQ0BzK5MUfQzJFtS5F6fVRBQdJQ9RgGjA5cuXiYiIoG+n1sVdlSIlrwjJzs6W/T9+5sfUqFNPp2UpwtnZOd+2d999V7aeRGZmJpv2naB5/To0qlMdUK1RPH/+PH///TeLFy8GoH///ly4cIFa/03hVYa6wzCF5QVw71aO4+m4GR/J9hmy+MhbTmEdZpPK5bjx7DUTOjZm5bAuStPdfhHGvZeR3HsZScfFGxnSvA7talfCr4wjG1rWw9LEGDdrS6q8a8eyC7f552U4V8Ki2XL7Cd6ZxlzNTmVS5CO2lamCCQVbKQsTHwWl0USYPDr0RC0RAqqvtJsbfYuRvCgTAfoUJqLwKLmIAkQDHj58CIC/b7lCUhYdmjYu2gQlK+PuQRl3T8JDX9G0VTtq1dNtoCpFfPTRR6xYsUJuW7t27WT/79y5k+vXr/Pvb9+rla+JiQnu7u7cvXuX7du3M2jQIFatWsXmzZt1Ue1CyT2r5otP5wLQrc8ArXw+tImFoU0EUGVf7YIg8O+9YNYfuUDDSmWZ2qVg5+0W1fxY0L8tn/5+nEUD27N010l+/W/KLcAH9asyukZFfO1sWN+uIa+SUpgVeIVHsQly+VhKjPA2MedZRiqCIMgNmaoiPAojdx7qiBFNrCGgmRCB4o2srA9hIgqPko8oQDTg/PnzAFy9c5+OzUtHRDpVyWsFCQ/NcfSsGVBf2SEalaGMTz/9lKioKOrWrYsgCEyZMkVOgPzxxx80b96cJgEFWy4UUb9+fZ4+zTHtOzg4cOTIEZWO08YKklt4BD9+xNxp43j14jlLv/mBJlXyC9yiEB+5t2kqRPKKEEEQ6PvFVp5HxgHQsXYlyro4FJqPuYkJNhZmzOjWjLZIiEpNZ1bgFR7EJBCXlrPg3J6HL6joYMOpkHCEmPx+Qb8mhtPYwo7VcS+5k5FMdTNrQDfiIy/SPItCiIDmYgQMY6kHVUREXpEiCo/SgyhANKB///6sW7eOK7fuvXUCBORFyJFLt8kWsnXmiKuK0+eSJUvIzs5m9+7dADL/j/j4eE6ePMncuXNladX5wpJIJLJIqb6+vqSkpLBhwwYWL13Gp198Q9PW7ZQeqyguSGGiRHpMRkYGqz+bz9Yfv8PTuyxzl37JpGEDVKqzNuJDFadIdYYKlNWjXPsGnL7zlMNBOZbDB9/Mooy9tUp5RCel4GhtyYtjl3G0MMdIIqGemzMPYhKo5mxPtiAw90wQxhIJWYLAQBtXbiSm0N3KCUuM+D05kj9yOZ/OiQ5mHD4anY86HAhNVHtoRhPRl/de60qQGNK6U6LgKL2IAkQDWrRogYeHB5mZWcVdFaD41oY5cWg/Zdw9qVZL/WM15fDhw/Tq1YumTZty5swZ3NzcZNFNb968SUpKCu3btweyC86oEPr27cu8efOYOXMmmZmZfP7Jx+z794paeRQkSqT7ftv8IxvXrSYi7DUfzP+Mvu+NoE7Z/H4ukL8h1tSxWd1YGNqIEMjpJL/4b5FCBysLPJ3sVD4u8PxtPP9zWs0WBD4IvML5V5FYmhgz89QVKjrYsqplADMDrwJQzjhHwO5Ljqa/dY6YfNfaGQkSriclU5RvrCbWENDO+qQP64ghiRGR0kWxTsM9ffo03bt3x9PTE4lEwp9//im3XxAEFi5ciKenJ5aWlrRq1Yrbt+VXW71//z5NmzbF29s7X5wHX19fJBKJbMhEyvTp02nVqpVWdZdIJKgXO7N0YZUcwYzR7zGkaxuCLl/QSZ6qWD+klpazZ88ikUiYOXMmkPOsrFy5Ei8vLypXrkyadx2txpeHDBlCrVq18PDwwNXdg+dPH/PP8SNqR0yVEh8Xy6kjf9PS14mWvk7cv32TedPGs2LhHCpUrsLPfx1l2LjJWouPgqwf2kQA1TZ66I1HL3G1syY2OZWbz0J58Er5lFjpFNTM7GwuhUVR3sGWX+8+pceeU5x9FYm9uSl+9jZ817Yhj2IT2Hj2TTRcC4xoZG5LNVMrfv/P8iFBgkuSNW1xpQOuGp+DphwITdRouEd6zTW97tLrqK0Tsj6m+IqIQDELkKSkJGrXrs3atWsV7l+xYgWrVq1i7dq1XLp0CXd3d9q3b09Cwhsns0mTJjF06FD27t3Lvn37OHPmjFweFhYWfPzxxzqve3p6utx0wsIobV8RuRffc3BUPSy5tnTo0IHz588zYMAAJBKJbF2Y48ePc/jwYVavXo25ufaxO9zd3WncuDFNmjQhIvQ1AJOH9ecdf2+mjRxEdJRqMSUiw8NoVbMCzav5Mm3kIGaOGcqCDybTv0Nzrl06z6CRY/lyw8/UqBOg1OFUW/Ghy9DjmuSTmJ6BubERDV0ckADv/O9bAj78mvuv3oTuV9RZZmXniL3t94JZfvE2T+JzOvGYtAyGVPEjKygKYyAsK0N2zJakMC6kJdDEwg4TJFTBht1JkaSSRRTppBSpDUQebXxOtL2HohgRMUSKdQimc+fOdO7cWeE+QRBYvXo1c+fO5d133wVgy5YtuLm5sW3bNtkKqLGxsdStW5datWrh6elJXFycXD7jxo3ju+++4+DBg3TponzKnyrcvn2bNWvWkJKSQmRkJOZmZlrlpwt0JWzUHYbx8PBg8eLFuLq6Ur5SZa3LVyfgV+3atenUqRM7duwgKSkJMzMzvv76azw8POjWrZvWdZGyZs0asrKycPOrzKmjf3PjyiXcPDy5fuUSgzu3YtWPW6las7ZC/5fY6GhMzUzp2aIBiQnxsu3HD+7D0cmZjxcvp9/QUZiamio9d3XGvhV1LPoKO67OEMHdqDhGHzlHbFoGr57khKI3MzKiTa2K+Lg4FNghZgoCzhZmtCnnzoyAKrTfdQITIwlxaRlUfZTO54nh2BuZEJGdgbXEiHRB4BPHcthIjNmeGEEmAvfI6fSvEccNEqiMNa0ouhWR86LpsIwUTVbezYs4TCNiKBisD8jTp08JDQ2lQ4cOsm3m5ua0bNmSs2fPygTIokWLaN++PSkpKXTr1o2OHTvK5ePr68v48eOZM2cOnTp1kvtyV5eBAwdiZGRExYoV6dSpEx2bN9I4r5KORCJh1qxZctsULRynCupGG42KiiI4OBjIWRFX+rtRI93fD2NjY5YvmMM6vwrMGjec4McPOXzxFiP7dGFQ51ZUq1WHDxcuJaDRmymlgiDQtUkdOeEBMG3OAuwcHOnedyDmFhaA8nNXJj5UdTotijVPCvMNCUlIZsqJS8T+N1ulmacro2pWpLFHjgAIDwwqMH9rUxP+GfjmfT49oD1/P3nFvLPXic3O5FpaApYSYwBShGyaWdjxWcxzPIzNyEiTf88jSAdyhmMSyMQIsC7G5k9bIQKiGBEp+RisAAkNDQXItziYm5sbz549k/3u0qULERERxMfH4+qqeHx33rx5bNq0iV9//ZWhQ4cWWnZaWppcmO/4+JyO5Pnz52zcuJGRI3PW50i4foK4hETsbbWPkGgISDs9TX0nChISisSJJmHO7969S0BAANbWObMokpOTAUhJSaFyZe0tMcpo17UHtvb21GvUBHcvb37YsZe///yDdSuXMGZAT07feoK1jS3HDv7FB2OG5Tu+z5ARjJo8Q26bIYoPdWdvKBMh0alpdNj1Jky/vbkpnzWrQxkrC43qdf51JB8GXiUqNY2yxuacSIklE4gXcoZUGprbcjo1niqmlpxPS8AaYzww5zU5z13Gf07Jr0jlHolYYcxQvDWqiy7RhRABUYyIlEwMfi2YvObtvIGEIMcyokx8ALi6ujJr1izmz59Penp6oWUuW7YMe3t72V/ZsjkrvtapU4fBgwcDOb4ndnXa4hjQnrHzPtfYOVFb9DEeq491H/ydzPP9aUJcXByOjo58/vnnAGzYsAGAmJgYHB0dZemePHmCpaUlSUlJ2lceqOxsweOHD/nqp18BKOvrR8OmLQAo51cBI+OcL/F6jZvKjnF1f7NS79TZ88mNOuJD2T3WhfiQOkjmdpRU11chb5lJGZlMPv6mbt+1a8iJfu00Fh8Av959ipWpMVPsPPnC2Y/LaQm4GOUsSmgjMeJ8WgK9rJz52KEsApBIFj1wZyTeNMIBa4yxwwQvcq57MlnF6g+SF00dVRWhrfMq6MdnRPQbEcmLwQoQd3d34I0lREp4eLhGS6bPnDmTlJQUvv3220LTzpkzh7i4ONnfixcvANi4caPMwfGXX36Rpf/xt710GDGVtLSCxY0+vwb09YIb2kJUjRs35tWrVxj/1+F36NAB85AgPFwcuXvhtKye/5s2AVMTExJundZZ2ba2tlRxebOeyL8njuLo5Myu42extLQCwNHJmT8DLwLInFebt+mAg5NTgeJL2fVVJjzydgyqdDh5xUZBHZ6mIiQtM4uJxy4SFBEDQO+KZWnp7YaliXbGVm9bKyJT0qhmZoWlkTGpQjYR2TlDO20tHbCQGPFnchQjIx5gDNQjJzaMGcZUxZZnpBJPJo/IsZjVwhYLA2z+dClEQP65OPcqghpb9nE2l/OvKuhKjIAoSETkMbw38D/8/Pxwd3fn6NE3D2l6ejqBgYE0aVJwCGdF2NjY8Mknn7BkyRLZkIoyzM3NsbOzk/sDWL16NQ8ePADgxYsXdGn1ph7Hz16m8+gZZGZmFpi3vk2S+n6xFQmSqKgovZWnrPz1X6+iU4vGlE3PicTat3Mbtuw5yIWg23zx46/sPXaajMxM7G1tdC6cpCIiLPRVjvUjl19RZmYmD+7cls0MGjNmDOtWf1GgxUdfQy6qig1lqHvMhQP3mXX6KjciYyhra4WNqQnTA6qoXa4iJtepjJNgzPSox2yMD6W1pYNsXz1zW9Y4lWemvRcfO3gzAC9qYkf2fxPlzTHCFhN8scQFMySAK2YGPY1eH0Lk+8DbZAtgZqx5s69LMQL5BYkoSt4uitUHJDExkUeP3iyr/fTpU4KCgnBycqJcuXJMnz6dpUuXUqlSJSpVqsTSpUuxsrKSDYOoy9ixY/nqq6/Yvn27Rg6LP//8Mz///DN37tzh+vXruDk7Ua2iH5f2bOTi9Tu0HTaFL3/azsfjCvYzKYrVcYtqHDbu+gneHfshYwb2ZHS/HgrTqOJToo5IOPzPeW7ce8T/JgyXbfNyyxmCe6ff+wCYmppwfuePONjZyvLX9YJY2cnx2P837JOdnc3OnzeybcNagoODadWqFUuWLCEgIKDAPPQpPnSBqj4hZ1Lj+CI2RDao8SIhmc+b18VVi2GX3FibmrDC2Y+diZH8mRzFIJuc+20pMWJ+zDO+cPKj1X+iJKVMFgPC7+GMKb3xwAhwx5xYMuiGGzt4yXGisMAYbwpeIbe40ZWPCMAkO0/GIeBwLY5H5MwW1DbAnBRtfEbyoqxtFP1JSh/FKkAuX75M69ZvVpSVBpUaPnw4mzdv5qOPPiIlJYWJEycSExNDo0aNOHLkCLa2thqVZ2pqyuLFizUWMLt27eLx48fcvXuXQYMGYWxsxJRh/bG0sKBlowAmvdeX+Wt+oEOzhtStXrBDZFGIECn6fKHT0jPwKONCJZ+yStPo2gJx7totAKpW8JVtGz+oN+U83LCxtsLXy4MKbfrw/HWY3H3QtQjJyMjA0doCfydzvvzyS5bOm0f//v3Ztm0bdevWLfR4bdZ10bfwyJtnQR3goeRo1se/poqpFXcykqlqasUHrWvRxFN3Qb8eHXqCrZEJI23duJmexPbECHyMzXAyNuVaepKcN4eZxAgnTIklk+NE8JQUAMpghhlGDMCTzYTwmGSDFyBSdCFEHI3zN/e6cF4F3YaEV4YoTEofEqG4vCdLEPHx8djb2xMXF4ednR2CIDBw4EB2795FxMVDslkwYZHRtB8+hZTUNIL2/YK1VcGNm6GaGw39hZ62+Cu2/XWYl2f2YWZmmm+/IAhY12zFslkTmTYi/5oquhIhHTt25PXr16xbt44+ffowdOhQvvzyS7k0z54946effuLDDz+UCWdDt3ooQ1Hn929qHCtiQ3AzNiVbgCwEvnapgJ2RiVYdmhRF55qanU1IVhruxqY8zEilhpkVphL5YYUvQ18TSDQSQADqYEdlbHAg53k5QSQvSTWImTDaoAvLiCJ0ce+k6EOMqIOht2eaIKkovwZZ3j6qpCAKEBVQdHMXLlzImq9WEX1FfsXUh8EvqN3tPaYM68/yjyYVmrehipDCKM6XusWg8fh6efDzFwuUpqnReTDmZqbs3/AlHmXyB57ShQixsrKSzX5q1qwZv/32G05O8lFhz549S9u2bbl//z6VjJQvTqeN+NC38MhN7g4vKiuDkREPZL9rmFox1d4LdxP5AH2admYFOdXeSk9id1Ikl9MSsZQYMdLWjU5WTlxNS2RrQhivMzMwAvrgiYCABcayY1+Tyl+E4Ygp/fHUqG6Gij4EiS7FCBS/ICmIkiJWRAHyFpH35mZlZeHp6UnbhrX59atF+dL3Gv8Rfx3/h8Ob1tC+WcNC8y+pIiQ30YnJWJubYWZinG+atK5f6qb9x+Dl5kq7pg1p8049KioY/vlhx5+M/2Q5AFkPziqMVqqtCNmwYQOHDx+mTZs2jB49WmEI+KysLKKjo/FOe6k0H1XER3FZPRQh7eS2JYSzIylnRsUMey9aWdgrXRVZ3U6sIPHxb0ocK+JCcDQyobOVIy8z0/k3NY4Nrv7MjQ4mQ8gmOVugDnbUJH9jnEAmBwgjjkwG4CmzipRGREGiPYYoSkQB8haR9+YOGDCA33//nXULP2TCkHfzpU9NS6Ni27707dSG1fNmKMgxPyVdhMzddpg1B86wYmhntp6+xo4Zgynn6qBRXoW98BMXrGD9tj0A2Nva8PDYTlyc8pc1aeFKvvt1N1f+3KzUJ0fXjql5Kcj/xdCHXAqiq7sNB5Ki2JAQSjtLRybbF25JUKXjKkh4RGSlE5SWxN7kKIyANc4VkEgkPM9MZXLkY6wlRiQJ2Xzu5MfT6IJXQ04li18IIQB76uFQaL1KAyVBjIBhCxJDESOlRYAYbCRUQ+b3338HwNtdsZOdhbk5zevXYffhU3w6bYxKkVKL0ilVH8zs3pz4lFS2/RPEjWehXHocorEAKeg6WDVsj2mumBKJySl0GDGV7asXU7m8j1zaL+dMZcNvezkfdFupANHH7BhpvgVRUoZclPFZ6EsuEksrCzs6WjkWfgCFh25XJj5eZaaxLPYFzzJzopo6Gpkwzs5DZm05lJwTcyRDEBht6041MyueUvA1ssAYJ8yIp+Bp86WJvM+NLgSJrpxYc1MUDq2aIkZ51S0GGwfEkJkxI8eq0baJ8hfj8w8nEpeQyMyla1TOtyQ/0M62Vszq0YKg4Ne42lnTJUA/YdGTLx4l5VUwAK5Ojowf1Ivw6BjaDZtCSmqqXNpHz0LIzMzi38tBBeapy1k6qgRsK+niA+Dqf9M4h9m6U8lU9ZkkykSGsu1pQjYLY56TKQi8a+1MTytnvnD2o46ZNZmCwPLYF5xJjaetpQO/u1Wlp7WzynVJo2AriaEgIJCoB6GkTYwYReSOwKrLtYhyxx7RZQwSbRFjl2iPOASjAnnNW/v27aNHjx48P70Xb48ySo9b+t1mFqz5kWeBe/B0U31KYnE90Lp4sR/GJGAsgfIOOTM+9PH1cur2Ez7fc4pvRvegkocLY9bvZvs/QbRoUIcTW9fJAoPV7T6M6/ceApD98Fyh+WprCdFEeIBq4sNQhIeU16QSRhp1sNfoSzr313JBndWjjBRmRj1hpK0bWxLCyAbZUMu71s7sToqS/a5kaskCx3LYGeVYyAq7ZpeI5SpxvIs7rmi2NEBRcJhwgklhJGUxK6JvxpIyXCPFkKwkRfEhKQ7BvMWUL5/zIj179bpAATJxSB+Wf/8LW/ce5qOx76mcf1ENx+jjS6KSoy13omL57PxNZtSrWmgZmjQcraqXp1X1N42ZjXnOrIvTl4JY/Ml83hs7ngo+3rg42cvSRMfG4eRgny+v3CgTEIUJE02FB5RM8QHggQUWGBFCCgdCdbO8vCIeZ6RgBJxLjcfd2IzKppacTM2xvuxOyonA+5OrPw8zUvgiLoSVsSEsdvJVmJeAQBQZOGKKMRJqY8dV4kggC91FLNEtGWQT/F8cExMUO/jqg9zPnK7ESN57rUtBoug9UrVtufb0FesPn6d7/ap4OdtT10+7mVHS970kW7SLClGAaIB0LZqwyJgC0znY2dKtdVNW/ri1UAFSlFYPfZswV1y6w8XQqJxQ3PWqql0XdUXJ4kHtaV2jPCv3nubT34+z7/JdTi8ez0/L5uLbsjcAw2YtYv+PXxaSk2K0GaIpjeIDIIUsfidnrZvBeGmcj7QTUiRE0oVs/kqOJhu4l5HC/xzKciEtAYCpdp6EZWVgZWSElZExtc1taGXhwL7kKDIFAROJJMdRNtf1O0kUD0niHRyphR1Z/wVjFww4KLsxEpwxxR0LjIpQgORGl9FYc6PonutblED+9iUrO5tf/wmiaRVfGlZSHlBRXUR/kcIRBYgGODk5YWxsTFik8rgOUprWr80fh08q3FeaREdu6pZx4mJoFD/cfETvSuXwsbNW63h1RYmNhTk9GlSjS0BlGs5ex9Unr7jy+CX1gI2T+jJq3R8cDDzL4rUbmTN+GNnZAsbGRrIF7fRFaRUfz0kh4T+fBFuM6eOmnslXUSejaNtff93kRWYaRoCbsRkNzW2pZWZNP2sXPE3kh0xu/Dc7preVMya5pgJLO80H6cn8EJ2zMvJDowRmubrzfXwoJikS3A14+MUICX0NJFaJvoRIbpRZxPQpTByysrk8pDNVWhW8bII25G0LFAmSV2ERPHnxioa1qikMsFgaEQWIBhgZGeHq6kpoZOGLsEXFxGGTKyJqSRYdqjqW+aVnyP5/Fp+otgBRhPRcChIiJsbGbJs+iPoffcPFRy+oV8GL/k1q0e+dmizZdZKFX//Imi2/EZ+YhLmZGYunj2X6yIFa1y0vhd3jkiw+okjnb8Jlv1PIxlhPX+atO1XBZfcrIlPTmdi4Kv6VyvHo0BOsjPILx6D0ROyNjBlhm3+l7Awhm5VxITgYmRCTnUlkdiZ9wu4CMMnOg45WDmrVy1DvTVGhj+GZwtCntcTM2AgzYyOVLSa6QJF1pM+kOVy4fptPJo/i02ljdF6mISIKEA2pVasWpy9eKzTd/v1/07SSd4kRHrrwXq9mZk1bSwdOp8TheCOeR7eSlKZVtxEpTIhcffISDwdbPvz5IB6OtvRqWB2JRMK8vm3oElCZPRduU75eI24/fMrMpWuo6ONNtzbN1KpDQahr9QDdXPOi4gLyw46ZCOxNjqKzpRMWRoU7SKpzvw8+fUlkajoAv90LpqufV77jpdfOx8SCuOwsorMzcTaW/3p8kJFCWFYGH9l742xsyuaEMO5mJFPbzJqOVvKRa1WhsE73bRIoRWEVUUZRWEtAf4vuSZG2GUN6duTR8xDq1dDNCtIlAVGAaMjAgQMZNWoUEVExuDrLx0GQPlBbA69x6XEIO2YMKrJ6aSI+9NEBTrHzZLydB+aSgjslTeMIKBMiey7c5nVsAvUreDFu/W6qepeh8n+LogWU9yKgfI6/guWQWTx7+Zqx8z7n8KbV1KxcUeWylaEr8WGoHdhtEnhBKo6YYoKEDrhykVi2JIRxKDmGNc4VChQh6nYM18PfiJ1bUXHEpqXjbiI/5VeaZ1Z0PF/+FUJYVno+AeJrYoGHsRk/JISyzqUCFUwtZAJEH+TtjA31fuqSws6xKAWKPoWJPmOUjKrswKi1HwCphaYtLYjTcFVA0RSn169f4+XlxfrFHzPEz0ou/e0XYaw5cIZt/wQxtGVdvh3TS2mIal2hqdXDkL++1WkwpA3BllNXmLRhLwBONpa0rlGBLVP6KzwmNCaBd9fu4WHwC6aNGMDQnp2pWtFX7XpqMuQCJUt8PCGJo0RSA1ua4Ijkv2GXru42XEtLZEHMM+Y7lqO+ueKVqjVp/GPT0ply4hLZgsAH9aoR4KbcWpGelUXbnceo6GDLV63r42BuJnd9o7IyGB3xgPF2HthIjFkRF8IMey9aWzqoXS9tMdR7bGjoW7SUhCiuypxXS8s0XFGAqICym9u1XhUuP37J6pHd8Pd05cy9YH44epHbL8JwsrFiyeAOvNeirkGKD22Eh7oNqC4aElUbC++29Vi08zjmpiaUdbFn/Pd/cmLhGKXe7clp6czddoQ/Lt0lO1vg7uEduLsWHMxKneG00iA+ksliGyH4YkVbXGTiA3Lu7ZHkGNbGv2KSnQfx2Vn0tXaRe+ZVuXcRyal8duEmoUmp9PUvRydfT2zVdMS7+DqSyScuYWwkYXSNigyo7EN0ajrrgu4ztlYlZgVeIaCME4NirbmQlkA9c5t8q+gWNYZ6z0sCuhYohrwCcF4hIgqQtwhlN/fJdx/z3podnLv/HACJRELXelUY1rIu7WpVxMxEvyNcRSE89NFARpHOZWLpZOdAFzXH4FVtJMq1b0B2djZVp63i3UY1WPZep4LrlJBMvY++oWnDevz+9RIyrimeuaQqBd2bkiQ+AK4TxwVieQ9vrJB3AO3kZk3vsDty2xqY29DP2pUqZjmWQVXu2arLd/nx1iPZ78l1KjOxjr/adY1ITuXb6w/Y9fA5pkZG2JqZEp6cysjqFdj18Dn9/X2YWb/gqeHFYRU05PtfktClKNGVINGlGJEKEVGAvEUou7lJ2xYjCAKPw6J5HROPv4cLbg6KTdC6Rl3xoWqjWhQNYTwZbOcVTphSD3u8sOBd94KDhOVF1cZh4qXbOFhbsnXagELT7rt8l6Ff/0aLqn5sntIPJxurQo9RRGkRHzFkkEoW+wijOrY0RV4sdnW3QRAE1se/JjQrg2vp8ufRwdKBL/s1w9iocAtgaFIKOx88JzIlFSOJhMl1KuNsqfn02PDkVH6//4xbUbGcDsmZtWNjasKfPVviqeF9LSphYqjPQ0mlKC2wBaFLIWI9+BO536IAKcUUJECKA3XEhyEJDymvSeUvwmS/LTCiLS54k+NgqGqDUVij8DQukUnHL1K7ig+/TlNtum3g7ScM/fo3AHbMHEyTyj6FHCGPujNdDLWzeUoyR4gAwA4TBuCZLxBW3vv0ID2ZoPQkWlrYcyo1jl8Twylvb8N7Vf2wNzejo68HRloMR5Zr30Ajq98Hp64QGBLGihYBtCnnrnH5itCnKDHUZ6Oko60g0VaM6EKIiALkLcJQBIg+rB7F0cg9JoljRDIYLyTAaaJ4SSrlscIFc8wxIpp0KlqbUcXUimQhG3djU6ormbWgrEFYcPY6Ox88x8XCnNMDO6j84r+OiWfE2p3cexnBpeWTKWOvWoNVWsQHwB+8IooM3sGR8lhho2DCXEENeYWOflwJi+b7Gw858ypHyKxoUZdu5b1Jzcxiw81H7Hscwtq2DWjXv63W9S3o3ZA2cfr2xQL9CRJDflZKMiVVjJQWASJOwy0h6NrqUZwNmuV/fgQRpFEeazpShpvE84RkgkkhEwE7THiclMwe3gR7G2frTlcFq50qW+a9kbsLQeExPIxNID4tQ6VgZgAejnb8MnUAAbO+5vM9p1g1oluB6dUdcgHD7FAEBMJIwwFTvLAgigxsMVFbfLzKTCM1Ko4aLg5MqO2Pl40Vvz94RrYAWdkCXfacIDQpZ6rhcxf1ht6UUdA9LcoowAWFlteG3NfbEJ+dkkrea6muIJHeZ02FiKptUmlFtICoQHFaQEqL1SMvfxNOLBn5TPsCApkImGKEgEAyWZhjzEViuEkCfaxdGK4g2iUobgReJCTRcdcJvmxZj865FplS5YVfte8fFu08zrUvpuJXRrGzbGkRH3FkcJxIIsgJ/GWJEdlAPzywVkOAPMlIYVb0UzJzNSvOFmb0r+zLhNqVABhx6BwJxhI+6tmSfk1qYqLnkPiFoU+BUpQOrYb4XJVUtLGMaGMVUVWIiBYQEb1TlF9uRU197NlNKEHEE8Cbr2AJEkz/EyQSJLLO7x0cqWtjyc+J4TSxsKOSqaXCfPNS1taami4O7H8SIidAnh+9VOjLPr5DI1b99Q87/r3OnHdb59uvifgwJDIRSCOLpyRziVgsMcYbCwTAEVNqYquW+AB4Xd6CzCiByXUq42FtSUVHW6o62WGSK0DZ6a+m6+FsNEfZc6CL9y93Z6TvZ0LVTlMUKoWjTYRXZRZZVXjbLCKiADFASrPwkOKKOQHYc4lYTJBQi4JVuwQJva1d+Ds5htWxL1ns5IOTsWpxIlqXdWPz7fyNf2EixMrcjOrl3Hj4Wn7NH23uj6E0/glkspNXZCAgASphTROcMKfguBjKGmRpg1s2M4uTL8L47voDPqhflZouDrI0htiohsclMuir7czu3Yr2/1lopOSury7FSHGLU1U6VUN5ToubA6GJGosQEIdmCkMUIAZGca/jUpTUx55sBM4RQxYCdbCTC3KVF2OJhEVOPsyJDua7+NfMdSynUjkWJsZkZGeTLQhqz8KwsTAj6b/1SEC1+6PufcggGxMkBZ67rokinQwEmuKEL5YK/TzyoqwhtmvhyXsH/6WCvS3lHWywMTUhSxDYfPsJI6pXAAy3If3nbjAXHr5gxNqdhPwwR6mjqi7FiKJOydDeXem9FoWI9tYQEIWIMkQBYkC8DZaP3EiQ0BAHjJBwkVhiyaAFzgWuruplYk51MyvupycTn52JnVHhj3ANZwdSMrM48OQl3St4y+0rzAoSGZ9M9bJuKt+bgjoSRY35DeI5Rwzv4FioFUhXpJHNJWJxwITq2KgkfJQ1vt7tfOi37zSP4xK5Gh6DsURCQBknhlT1o5ufl16CMOlyYUdv55xrHpecqvIsGV1bRkB5B1XcwqSru40oQv5DU2sIaDcsA6VXiIgCxAB424RHbiRIaIAD9phwmiiyEPKF+85LKwt7LqYmMCr8AUNsy9Db2qXAMur9t4bIF5fv5BMgoFyECIJA8KsIGtnqZ9GyGNI599/qspeJpTI2hQ6BaEs62RwinESy6IWbVuKjYqfyBMcn8jjuTQf1cYNqvFctp6HVpLFUtvaFummkFCZWlu7KiXg7sk09lfPMjT7ESG50GR5cUzEjWkPeUJzWEHjzjFUdrHEWBoUoQIoZXTVahhhwTB38scEECUeJJJEwvLCgOray0N+5X/hGFnZsKuPP1oRwNiWEkSkIdC0gpLtEIqFHBW/+ehxCUHg0dRTMaFEkQv7ZdYqo1HQ5P4aCUNf6kXvYIwOBRDIxx0ylsjQhC4G/CSeKdLpQBkcVyipIfEQkp+Y4CpuakJSRycjqFRhS1U9l4aGOkNAUaRlbdh/A3dWZjs0by4mS5LQMAK0CpEnRtxjRloI6PlXaD1GIvEFbawjoZzG8koYoQIoJQ2ygipvyWNMeeEgSt4jnIUn0xl0WNyQ3dkYmjLPzwEwiYXtiBLuSIhm2O44pvespNKXPa1SDkIRkRh0+x589W1HOLr9VQypCpPdGGkI8OpcPiC4xxYga2HKLBFwxwwn1Fl9TlwvEEE4aPXDHjcLDnBckPi6HRTHs77Ny2+PS0/Hp0LDQfItCeORl5MefARDy71945ir/n31tWbVxO36ZMTotz9DFSF7ydoYFCRJRiOSgjTUEtB+WKQ0U71KQbykloUEqLqSByfriSTrZBBKFgOJQNcYSCe/bebDBtRLNLexZH/+aaScvE5WSli+tjZkpP7RvhKOFOR+evkpqZpbCPHPfm7K21vjYWXM7KrbQeqtr/ZDSBEfew4veuOvVCfUBidwkgcY4ai0+AGq7OtLrv+EsdysLAOaO6VVovsUhPgCG9+4CwK7Dp+S2GxkZMev9IfQZPxmrhu1lf7qkXPsGsr+SQsVO5QvtHHW9Gm1JRRsh9ujQk2L38ylORAtIESAKDvWxxYRWOHOYCO6RSDeUL/LnbGzKJHtPAsxt+DYslK57TrKqVT2aeLrKpbMyNeHr1vUZcvAMG289YmKdyoXWw9TIqFDnxNwNSHJ2FlZGxpxMieWruJf86FqpgCPlY53og0QyCSaZC8TijzU1CriOUgoTH5BzXZY2r8uJF2FEp+cMY1hbKB/SKS7hIWXdpx/Spkl9OjVvXHhi5OurqdOrIAhEJiTjmsvapkiE6KJ9KEzcaFpGxU7lRWuICujCGiLlbbKKiAJECwxFWJRkBZ1BNs9JoSyWmOUxyPlihT/WnCeGm2l21DQv2Bn0HQs7unaqysenrzH1xCV2dGtOxTyrE0t///koRCUBoo5NIiorg5ERD6hnZsN7tmUwQcKhiEScVfTrEBA4SwzWGFMH9UOUZ5BNDBlEkU446bwilXgyMQL8sKIpToVaWVQRH7lZMaIb43/YA4CXk+JZPMUtPgCsLC0Y2quzZsdqOPvm1vMw/jh3k+ndm+ForTxwXlFYRrQRPoWJEBBny0jRxjdEytvkIyIKEJFi5TTRPCIJJ0xpgXO+4YEmOBFPJnNjglns6ENt84JfbicLc9a0rk///f+w6NwNNndqIudgaGpshKuVOSGJyYQmpeBeQMcA4GJpzoXXkYQlpWAkkTBg/z9Mr1eFHhXKAvLiz+y/ckKz0qlgaskut6ocDEtS63o8IBFHzFQWIAICl4klgUwek0w2OeOq9phSFks8MccTCywU+NHkRV3xUa59A94Dvj18jhvPQpm3/QhLBneU7deF8EjzrqNyWvOQIIXbg0Nes3XvIXp3aEn1Spo36upaRZxtrWhbq2KB4qM4UUeUqBJETRQhOWhrDZHyNggR0QdEpFix+a9jjCaDPwnlJvFy+80xogduuBiZcjVNtcbNytSEuY1qcDksmtVX7pF7uSMjiYRv2zbC3cqCLrtPsOzCLTKzs5Xm9VGD6sSnZ9Drr0BuRcaSnJklW0gtb2Nsa2TCaufyfOGc02CoKz4kSOiBO50po/Ix8WRylXgekkwA9ryLOyMoS388aYYT5bHWm/iQcmjeKBpVKsvPp64SlZAMaCY+0rzr5PvT9vg07zocfRDB/NU/cOPeI7XrBHDz/iMGTpvH8bNvOmdV/EU8nexoUc1PozKLi8J8VUpzZ6hrDoQm6kSQlWY/EXExOhVQttDP3ZE9irFWb1Dn4TS0L5QsBO6SyG3iiSUTgPa4Uh4ruXQXzaJIF7JZ5OSDqUS5bs7dQP58+wmfX7rNnIbVGVotZ9qohYkxtmamRKemsf1eMOuvP6RtOXeWNKuDtalig2BsajqDD/5LGSsLNnV8B4lEYjCL/t0mnn//iyUylnIaObJqIz6kvI6Jp9HsdVSr4s+JX9ZiYlKwcVVdcaENGRkZ/PHHH/Tr109WL2XWkrw8DH5B3R7DSE7JEZ1PT+3Gx8tDaXpdBknThrzCSNN6KbOIaOp0/baiK4dd6TtZddNfcttL6mJ0ogBRAUMXIFCyRQjkDCXcIJ6bJNAKZ7yx5AlJHCWScbbuWBoZszruJWZIaGflyHs2ZbAxevNlr6yzXHrhFr/ff0avimX5/cEzLIyN+KxpHTr5eZKUkcmZVxHM+zcIZ0tzJtepTBc/L9n029ycehHGxOMX2dC+EU29yhiMADlMOMGk4I0FXVG8SrAyCmoU1REfUr648JyFX//I+T9+pGHt6krTFaX4UAVFYiQtLZ0VG7Zy8vwVbj14wvsDerBm829EXz6CubnqsVp0LUh06U+jat1Ky4rPxYUuZwuJAuQtpCQIECklXYjAmxf2dnoSc6KDAfjLvTqPMlK4nJbAnqQozCQSRtm6836vugXOUknLzOKjf65y9FkoAOXtbXgSl4iFsRGpWdn0qODNuFqV+OLyHU6+CKOasz0/tG+Ek4W8L4ogCAw88C9WJsZs6tQEUO1aa3ONQ0jhDon4Yok/ihuxk0TyiCRGUw4jFa0fmggPUC4+rBq257cDxxg0/RNaN67H3z99hZmZ4pgmhiY+IL8AycjIpMe4WRz+5wJuLk6ERUYDMGZAT77/bLZWZanS6Ren025B9VNXiBhq+1JU6GuacsVO5UuNABGdULVAX97r2syuUWf5b0OaQqfoZa1uZs0mV39eZ+UEAqtoaklFU0vaWzryu3UiXwW/RHLLjvdrVlSar7mJMWtaN+Dvp6+Y++81ljarw9x/g2Thw29GxOBnb8O6tg25Hh7D5BOXGLD/H4ZWLc+Ayj6Ym+RYWSQSCaNrVGD6qSvciIihlqujyuelyfV9RSoHCAdyhIgAeGJBNgI2mMjWy4kkHT+s9Co+Clwx+L/OsqxHjt9K+XJemCoZyipq8SEIAjExMTg4OGBkpLq724KvN3D4nwsALP1gAuFRMTg72jO0Zyet62QIM4IKoiBHW+lzoKh9UjRTxpDal6JEjI+iOqIFRAWUqcukbYuLrA5FuUpuUTUYqryoWYJAcGYq5U0sqNS5gty+Ly/f4ec7TznSpw1uasw0OBT8kpmnrgJQ2dEWf0c73KwtaebpipOFOd/ffMihp69wtTJnat0q9Pwv4NbSi7f59e5TelXwZmnzunoLf59KFnsJwwjojhunieYpybL99phQHwcSyeQCsTTFqdD4Hrq2ekD+znTDb3sZN+9zhvfuwtfzZ2JrkzNturisHrNmzWLdunU0atSIY8eOFeiXIrWCZGRkUqZRZ/p2bsOhwHM0q1+bTcvn8XfgOSKiYxnZp5tSgWUoFHa9VfV/kaLMKqKOf0hpFyFFKTpKkwVEFCAqYAgCJDdFKUakaNuAaPKCHk+O4YfkMFIys+hW3ovlzeWHWxLTM2iz8xhDq/kxpW4VuWMLs04dv/mIEzcf80vgVaITU2Tbp9atzPja/jyNS2TN1XscefaaSg62PE9IIi0rZ7aMm5UFJ/vndL76ECEniOQFKfTAHcf/wrPHk0EsmWSSzV0SCSFVlr4lzlRRMkQD6juZSiloyEUZW/ceYsL8Fbi7OPH9Z7Np2u/9AsvIzatXrzAxMaFMGdVnASkiJiaGadOmsXPnTnx9fQkODubYsWM0bdpU6THSTvna7fvU6zWCI5vX8Ovew2zZcxAfL3eevcwZwjv28ze0eae+VvXTFboWdgUJE3WHZt4W35DisHaUJgFi2FJeRCHarDOhynx+RSh70XQReCcv0joeu/6AlGuvANj/5CV+9jaMr1VJJkJszExpXdaN489DmVK3ilpDYm1rVqRtzYpM6vQObRb8QEh0zvTfS2FRVH4RSmMPF1a3rs/4Yxc4HRIud6ynjSWrrtyle3kvleecqDoUIyDwkJzpu4651oaxwxS7/36Xx5p4MnhFGoFEEU3+tWoKuye6snrk5b2enWhcpzqjZi+h3bAprIrMYMKECQUeA7By5Urmz5+PqakptWrVYtq0afTr16/Q4/ISFxfH2LFj2b9/P0uWLOHnn3+madOmBAQEFHhcmncdzEOC+H7Hn7g6OVLDvwIXrt8GoIyzI1tWzKfVkIlExcapXSddoW9LUu7884qRgoKxKRqaURa8rDTECinuIZZHh55QtVhroDtEAVLC0VSMqOMrUhC6nl6Wm3G1KvEkLpHDwa/pUcGbb67dJzIljU8a15Sl6detKcO+/h2hjnI/kILwdLLji+FdGPjVDgDOv4rk3KtIAGbWq8LpkHDmNapBVGoa311/CMC18Biuhcew414wF4d01ukc/Zf/WTZ8KXhISSpIcls+VLkX+hIeAAE9hvHkxSsiLx3iyOlzzJkzh5kzZxIcHMzy5cvzpX/06BGvXr3C29ubxYsXM2HCBHx8fNi7dy+jRo3io48+wtjYmICAAJycnPDy8qJ///54e3vz9OlT7Ozs8PLywtg4x0/n2bNnjB07litXrvDNN98QHx/P/fv3+f7777G0VG2ILjwqmqjYON7p977M6jGqb3dOXwoCwN6m6DsfbYXHg+g0/J0KX/9HUZnqCpG8IgTyty8lVYQUt/AojYhDMCpgaEMwhaHpEE1RB7tRJahReHIq7f44hqO5Gf6OdlwKjSLq5wUyK0hCShp+E5Yzt09rZnRvrlE9ElLSqDBphWxp9tyYGkkYUsWXlKxsDjx5SWJGpmxfdWd7dnZvodOZR0HEcY04RlBW5Zge2goP0F58RMfG4dIgx0mzatWqNGrUCGNjY3766Sf8/f25fv26XPrExEQqVKhAfHw8Tk5O2Nvbc/78eezs7EhJSeHbb78lNTWV5ORkrl+/TkJCAg8fPiQ2NhYrKyuSknKsRBYWFlSqVAk3NzdOnTqFk5MTW7du5dy5cyxYsIBZs2axeLFq7+ndu3eZOGoY54Nuyba9P6Ane4+eJio2jjEDerJm3gylM3x0iTai40F0/sUYC0IVcaJseEaRECltQzKGKDy6v74l97ukDsGUOgHy7bffsnLlSl6/fk316tVZvXo1zZvndEyhoaGMHDmS69ev06tXL9auXauSd3xJEyB50dWaNeoKFF1FTUyq6kO3ZZsJi03E39OFqyunyu0f9vXvPAqN5OzSiRqXcScknA6f/khs8hvfCjNjI9KzsnG1NCciJY1RNSoQGBJGRx8P7kbHM6SqH008XXXq5HuBGJ6QzCC8CsxD1UZR38IDIDs7m4Cew3n0/BWjRo0iOjqau3fvkp2dTfXq1fnwww+pUkXeR6dnz54cOXKEgIAAzM3N2bBhAxUqVFBSQg5paWls3LiRy5cv895775GWlsajR4+4f/8+ISEhtGzZkjFjxnDt2jXat2/P//73P+bNm1foYoJS9u/fz7Ch75GSmtOB9+3UmnZNGzL+k+WMeLcryz+ahKuzarOfNEFT0aGu4FAFZaLkbREihig6ciMKEAPkt99+Y+jQoXz77bc0bdqU77//nh9//JE7d+5Qrlw53n//fTw9PenTpw9z5sxhyJAhDBkypNB8S7oAyY2hLKBXEIo6xaW7TrJ090neb9eA1SO7y+3b/k8QY9bvJnj9x7jYFrxgXUGkZWQS9PQVp+8+5dPfj8u2N/F0YW2bhpgZG8mtK5MbXVlBrhHHdeIZQdl8+9RpFLURHqDedNHfDx5j4LRPOHHiBO+8806h6Q8fPkzv3r0ZO3YsFy9e5Nq1a7i7u9OyZUsSEhIIDg4mKSmJWrVqYWVlRUhICElJSWRlZZGdnU1WVhYWFhYsW7aMVq1aAZCSksLt27e5ffs28+fPp2LFihw9elSt6beCIDB8+HB27tzJz18s4PSlIF6GhnP87GXSMzJwd3Xm4bGdWFvpdm0XdYWHPgSHMhQJEX2JECheIWLooiM3ogAxQBo1akRAQADfffedbFvVqlXp1asXy5Yto2/fvvTr149+/foxZcoUqlevzsSJhX8161qAaBoLQNdRFQ1FjKjqPBqdmIyjtWW+L9qw2ASqTltFt3pVWTqkI97O6q8kCxCblEKN6V/JWUH6+/uw+9FzelYoy+KmtXPSpaVzOiSMNmXdsfnPHK+r4aszqXEsjw1hop0Hnayc1D6+KIUH5HSezZs3x97env379xeaPjMzkxo1auDs7ExoaCh2dnZMnTqVe/fucfHiRRwdHfHx8cHKyoorV66QkZFBuXLlsLW1xdjYGCMjI4yNjbly5Qpnz57F3d0dMzMzXr58SVZWFgCdO3fmhx9+wMXFRa1zgRwR0qpVKy5evAhA1Qq+PAh+IcsbID7oODbWVsqyUAlNrB3qCo/A4Gil+1r6qv5saWsNUVeEQNEKkZIkPKSIAsTASE9Px8rKip07d9K7d2/Z9mnTphEUFERgYCCXL1+ma9euREdH06BBA44cOYKNAqeytLQ00tLevOzx8fGULVtWKwGijwBEuhQkRSlGtA3glpWdzYmbj2laxQcrczOsGrZnx/6jjP9kOYnJKYzu153vFn0k+/pV9TqdvPWY7su2ADCqTX2WDelE1D/X+eXOE5ZdvM3eni2p5GjHrYgY+h/4F4Dbw7vJBJEuREiWILAhIZSDydEscCxHPfOC43tI0VZ4gHrPqLQDTUtLw9HRkW+++YbRo0cXelxERATlypXDxcWF1NRULl++jI+Pj8rlyspPS2PHjh28ePGC9PR0ypUrR506dfDz88PZ2Vnt/KRMmDCByMhImZi6vv8XqlX049SFqwyc/glRMXHcPbyD8mW9uPXgMXWrV86Xx+vwSB48fU5FH2+83N9MKS6KIZaCRIeqKBMn6ggRXVhDQH9CRJ9RSjVFnfajtAiQUjMLJjIykqysLNzc5NfDcHNzIzQ0x5u9fv36vHz5ksjISNzd3ZXmtWzZMj799FOt66TvqIe6WnAKVOugVBEp+ooOm/tcL16/Te8VC2nbpD5Ht3wDwMBu7enaqgkbfv+LWcu+pklATYa/21Xu2MKuT+saFUj8dZHctgvujqz99T5G5IgDgJRcX8N3o+OppqHFRRHGEgn9rV04mBzNrfTkAgWIKo2dvoSHlOfPnyMIAhUrqjYLafv27UDO+zpmzBiNxAeAubk5w4cP1+jYgvj111/lrB2JySkYGxvTtkkDIi4ekm03qpQz1LTzm6X06dQagLHzPufH3/bK5degQQO2bt1KuXLl1KpHUYsORfnlFSLSOuUVIopmzFg1bK8wkmreNqSwsAC6jKaqD9Ghy9WB8+ZVWlfAzU2pESBS8prnBUGQ22ZiYlKg+ABk0welSC0ghVHcYZYVla9LK4m+xIUiCrqW9WrkODQeP3uZ4JDX+HrnrE5qa2PNzFGD+OdSEEu+3Uz/Lm2xtLBQmKeq16XX8l/IFgQ8rC3xsLYkPSuL1Vfvyfb33XeajxtUY3j1CkpjH6jL9fScGR49lAzBGILwkPLy5UsAvL29VconLu5NHA2pc7gyHj58iKOjo0ZDKery7NkzqlSpgoeHB0ZGRrLz+uPcXQK6D5Wlk3ay//72Pc0GjOPSzbv06dSamLj4fOID4NKlS/Tq1YurV6/Ktr1+/Zo///yTmJgYqlSpQuvWrXF0fOPcqqr40LXwUJa/IiGiyBoijaUiRZHwVyRCQHUhUhzoUmSUhHKLklIjQFxcXDA2NpZZO6SEh4fns4oUhrm5OebmhU9NK27BoQr6FiW6QN3reP3eI9n/NgocAj+bOY6G746i25hZHPjxSywU3EtVrSLZ/1k9TIwkZAsCG2895lp4DAB9Kpblang01Z0dZOk1DfSWm1QhGyMgLjsLR2P5KZ+6EB+6EB5SpMIjKCio0FksgFyaqKgopel2794tcxCPjIzE2vqNc3FMTAwXL17EzMyMli1bquVoqoxz584BOeIAwMrKiuTkZL766itmzpwpE0HS61HPuw4JCYOxen0TAEd7O06ePMmAAQMID38TuM7MzIyuXXMscVlZWXz++ecsXboUExMTHBwcCA8Px8LCgmHDhrFgwQIiUc2JWh3xsffqS9n/PQMKnl2lrCx1rCGKYofkFSGgfE0ZKYYYFkBEt5QaAWJmZka9evU4evSonA/I0aNH6dmzZzHWTHMKikyoDco6IH0KE12KNWMjIyQSCSP6dMXFySHf/uqVynNo42o6jpzG+E+Ws2n5J0qnYhYmRBpU8OZVTDy318wk5PgV6rm9aYjfq1aexc3qKDxOGyHS1MKO7+JfMzXqMft7taK8g2p+ILq0eqjqr1CxYkX8/PwIDAykT58+BaYVBIFDh94MY+zatYtx48YpvDfm5uZUq1aNtm3bEhERwe+//44gCBw7dow9e/bI0vXq1Us2rKMNDRs2lPudnJyMkZER2dnZ9OzZk3///TdfPU1MTEgvW1f2u7E3TJw4kSVLljB16lRGjRqFn58fN27cYO3atezfv5/Tp0/zwQcf8MEHH+Dg4MCLFy/Yvn07X375Jb/9vpNOPfvg6OyMIAi0bN+Z6rXrkpeV639i6+IPKFu5Bh7lK9Oiz1DKVa2l8Lxyiw9Fv0E1UaKONUTZkAzkt4aA8qFdfYkRUWgYDqXGCRXeTMNdv34977zzDj/88AMbNmzg9u3bGo81g3IHH+HRebXy0WcoZV0KlJJAZmYmmVlZbN51gJS0NKYNH5DvS3jbX4d574OF7Fq3jN4dWqmUb14hsv/yXQZ+tZ2mVXyY0a0ZlcJi+PNxCLVdHfF3VN3ZS50GtGKn8kw5cYnjz0Op6ezA4Kq+9KjgrVREFYfwgJwhklmzZnHkyBEmTZrEF198UWD6H374gWnTpgFQvXp1bt++zYQJE5g3bx5OTm86tgMHDjB69Gjq1atHo0aNWLt2LQkJCXJ5mZmZyfKIjY1VOdaHMpKTk/M5r9rZ2REfnxOif/jw4axfv77APGJiYvD09JT9rlmzJm5ubhw7dgxzc3Pq1avHBx98QJcuXfId+++dYLZ89zX/njxGUmICEWGhGBsbs+fURXzKVyA9LY1De3dhUqUxj69f4sfZ42THmppbMObz76nSUH5IS5HYUJWCRIk6TqqqOqhKMZSZeQWh7lC0Ps6ptKwFU6oECOQEIluxYgWvX7+mRo0afPXVV7Ro0UKrPDUVIMW1CmheSqI4UeXa/e9//+Orr74CYNu2bXKWLynvBNSiSnlftq1elG+fMvI2kMdvPGLBb0cJCn6NnaU5FhIJK1vUpYG7+r4JioSIoi+yR7EJTDtxiafxOf4gff3LsahJbbk0xSE8MjMzadmyJRMnTmTu3LnY2Ngwd+5c+vbti6mp8gihqamp+Pv706VLF1q2bEnz5s3ZunUrX3zxBX5+fly4cAEjIyMuXrxIhw4dCAgIICoqioiICHr27MmyZcswNjamdu3aCIKApaUlT58+pWHDhgQGBqpU98KIi4vj9evXhIaGcvToUd555x0aNmxIjx49eO+995g8eXKBxz98+FBWPylmZmb069ePdevWKR3WVeTzcerIQaaNHMyOw4FUrVGb37f8xJL/fYCpmTlfnrxL8O0g1s8aRXJ8rOyYlv1G0Gf6fK2ER250JUJAfSECxSNGitLPTYom5ykKkLcIVQWIoQgOVTEEYaLNNWvatOn/2zvr8KiOLg6/G/dAnBAlBNcQPLi7FytQnJYiRQottEjRUqy4S1usUGhxgru7OwmQEHfP3u+PfFkIsU2y2U1g3ufJA3vv3LlzZ/bO/PbMmTPY2NgQGRlJaGgoV69eTfdLeMGCBUybNo3nx3dib2utdN4fd46SJHHrpR/H7jxlyvajdC/tzJTaGZu9VUXXvae5H/zeaXNDi9rULJYielTl55HT+v/QUmBvb8/58+eV8rH6448/GDp0KLdv306zYubs2bM0a9aMadOm0bx5c3r37o2VlRVHjhxJ8cX6/3dULpfz5Zip/HPkJIlJSYpB3svLi+nTpysVAE1Zrl69iq+vL61atcLgAydmZRkxYgR///23wuH24sWLVK5cOdP0GQmQmOgoOtSvQZkKFVmyaTvbTlxi9feDqdW2Gy36DQcgMjSYWb2bEx2e4pNU2rMuDv3m5Li82ZGf1hBQbuo3N4P0rYBQylmZo5uBj5AmhIYyKPucQoB8RmTWuHFxcVlc9WmQW5GiDjE2b948pk6dysyZM5k6dSoLFixgwIABadKEh4dTrlw52rZty8afst+VNZWsOsWhK//h8dsgNtV7Pz8vlyQuvA3kQUgEMYlJtC5RnJJK+m58yJuoGBKT5biYm/Dfs9dc9AuiXzlXRp64Sr3iNqz+aUC2eSgjPnLbPv3792fbtm00a9aM1atXZ7uiLJVevXrh7+/P8ePH0xyXJIlWDety6vINAPT19Li0ax2VyrwXKcGh4QydPIfd3qdo07Au+06cTZPH+EG9mTvh2zw9Vypbtmxh0KBBSJKEm5sb8+bNo1WrVjnK4/Xr17Rq1YqnT1OcpU1NTWnbti1t2rShcuXKaQRYVite1i9bxNK5vzD/5KN004uJCfFo6+gSHxuNz4PbJCUk8FjbBS1dvXT5RL5+wtsL+9AxNMGl2Zdo6+cukmtmQkQV1pBUVOWHdtfHn1o/LAfg3brJGBukr5fCQGaCRAiQz4j8ECCqDqec090uPwWSkpKoXbs2WlpaPH78GCcnp3SbngGsWrWK0aNHc+bMGTw9PZUWVZl1hr/uOcXi/ed4uWICfidSlldOOX+Lvx/7KNJYG+pzrFtTdHKwQiNJLqfS5v0AXOrVEtMPNj3rf+4m9hZm/DGye6bX56fwSEpKYty4caxatYqpU6fy/fff58jvomvXriQkJPDff/+lq//4+ASe+77lzbsA3JwccHVM8aO4fOsevyxdz5FzlzHQ02Pzb1OIiY2j95gpaa4v4WjP0+O7ALj7+Bkjps0nMCSMUq6OlHR2pFSNBvTs2RMdHZ3/3y8eXV3dDFfPVKtWjRcvXtCoUSMOHDgApKzIyUqExMbGcurUKcWWD127diU+Pp4FCxYQGhqKnp4eBw4c4MGDBxgbGxMUFJTt+5+cnEzHBjXQK2LFyKVpnWwT4mL5sY0nCXGxAFjaOyGZ22FZpjq6xkUwtLbH3KU8MQGvefrfSoLunEXPzJKkmEi0DYywqdIAm8oNKeJeBS3tnK1DyG9ryIfkRYyERMXgNDTFGnRy+hA83ZRbJp6KKpzm8zNytRAgnxGqECDq3L/hYwqjOFGmvkpZ6HP27Fn69OmDv78/dnZ2vHjxIl26VKFibGzMiRMnkMlkeRIhx24/pcPczZyZMYyqrvZceuJDq+nrcTU3ITguZdO6eVfuM7FGefqUy5nH/cpbj9HV1mJAeTdkMhlOzaoTFh2Lw5DZjGpTl5m9WqS7Jj+FRyoHDx6kc+fOQMpOttra2jm6ftCgQdy7d4/rf6/IMl1SUhJdhv+AZVFzdh06gXNxOwZ2a0+vds2xtiyKJEmcu3ab+j2HMfzLLly6dR+X4nb8OmEELg7FGPjDTP47dobaVSqw78Q5Rb6pK1o+pFatWhw/fjyNkPrtt9+YPXs21tbWGBkZERUVxf79+3F3d8+wvH/88QdDhgxRfNbT0yMwMBA9vfS/uFOdcA9fvotd8awHxMB3/jT1KEO/qYuo1qx9mnOSJLF+0jfcOnU40+ttPBoTcOMEBkXtKNF6ALaeTYkPDeD1md0E3DxFXIgfhlbFKd/3J8xcyuXYiTen1hDInRAJDY/gue9bkh9exc3OAsMc7EQcHZfAXV9/apR0zHYVnDpRhTAx7vVTms9CgHzC5EaAaFJw5ARNiRNV1k9kRDh3blyjQmUPlv02E/83r5m7fD2VihdRpNm7dy9ffPEFN27cSLMza25+iUXExOExfgkx8QnM+bIVozfsJSEpma61K9LOsyxVwqMZefwKyXKJ1c1r5fh5Pp6fTpbLaTp1Lc/eBfNyxYQ0v9yz60BVNRWWmJiIjY1NplamrAgPD8fT05OqpVz4d9W8LNO+8Q/AsV7Ksvk6HhXZt2Y+RczSTmUFhYTR8evvWTT5OzwrlqXbtz+y6/AJnhz9m3U79zJn5WYAdHS0SUpKRk9Xl4TExHT3+vbbb5k3L315Pg5emBXTp09n9uzZaY69fPkyQ7+Y0NBQnJydadP5C6bNX5rpPUJDgtnwzz42Tx1NpQYtsHNxp83g7zIs59ZDF3l31ZvgB5dITohDS1cfUwd34iOCCb57Hq8Zu3njk5zuuoTAZwSdWUlC8Et0TG0oUrULJqUaINNKsYiUqJi9X48qnVQh/bs4f90Wxs9Zki7ds+O7FFayT4HcCBIhQD4jlBEghUVwqJLUzqQgPXv1ErYkxMfT9cv+/DQ3ZYVMKQt9rl69Sr169Th8+HCGq6KyEyIfdxKBEdE0/HkVBrq6VHS2Zfele+hqaxOXmMRXjapRxMiAreducbhdA/S0lZuGycoxbv+1h3RfsIUnS8dRrKiZ2oRHKql7uECKk2b58uWVvnb+/PnMnPEL9w9txbl4sWzTn7p0nZYDvqOImQk7fp9JvepVskwfFBLG8YtX6dSsIUnJSWz65wBFzc1o19iL+IQEipqbEREZjYRErS4DefTCh+3bt9O+ffss81WG1NgkBw8exM/Pj759+2Y4XZP6jvyzdTPTxo2kdLkK6Okb4ORaAmMTUx4/uEdocBAAr56/D7Rnae9EsRKlGDJ3dbo8P1ztEh8RzIsDG4jweUBM4BuS46KxrdYUQ4+M46wASPJkYt/cIerRcaKfn0fH1AazCm0wcvIASULH1Bq3KtlPXahaiEDK++jasBOv3vinO3d660qmLVnL8mnf4+6SfYTq/OLjdyyvTv05ESJCgHxGZNa4t9+GZ3FVzshLWOWc7Gz5qbNl/Srm/jQBgKsvAtD9vynczVyHatWqYWZmxrFjxzJcMpoTEbL++FVGrks7D1vByZayDjYcvvGYdd90pfuCLVR2Kca8vq2xeu6XRogkJCfzOjIGJzNjSrSome1zPX8XQqUxi9i/dgGtGmS94iO/HIA3btzI119/zbx587JdkvohvTu04m1AEOf/XqP0NXcfP2P4lN948sqXh4e3Y2aqXITQ7Fj3938M/nE2vXv3Zu3atSrJMzs+FujHDu7l0L//oKOjg9+b19y4fEFxrkSlajy/fQ2A4iXLEhsVyaA5KzA0MceyWIoYyGiZ7d1N0wm6cxZbj8YYWhXHsnxtAkOUd4JOCH5J2K09RD+7AFKKxUTbyAI9C0d0ze2p0ncEukZZ56cqJ9VUjh49yrNnzzAzM0Pu/5SSzg7Ur1GVnxauYubyjfy1YBo92zXPMg9Jkpi0YCVzVm6marlS7Fw6O531JL/el7wIkuzEiBAgnxGqEiD5vXdDVhRWkfJhnSn7DGEhIfTv0prnjx8yf/UmmrZJMenfvn6Vrzq2oHfv3ixatAhDw/SrAZQVIUNX/sNfZ27S2qM0Q5vVJDIunnn/nuZ1cDjBkTHM69saJ6si9Fuyg7jEJMwM9Xmz5kdkMhmvjlym9YGzvAoMw1hfj8FNq/NLz+ZZmv0NqzfFtmZrvu7dmWmjBmeYRtW7rX44QDx79owKFSoAcPr0aapXz34ZY2RkJOPGjWPz5s389sNIxgzomS6NJEls2+eN99nLWBQ1Y/ygL7G1SmlnX793lGnenYlD+/LTt9mv/lGG6JhYeo+ZQu8OLWg/eKxK8syKj+s2KSmJE4f2Ex4WilvpMujrGzCoWzssrW0IDw0hPCxlSW3tdt1p0K0fc/qmBC0zMDZhzsEb7L2V1iIgSRL+Vw7z4K85uLUfinOTlDp+fuddrsqbFB1CYtgbpOREYnyukxwbRsyrqyBPwtTBHRN7N4rX64S5S7kMr8+NNSQVZaeDk5OT8fPzU2r/oYSEBBwdHRUB5WrVqkWNGjVYsmQJZ86coVq1aoq0L1++xNjYGGtr5Zfr54TcCJLMhMinIkA+mVDsBRlNCo+sylBQRImy9fNxuszKX8TCguIOTjx//JDJo7+mdPlKOLq4UsnDk6m/LWHGxO+IjIxky5Yt6a7NaC+LD0nd12Jkm7pUcrZjUNMa6OumvEZ1y7hQf/JKwrRk7Dh3mxFt6nBi2hBq/7icHl6VkUsSETFx/HDvGa8Cwxjbrh7a2lr8uucU9hbmfNMyvb/Ih1MtlcuW5PTlGxw+c5EqZUsRGBJKhVJuhIZHoOVWg/PHj1O7du0MhVVcXFy6mBbZTZ19GGY7NfbHN998o5T4APj777/ZvHkz8yaO4Lv+PdKd9w8Mps+4qRw7f5VqFcpw78lzAoJC2fxbyioXx2K2DOjWjlkrNuFYzJavurRR6r5ZYWxkyPZ9R5RKGxsby9mzZzlz5gzh4eEKR9aEhASKFSvGX3/9RcmSJenfvz+dOnVK45ibUd2GhYTQtWkdAt+lFRFlK1Zm3c59XHgbxaMrZ3l26wptBo9BR1cPe7fSvH32iLjoKJ7fuQakHeD9Lx/i/p+zsPVshoNXR8XxEhVtcyVCdIwt0DFOea+MnDwAiH5xkbi39zAtokfww8v4XT6EuWsFXFr0w7JsDWQf+CT9e/1NpiIkoz1lPiSz/WU+RltbW+nND/X09Lh8+TJ9+vTh7du3NGjQgLlz5wIpMWQaN27M8uXLcXZ2pkaNGnh5ebFr1648R9bNiNxsraHsnlWFFWEBUYLcWEAKgujICeoSI/lRLxmV/dLZU0wZ+y1+r32xsrFl79lrGBmn7Kh5cM9OJg4fxN69e2natGmGeebUJySVmy/e0mjKasyNDAmKjE5zbn6/NlRxLcbXq/fw+G0Q/03si4NlEepOWsH3HeszvkODNOk/9vPoOfontu8/muZYPc8qnLn6vqwdOnRg27ZtadI8ePAADw8PfvnlF9oPGJHlc31MKQt9JEnC0tKS2NhYvL298fLyUuraK1euUL9+fQ6uX0iLeunFVZtBY7hy+wF/zp9K83o16f/9Lzx+6cO5He+nauLi4+k7bho7D53Is/Nh6gAQEhLC69evefHiBa9evUImk1G3bl08PDwUacPCwihWLMVfxc7ODltbW5KSkoiIiMDX1xdIiYny5MkTzp49i62tLXp6etg6OPHT3MW4uJVMf/+4OBpXKUVUZASmZmZ0+bI/Dk4utOvag0vvUpbUJiclcXLHBmwcXalYrymBr1/yz+8zuHcuJX7KnIM38H6asjV9lN8Lbiz9DnOX8lQaPDPDZ86tJeRjUp1SJXkyQXfP8+rYVsKf30HXxBznpl9iX7tNmimavFhCIH+d48+ePcu+fftYvHix4tiwYcPYtm0bYWFheHt7Y2ZmhpaWFmXLls3xiq+ckFOrSGq/86lYQIQAUYKcCJDCJjyUITfiRFP18GFZr186T//OKSbso9cfYm2bEjRLkiRG9uqAj48PR48epXjxjDvL3IqQX3YeY96e0+z/8SumbPfmru87qrjYs2xwB9yLWXHg+kO+mJ/W+nJv0Xc4W7/fkj0jJ9MXvm85cvYSxW2tGT71N3z93uHh4UH//v2Ji4tj9+7d3Lp1i6CgIEJDQylSpAhxcXGMHDmSP//8EwB7B0ds7OxZtGELEWFh+L325Y3vK7r07pfhs5Sy0CcxMVHxvY+Njc2yTj7k+PHjtGnThkfeOzJ0Fmw98DveBgRxbc9GtLW1aTNoDAmJiXhvSrvyweetPy4NOjFxWF9mjVU+mFwqH09NVa1alYcPHwJgaGiIJEnExcUxduxYJk+ezL179wgPD1fsYvvll1+yfPlyHj16xMaNG6lWrRp169alaNGivHv3jmfPnrH/+FkkSeLIvj1EhIWy9+x1zIoUSVeWiPAw7t26wbYNqzl55CBDv/uer8f+wOlXKVMvp3dtZueCqZSpUY9vFm56X5db17Jn6SxGLtvGPXlxwl/e48ayMRgUtaPq8Pnom2e+LUBeRUhGK2IkSSL0yQ3eXTuK38UDoKWFZdma2FRtiFX5OugameZZhED+CpGIiAhGjx6t2MzQxsaGihUr8tPC1Ywe2JubVy6yYfdBPGrkLMpubsqcUyEiK5lW0BdWASKmYFTEpyg8UilMz/bhrp0eNevgXrYcTx7cT2NSlclkTJj7O0O6tqFu3bqsW7eOJk2apMsru+mYjEhISuLg9UfYW5hRs5Qjx6cNSZfGq4wL/Rp6kJQsxy80kj4NPRTiI6vVLa6O9gztmbLfTdvGXukGVkNDQ86fP0+XLl04cOAAdnZ2JMklwsNC+X76HEKDgzj8325uXr3E8C+7cu/WDcW1Ny5fYMbijDdbGzlypOL/q1evThP3IitSzeSnr9zg3pPnxMUn0KVFI3T/P2X1/ZA+NP5yOBdv3iUpKZmDpy6wasbEdPnExqWY5u2sLNOdy46M/GL8/f2pXbs2GzZswMnJCblczsyZM5kzZw4xMTGsWLGCRo0aKdJv3bqVt2/fcunSJaKjU6xaXl5enD37PiJrv2Ej+Pb7yXTt8xUta1Rk97Y/6DNkeLpgZ2bmRahdvxG16jVk3ZIFLJn7C2E6ZtTt2IuE+Dh2LpgKQMcRP6a5rl7nPlw+uIvfh/fAzNKGyLAQzJzKUOWb+egYGGVZB7mdjkm9NiNkMhkWpTywKOVBiTYDeXf9OO+uHeX+5hkA6Bqbc83OhYat29Cg61do66QdarKbjklF2WmZ3GBmZsa6deuo07IjI/p1JyAgIMVB/afvmTRrPn+tW0Gpssqv9kolN2XOaAfhzwFhAVGCzNTlkvPpg16pko+93ZXZNlvwngYuFsjlch7fv0vp8hXTzesGBwYwY8wwjh8/zuTJk5k0aVKG+eQkdPTxO09pP2czx6YOoqa7U47Km5OgSBkNrCtWrGDMmDFYWloyZcoUbjx6TmxMNL0GDMO5hBuQEs9jULd2vHjyiLqNm/HW14ebV1L2NDr74BWmZuaK/CRJ4vyp44wZ2DvNknNlrSB6vjeo12Mo56/fURyb9M1X/PJdyk6u8fEJGFZowLrZk3j11p8ZyzZw/9BWSrmmrbeVW/7hmynzeHfxANaWRVGWzJxyhw0bxvbt21m9ejVdu3ZFJpMRFBSEo6MjLVq0oH///iQkJNC3b98012lrazNtwTKioyK5eOYk927eoEX7ThgYGrJm8W9YWFnz5eBveP3qBf9s2cyCtX/QpFW7LMvYprEXBkbGjFy6lTdPHjD3qxSry9B5aylfp3GatAlxsdw8cZCgN68wMDEl1LEeOoYmStdHKjkRI8rEA/mQuNB3hD29RWzwWyJfPyXw9hmcy1ai5w+zsS9ROl36nFpXVSFEMvLPefnsKdO/H8m1i+cBKFbcgd2nLmNomLW4U5acljs7ISIsIAKVkJOdKzNKK0RJ5qT+yipTIeNN4yytbZi/aSc7V85nxowZ1KxZM1OfkMz4WDQEnbsNQFHjnHVceRUfAD16pDh6tm7dmnhTOxpkkEZXV5dNew6lOfbi6WM6NqjBlfNnaNyyLQnx8ezfvYM/Vi/n2aMHmJmZKQTIrFmzlC6nTCbjwNqFnLx8nSpl3Wk7eCyv/QI+KIsOpsZGvHkXyOAv2rN9vzf1egzj4PqFeJR/P1g52NkA0Grgd3hv+p2i5nnrYOfPn09QUBB9+/Zl1qxZlC1bllOnTqGrq0uDBg3o0KEDgYGBaa7R0tKmUrXqVK5WAyfXEvT4Ku1KpNadurF1/WqW/zYLC8uUVRTJSWkDgH3MwTsvef3oLo17DgLg6F+rMDA2wdbZjdXfD6ZivWY07D6AEhWrIdPSQlffgBqtOiuuz+2utx+KiqzESE7FB4BBUVvsqr9fGhv27DYPt//GgsGd8WzeAblcjmPp8nh1+hKZTJbGYqkM+RVzyMWtJOt3HSDA349m1cri9+Y1XRrXZv3O/dlGrVWGnFpFcmN9LYwIC4gSqNICoqqtsrNDCJP3ZNe5SZLEqN4defXqFefOncPCIn16ZTuDt+8CcfBqz8pfJjCkR8dsvddzGgpamaW2Oe2kk5KSqOZsxdifZ5CYmMiWdSsJDgygQbOW9B36LQ8unmTevHno6Ojw5MkTpTeg+7jOJs5bzrI/d/LixD9YWRThzqOnVG7bh8MbFtPMqwZBIWG0HTyWu0+eM6RHR6aMGIi5acov/PPXb9P8q1HYWVky6Zuv2Hv8DPWqV+G7/umX9oJy9XTu3DmWL1+Oj48PderUYcyYMYoIpo9D4tm6YTWB/v40a9ueshWzzw/g1fNnrFwwh3MnjvL30XPYFkvvNJs66EqSxNQu9Shesiy123XnzxnjqNywBT2+n8WfM8dz88QBkhISMDQ1IzYyZRnplJ2nFfFAQLX9yYdiJDfiIzOS4mN4cWADyT63kJB4+/QhXp1602bIWIzNiqRJWxBW5r197UOrmik/WiytbVi49k8qe9ZAkiROHz1M1eq1MvTvySnKipGM+p5PxQIiBIgS5FWAqEt0ZIYQI9l3bL4vX9CvfVNKlCjBrl27MowFoIwI+evfw/QZNxWf0//iUMwm3fkPBYkqrB4fk9tfiDXdihEXF4uunh7tu/Wk79ARipUct479x8iRI9m8eTPNmilf5o/r69mr17g37ca+NfNp3bAOJy9dp/GXw9M4qUZFxzB1yVoWrNvKuEG9+XXC+4Bnm/7ZT/8JMxSftbS0iL17SuFTkkpeA0vlx6/szPyozv+3jW1z3/t76BkY8fOOE5hZWhMZGsSN4wd4cPEU986fAOC34/fR00+7nFrT/YuypPZDhzcu5ehfqzE2M2fksm1Y2KXvn9QpRC6dPcXxQ/soX6kq8fHxVKtVh0f37zLxm4Ho6ulhYGDAmh3/UbJMeVrVrMg3436kc6/303M5teJ8TG6EiBAgnxG5FSAFsWP4nMVIdh3EvVs3GP1VdwwNDdm1a1eG4cazEyHr/97L4Emzib5zAgN91TjO5bf4ANi3azu+L5/T9cv+itVCH1KySMa7x2bFx3X1wvctbo274L3pd5rUqc7VOw+o0XkA1/ZspOoHUy4Pnr6kfKue/Dl/Kr3atyApKYnLt+9z7tptJvy6DAADPT3GDuql8CdJJS/iQ53C40P8XjxBkuTM6ZMSwr1q4zb0/yXtSqC/50/hzD9/4FyuMo26D0RbV5eitvbYOpXg0MMwlZc7v0jtf0L837BkRC+SEhMpW7MeTXsPxcYp/caN6hAibepU4fWrl2mOVW3cmlunDtNu2Pec2LaOUtVq03fKQu6dP07JqrXQz8Y3JL98W1LfqU9FgAgfEBVTEEXHh3xYvs9NjGTneV++clVOnz5Nt27dqFOnDqNHj2by5MlpwrZnNzdb0tkBSZJ47vOWcu6ueS6zOsQHQNsu3bM8n1fxAfDmXYpfRermcqmrWl77B6QRINfvPQKgdcM6PHnpS/OvRvLqjX8aJ+K4hIR0+RcU8ZHTVWPFXFN22v393HPePn+EoXH6kOfdxk6jSuPW/LNoOhunvF+VJJPJcChVHvM63bCu6IWWbvpdeAsSqYHKLOyK8+3iPzm4bjH3zh3n/oVTjFy6hSuH/yU+JorOo1LiXOTVuqAMRZ3cQd+YzqN+wtDYlN8GdcT/5TPkycnERoYTERxA8ZJlAdI5BmdGbn1bshMiqd9xgyxTFR6EAFERBV14ZERhESOp5VRHGeNN7Th58iTz589n3rx5XL9+nXXr1mFj8346JSsRYlk0ZRVJWGRk3sqRg8G0IG0GmBW7Dp/A3taKymVSpnYsiqT8UgsICU2TTksrRWgs+3MXZ67c5F1QCEN6dGD7/mOER0Yp0s1cvvH9ihoVh6HPDapYrp7RSpFU3KvWZPyGvUSGBKGlrU2I/2vePnvEjWP7ubthCtoGxjg1+oJitVpjaKGcn44mSBUhlvaOfPnTb0SEBLJkRG8Wfd2dqLBgADoM/yHN0l1VCpGP28mzRQc2TP4WS3tHitoUo17nL7l+bD+lq3txZPNyACo1yHrPGWXupellxwURIUDyQGEUHZlRUJb8ZlWnqhBMysQfeB2nzU8//YSXlxd9+vShUqVKTJ48ma+//jrbqIjxCSnbvuvr5f6X6KcoPiDFB6S0qzM6/x9Ydh1O8WtoWMMjTbquLRtz4tJ1Zi7fQFx8AtUrlmXd3/uoUaksF27cVaRL3ZRPk+JD3TFytLS0MLdKEcOmRS1xLluZ2m2/4M3TB2zZuIlX3n/x4uAGdE2KYGTjiH2t1tjXbqvWMirDhyHbzSysGfH7X8wb2IFiJUrTuOegdHFDUslNfUcEB/L68T3K1mqQxooWExHOnmWzuXc+JcpsTHgYN47v5/Kh3ZSr3ZB2Q8exYEgXqjRqhbWDS6b5P7t5GVuXkpgUybpfyYmI+nAbhE8Z4QOiBJnNrzVdejaLqz4t8kuQqELE5aZsyoaDDg4OZtq0aaxdu5aePXuydu1aRSeWkRXk2t2HVO/Unyu7N1CtQpkcl6ugio+8xjEICgmjuFc7Zo39mrEDewHQZ+xUHr3w4fI/6zPMY+H6bYydvZidS2bRb8IvxMbFI5fLgZSB2P/CfowMDYgtVgETE+XjYeS13gpyYL7Y6EgeXT7Lqwe3OPbXagAsytagZLuhmDqW0nDp0vPhu7t6whAkSc7QX9PuUixJEgE+zzE0McPMMucbxU1uX4uI4AC+/f0vSlVLEa3REWEsHNKFqLAQKjVojlvlGvg8uM2Zf/7ArUoNBs5cjkkRC5KTkjIVQwCPrp5j2ag+NOvzNe2Gjc9x2XIblv7jfZ0Kqw9IziZ2BZ8dHTyKF+jpGcidiPlwENm0cgmVixfhr3UrFQMcpAxUlpaW/P7776xfv54tW7awatUqxfmMxMLb//s52NtkHho7I+IdqhRY8ZGb+338LAdOnScxMYm+HVspjhW3s+HJS18io6LJiMNnUgKkDf1pLtExsWnaRi6XM3DGclp+8xN16tRB2d9Ream3Uy9D8kV8BPg8Z/E33Ql+65vh+eC3vkSGBimVl6GxKVUataLDNxNZfPYZA2YsQycqkCvzBqF7fQdtK6lueW1uSe1TPu5XYiJC0dJKb2F8cPEUM3s1Y3L7miQm5Kz9JEkiIjgl9oxLhaokJSYgT07m0PrfCQ8KYOza3fT6YS41W3fBpUJVABr3HKywZmQlPgBFeb3/WJGjcqWizPepMFk5c4qYghFkSEEXHR+T1S6cmZE6HWNskuL09+vPE2nUojX2Du8jcaaaQnv06MGVK1cYM2YMcrkca2trzp8/z7hx4zA3N2fV7Mk0rOnBa/9AtLW1sVFBxM7MKCwd0oe+MqlTUt7nLlOjcjn2eJ/m6UtfwiOj2H/yPD3apl/eO7h7B8XeN/GJiURFx6Q5X79+fSwsLPjnn3+y3b00r8IjPwh995bE+DgOrFvEs1tXeP34Hpb2affMCXz9kl+6pzg+ZrQENytkMhlVGrWiglcTdi2azqENSwgPCqDnxNkZps+vKWVl38u4mGie377GbwM74F6tNjVadqZYiVLYOruhq6eProEhSODz4DZ7ls2mRCVPKno1Zf3k4UiShLaODonxcbiUr4prxWq8enCLiKD3ge+md2tAVFgIBsamxESE0XLASCzsinNg3SJC370lOTFl+jQmIkzpZ3MsXQEtbR3kyUms/WEYLfuPxKFUuRzVz+eMmIJRgs9pCkYTwkPVHV9OniHVBHrpzCkSEuKp1yS9s1mqCVQulzNhwgSWLl2qOGdoaIilpSWvX79GS0tLsYOq78mdSt0/N/4Lyg6mIcFBLJg+mR79h1Chikf2F2RDbuek9V/fRC6X89X3v/DnvylRWA0N9Clua83TV6/ZuXQWnVs0yvDay7fuUdzWmuJ2Ngz8YSYbdu5LOX75MhUrVlTq/rkRH+qYZvn92148vXFR8XnW/qtp/Agu7v+bLbMmKD53GjmZRt0H5Pp+q8YPVMQTmXf0brZLST8kp+9obvqR6PBQrnnv5dWDW9y/eIrosBAq1G1C837DsXZ0QZLLMSliwTXv/9g0dTQAZWrW5+Gl05SoVA3H0hXRMzDk4eUzBPi8wNrJFRsHF1wrViM8yJ/woACsHVyICAmkSsNWuHvU4pr3f2ye9h02TiXQ0dXFs0VHGvccnKNVX/tW/caRzcuxdnQhNjKSyduOYWSas2mQnE7FfCpTMMICItC4taODR3GVipCcWENSrSA162UUuDyFVCuIlpYWc+fOJSwsTLG77OjRo7l69So7duzgt99+459//qFr1670nbYMT09PKlWqhKurK2bBjxn201yqli9N6wZ1qFSmZL6KDwC/177s3bkNK1s7lQiQ3DrGpVpCNs37mS4tG/HM5w1DunfAxNgI/XL16PrtjyQ9Opdhp1+jcnlFHr+u2ECVelsoV65cOvGxdetWjh07xrJly9D/IP5KQRUfAEVtiyn+32X0z+mcGOOiU1b81Ovch+vH9qX5NZ8bmvcbrhAg/i+f4Fy2stLXqqOPMDYvSv2uKQG+kpMSuea9F+8/VrBgSGfcPWrjUr4KJkUtqd6iEyWr1uLpjYuUrVmfN4/v8fz2NaLCQuk+foZSvhihAX6c3LGBfSvnUaFuEwbPXZ2tFS0z9AyN0DcyYdhvG5jVuzl/zRzPV9N+R1dFcYBS+RQdU4UFRAk+VQuIpoXHh+SH+Tc3lpCs+NASsnjxYiRJYsyYMYrzcrmcCxcu0LlzZ2JjY0lOTlb4LVhZWREUlDKPb2hoyNq1a6lRowbFixdXuuPL6WAaExPN1fNnqVG3PgaGhjm6NjPy2gF+7Jyq5Z7iFBh05RAWRd5vhJdTcTZ//nwmT57M3bt3cXNzK9DCI5Vnt66wccoowgP9WXDyITofxfCY2MqDmIgwxq7ZzdofhlG+bmN6fD8zT/c8vnUte5bOYvLWoxkG/ipoyOVybp86zJl//iT4rQ/hwYFY2TsyculWIoIDKe5elqTEBF7cuc6BtQt5dusKDqUrkBAbQ92OvdJZjHwf3+PgusXcPXsUmZYWdTv2otO3k/IkFgJ8XzC3b2ucy1eldrsv2DJrAnU79qL9NxNyNGWWkz7oU7GACAGiBJ+aAClIwuNDCsJUTHZkNwCvXbuW0aNH8+rVK8zMzLh79y6PHj3iwoULdOvWjWrVqtGzZ08OHz4MQPHixSlSpAjly5dnzZo16GWxfPfDQVUulxMXF4uRkbFS5VYlqhQhqQIk4cEZkl0885Tvy5cvcXFxKRTiIxW5XI5MJksnQiNCApncriaQMs3w/OYV7Eq4M3zxHxkGKvuQrL7LsbEx1K/gRvN+w2ne95u8P4CaCfB5zsJh3ShWojTfLNyoEG2pO1//tXYFl8+dxsjYhEP/7qJqjZTvlzw5mcCwcPyeP8bMypa2g8dQyrMORW3T79WTG55cv8iKsV9hYeeAU9lKXD28B1tnN75ZuEnpe+Qkxkkle/M0n4UA+YTJLhR7YYgHUlBFx4cUBisIpB+AT5w4wcOHD6lRowZNmjShfPnynDt3LtPrJUni3r17vHr1itOnT/Pu3Tt2795Nu3btFFM7H/LxgBoWEkL/Lq15/vghPQcMYeIvvypVblWhCjOw/uubxDtUwfD/lpnY2Ng851mYhEd2hL57y5TOXorPMi1tJHky03afo2ON9FsE5ISfRn/NiSMHWPHXP1SsWi3d+YJaJ5Dyjp48cpBR/XuyZsd/1KhbP8N0kiSxfdNarl+6gK6uLlra2hgaGSOzLUGtNl3RyiaeT27weXCb+UM60+zLYXg0a8eSEb2xcynJyKVbkclkJMTHZWsRUbYP+lQEiPABUQEfDnIFTYwUBuGRiqp9QXKKMkHKMmLEiBE8e/YMAwMD4uPjs92yXiaTUaFCBSpUqECbNm0A8PLyYsSIEYwZMwY3NzfMzc2RJImHQbHpgp/9/cd63vr60GfIcP5YvYwXT5/g8+IZnrW96DVwKCVKlkbfoGAHa06dYjl//jzh4eF5zi+n4qMgD7KQsvoFwK1KDZ7dvIwkT6Zlhy55Fh8A46fN5tXzZ3zzZRf2n7+JmXmRNOczegc0WV9yuZzIq0fwf/uGlwYGhASnTGUGBbzL9BqZTEaPrwbT46vB6c7l17M4la2EnUtJHl45S+NeQ+g0YhJ//jIW34d3ePP0AVvn/ED5uo3pOWF2ruKZfIoIC4gSFLbN6AqT6MgITU7FQM490vv168eOHTsUn11dXalSpQqtW7emU6dOGBtnP00SFhZGlSpVePcupVO1trZG38iYwHf+eNSsg4tbSaIjI3F0KcH2TWup06Ax0xcuZ/2yRVy7eA4rG1uO7v+P6KhIbOzsqVWvAUYmJnTo3psje/fg8+IZMdHRSHI58v//mZia8uOs+em2jF8xfzYrF8ylYlVPNuw+mGYvnIyeX5N8SlaPD7lx4gAbJn+LTCbDtZInz29dYdvhU5StoLzjaFYsnDmFjcsX07xdJ+at3JCja9VZfw1cLFg8exrrly6kqIUliYmJGBmb4FrSndnL1mJplbuBPL+e4cXd66wY8xWSXCI+NiW+zcQ/DhLo84J1k1KmvGRaWjTtPZQ2Q8Zm6HitTP/zqVhAhABRgtwKkA/R9PRCYULTdZXTqZiAgAD++OMP7ty5g4ODA8nJyVy4cIFLly4BsH//fho3zn4Tq+DgYK5cuUJERAQXbz8gJDgYMzNzHty9xdvXvpiYmPLo/h2KOzqz4q9d2BV3SHN9ZEQ4j+7dYdPKJUSEhXHvzi30jYyJCg2mkkd1rO3skCSJ4wf3Ka7p1LMvQe/8mbVkNWZFigDQp10zbl+/gra2NsdvPqGIRfr6UKUA+euvvxg2bBj379/H0dEx+wv+jzqtHqf+TvE3qN2+R4435ouPiebM7r8I8HlB9ZYdca9aM9trkhIT+HfZHKLDQ5k9ew4WVtaKEPaqoG/75ty6dpnmbTvy4+z5FLWwzHVe+TGYf/gOLvjlJ/5cs5wjV+9jZaO6QGr5JULCA9/xz5KZ3Di2jwpeTRgydw0At04eUogQgEFzVlGpXvr4N5B9HyQEyGeEKgRIKrkZXD9VoZEVhcEKAlkPxMuWLWPcuHEcOnSIBg0yX+b7MVkNrMnJyWhpaSm1cmbR+j/Z8NO3is/a2trIZDKSkpKws3fgi34DKeFemiljhvP7xm1UqZ4yMMZER+H35jUl3Etneh9VCpB69epx9epV7ty5Q8mSJbNNr26rhyRJTG5Xg8jQYGYfvI6xWZFMv58Zfc/W/fg1t04dVnyetMUbW2c3pe6d183XMmqnR8FxXL1wlkHd2imOzV2+npYdOufpXh+Sl/r++JnDQ0Np5+VBmy5fMGH63LwWLQ35JUIeXDrNijFf0WnEJBr1GKg4fu7frWz/dZLic8v+I2jx1bdo66S1MgoBIlCgSgEiUA5NW0EgZ51/Rh39v//+S48ePTA2Nsba2hoLCwvs7e3x9PSkbdu2lC+ffj5flVFOjz8NYOW4Aby4c51Js34lOjISLW1tPGrUpnT5lDgakiTx9rUPxR2dc5y/JqZhVG31iI2KwMDYVCG0woMCCPF/jWuFtHFTth+7QWywH0VLKjcFkvpd27VoOqf+3giAvVsZqjZpQ+Oeg9DVy7ru8iI8MmuX6OhoZs2axZ9//klAQADa2tokJyfj6OjInTt30sRPAdV8F//bsYWjB/5j4bq/0NbW5uSLYCKCAzGztE4nbrN65sWzp7F1/WqWbt6OZ22vTNPlBnVNKcXHRKNrYMilAzvZOnui4vjXCzZStuZ7Z1rfx/cwt7KhnUfmOyMLAfIZIQSIZtC0FQRyNxB8OACcP3+ey5cvExwcTHBwML6+vly6dImoqCj69+9Px44dqVy5MlpaWsxbtoZnjx9SrLgj+gYG2Bazp6KHJy5u7jk2+6d2qlcO7+GP6WMoVa027dq0wcLKmtiYGF77vOTm5YuUKFWa3oO+pmTpsnl6zvwktwNhRgNLeOA7Dm34naK29jy4fIZnNy8D8MMfh7BxKsF3DVI2bPv93HPFNbm1Wj65fpElI3rh2aIjDy+dwbN5ezqP+inba3MrPrJqj6SkJJo3b87NmzcZPHgwXl5eHDp0iPXr12NqakpAQNZBznLbBjN/GMuOzetwcinBqB+nsHj2dHxePKO4kzOetb2YvmCZUvlERUYw8qse3LxyibnL19OsbYdclScz8luEhAe+Y2bvZugZGDFy2VYsizny8PJposPD8GzeQbEqJzYqggktqgBQv2kLZi1ZjamZebr8hAD5jBACRDMUNivIx2Q2ICQmJrJixQoWLlyIv7+/4rihkTGly1Xgtc9L5HI5ocFBSJKEqZkZHjXr0K5rTxq3aptuVUxmnHoZglwu5+bxA9w7/De3rl0mIT4eLS0tbOzsKVe5CnduXCPonT9rdvxH9Tr1VPaMqkDV+7fI5XJ+6d4ow03fuoyeQoNu/Ti4/necy1WmXK2sp8z+vf6G4AeXeLD1V4ysHag87Fe0dfXTfL92/PYTZ3f/hWlRS7S0dRi9Yke6vV4+Jq+CNzOWLVvG+PHjOXbsGLVrp8TGePz4MZUrV8bd3Z3bt2+nSX/nzh3KlSuX7ruW0zZJTk7Gw+m9f4mpuTmNmrfmwd1bPHlwn9LlKlC6QiWatm6PvaMTriVLZerrkpSUxORRwziydzcTf/mVTj37oJtF3Jyckp8iJPitL9O6pXynSlf3oqitPU2/HEoRazv0DNIGCdwyeyIX96U4tds7OjHyhym0aNcpzY8QIUA+I4QA0RyF1QqSSlaDg1wu5/nz5xy5cJ3QkBDqN2mOrf378kVFRnDv5g1uXbvM2ePe3Lp2meJOzvQZMpzWHbthXjTrDe8+7FBTAzUlJiSgq6en6MwSExJoUNGNRi1aM+bnGSTEx7Fj83pKl6tIw+atso2gWspCn/j4eF6+fMmFCxcwMDCgVatWmJu/7yDfvHmDjY1NhqtpMiOzgc7/zWsunT1Fk9btMMlkv43/rj5ELk9GT98AfSNjRbCqN08fMLdfyrJnLW1t5MnJ2DiVoP/0JdiXLJNmSuDts4e8e/Uce7cy2DpnHDH07O6/2PFbikXj5x0nsSr+fhPD5KQk1v4wlHvnT6Ctq8ePfx7G2iHraa6cfs+UFX/R0dG4u7vTuXNnxT5G8fHxNGnShGvXrmFgYEDVqlXZsWMH586dY/Xq1Rw/fpx9+/bRpEmTTPNNbSO5XJ6yGdxHYuXSmVMM6fHeUrF+137KVqyMkbEJcrmcg3t2cu3iOa5dPM/LZ08AcHB2oXu/QfQZMjxD/6Pk5GTm/jSB7ZvWYu/gyMzfV+FRs45S9aAM+SVCkhITGNu4HEhgbm1LWIAfxUqUwu/5Y2q3655mg8CkxAT++X0GZ/95HxPI3sGRyXMWUrdRU0AIkM8KIUA0R2EXIKlkNljk5Bfl/ds32bRyCScO7yc+Lo6SZcrhUqIkFlbWuJctj6W1Nfr6Bujp62Nta8czuSm6evpUt9Hn3PGjBAW+o27Dpji5vh9QQ0OCaVjxvUOklpYWOrq6JMTH41a6LDMXr6BsxSrcvXmdretXERMTTZNW7WjT+QsAIsLCqF/BNU05a9euTceOHYmPj0dXV5fDhw9jaWmZJsiaJEns2rWL06dPk5ycTL169ahevTrJRdOu7PmYTo1q8fzxQ8pX8aBcpSpEhIURHBjAjcsXGDRiLLdvXOXCqeNAynJHSS6ncc9BlK5ejxVj+tHwi/406/sNRqbmhAe9Q9/IGENjU3wf3cXawQWj/5u7Fw7rxos71wD44c/DFHN1T1cWeXIyB9YuRM/QKE1UUXlyMqPrv08/cNYKKjdokeVz5dXfKCtWrlzJuHHjuHfvHs7Ozvj6+tKsWTNevXqV5XVBQUHZLiH39/fH1TWl/Tv36ouRkTGedbzwffmCI3v3cOfGVfQNDBg6+nsGjhiTYR6SJPH61Uve+vrw746/2P/PDkZPmkb/b0Zlet/H9+8y7ftR+L95jfe1BzmeoswOVQuRpMQExjQsQ1FbezyatOXYltVpzn817Xc8mrZNc+z8f9vxXr+Q4MD302N9hgxn1A9TqOaSsvz40aNHREZGUqpUKSFAPlWEANEcBWEaBlQjQiDt4JHbKYbgwABOeR/i/u2b+L56QXDgO549eqjYdyYVbR1dLO0dCQ94S3xcHNra2sjlcuo3bcEXfQdSq34jHt+/S89WDRXXlCxTjvU79xMaHESHBtWxd3Bk9tK1DOnRAWMTU4pYWPL88UO+HjORQ//9Q3h4GCEfdJCOjo74+vqiq6tL4v+3N9fW1mbVqlXcvXuXJk2a8OjRIzZs2MC9e/coU6YMYWFhiqkoz9p16TVwGJWr1eDOjas8f/KYUmXLU7tBY2b+MIZ/tmzOcX2VqVmfbmOm8Uv3RnQcMQn9/5u84+NiiA4L5fYZb969fApApfrNGTR7Jb6P77Fv1W+YW9nQffxMtHOwBPb+xVOsHNsfgBFLt2a77DY/xYf+65s07fstxy9cw8zEGHNTEwKCQ4hPSGkbmUzGf//9R0REBHFxcTRo0IAnT57QqVMnKleuzLZt27Czs8s0//j4eBo3bsz169czTbPhnwM5slIsnDmFP1YtZc+pK2nE8sdcv3Se/p1bs+XACcpXrqp0/gAP7txk9eLfmDxnYaaxRFQtQh5fu4CphRXFXN05tHEJB9YsTHP+29//pGTVWmnEVHxMNA//3cCfa5YTHx8HwKgfp7Jo5hSioqIwNU0Jy79o0SJGjx4tBMinSE4EiKoGKnVQGAIyQcGwgoBqRYgqV7sAxMfFERsTQ3x8HHGxsQS+8+PZo4f4vHiGrX1xGrdqi5W1LQf2/M2WdSt58uA+RYpa4FyiJLeuXaZc5ao4u7px6N9dlC5fkbjYWF4+e0L7L3pS3MmFTSuWcPL2U/7d/hezJo1DkiQqVK1G6XIVuXD6BG990/6anjp/SUrI+Zs32PnnBsaPH8+8efPSpDl48CD2lWojSRJ+b3y5c/0aW9av4uaVi2hpaaURVDq6uiT9X9B8jK6eHm06f8GebX+iraODW6XqmFnZYOXgjKGxKQ8vn+XpzUsk/r8DTzXt6xkYYWhqhmPpCkSGBvPy7nUqN2zJwJnL89QWyUmJvH3+GAf3ctkul1bVHkQZkbrnzoGT5zlz9SZWRYsQFhGJmYkx5d1LcP3eI+ysLRn0Rft0116+dY9O30xEW0uLA0eO4u6e3gL0IcePHyc6OprIyEjmzp3L48ePFeeW/bEDr8bNlS53TEw0nRrUpIiFBZv2HM50GjA2NgavMk541vZi3sqNijg2yjD4i/ZcPnea9bv2U61W3UzT5VcfeWDdYg6tX4yFvSMhH/gkNej2FV1G/5wmbQMXC/bt2s6kkUMB6NL7K3b+uSHFP8zUlOjoaEVaIUA+QTITILff5j2EdGFBk2LlUxMgmkaSJB7cucXxg/u4c/MaF0+nbNG+9u+9XLt4jhXz52BsYkJ0VBR1GzXl3ImjQMoc/oAubTA2MaVqjVos3bxDEVdkeJ9uinwyoma9hlw6cxKvxs04e9wbgBLupbF3dCIhPp5SZcvTtG0HJLmcqeNG8ur5U+o3bUFMdDRXL7zf9LFc5arYFrNn6HcTCPT34/7tG7Ro3xnXkqXY8N8RbJxKKLa1T4yPZ8HQLsREhFGvSx9cyleluHtZxWZu0eGhbJ83mbvnjpGclETjnoNoO2RcjqwdeSG/xMfHOw7nlrfvAmnadwTxCYnc2vcHuqWVs2JIksQPP/zA4sWLgRSh2bBhwxyJ7kf37tC7bRMGfvsdX4/9IdN0xw/t44dvh9BzwBBG/zhV6fynjP2WPdv+ZPGGrTRs3irLtPnR9/k9f8zsPi2BFEH84TA85+ANxVQgvP+eBAcFEhwYgKW1DY0qpcTLGTJkCGvWrFGkFQLkE0QIkKzJb3FSUKZh4NMRIR/y6N4d7t+5SdsuPbh64Szff92fqb8t5cHtm7i4lWTSqGFp0he1tMLKxoY+g4dz9+Z1Xvu85OLpEwqLhY2dPYkJ8ZiYmZGcnMzQ776naZsO3Lh0Ac86XmxcvphLZ09Twr00IUEBaGvrcOfGNd75vW9nGzt7ggPfUa5SVbr3G4iFtQ02dsVwL1Muw2f4+Dv46Oo5/ln8C0GvXzFy+Tacy6bE70iMj+f2mSOc2LaOt88eomdgRPN+31ChbhNsHF0zyjpfKOjiI5UHT19Sv9cwyrq5sHPpLGwsU8qdupdPRrx8+ZIFCxawZs0avL298fJKG7dDWSGy4Jef2LF5PaN+nELFqp5UqOKRYbopY7/l/MnjfD9tNndvXSc0OIgho8bj4OySad4R4WFsWrGEL4d8k2EU2CVzfmHtkvmYmJqx9I8dRFiXUqrMOSEqLIQrh3YDULZWA64c3kNE0Du+GDcDXX19JEli78pf8X/5jNXrNmBskiKcz586zqwJo5gzZw5FihRR7CcFQoB8kggBkj2FTYQIAZIzggLe8cbnFeZFLbh4+gRL5v5CVGQETq5u2Ds60aRVO0qWLkOFKtXQ08960ExMTCQ8NCRNWG25XM6ta5fR1zegqKUl1rbFSExMwNDQSKnynXoZQrDfa24c38/t0968vHsdt8rV6TJ6CvZupbl54iBXjuzh4aUzJCclUq52Q8rUqEfVRq0xt1ZdeO+syK9VLqB64fEhF27codPXE0hKTsbBzoaA4FBqV6kAQGBsMoGBgXh6evLVV1+xdetWNm3ahImJCcOHD2fSpElZOohmJUaioyIZP6w/504cpVTZ8vx9NOMdpp88uEf/Lq2JDA/H2taO4MAAOvb4kinzfgdSVs6sW7IARxdXWnXsqtQzr1w4lxW/paxMMTAw5NIzP7VbgWMiI5jYsgoAu09eIiE+nvi4OI4f2sfGFSnPdv78efr06YO+vj73798XAiQ3nD59mnnz5nHt2jX8/PzYvXs3HTt2VJyXJIlp06axevVqQkNDqVmzJsuWLUsTSfLRo0cMGDCAV69eMWTIEH7++f082o0bN/jpp5+4fPkyERER2NnZKfKwsrLKtnxCgChPfr2kwgpSsEhMSCAsNARr28wdFAES4uPZsHwxp48dJjI8nJjoKCRJIiw0hBmLVtCyQxelwspnxckXwRza8DtHNqX4blSs34wKdZvg2bwDIX6v2Tx9DC/vXse1YjWqNGqFS/mquFbImdNiXsiv2B6p5Kf4SCUgOISJ85YTGh6Jm3Nx7jx8ho6ONkVMTShaxIy9x87i6/eOokWLMmHCBAYPHoyRkXLiMTsaNmyIn58fhw8fxsXFJc25VAETGxtDdGQkFlbW1CntyJeDvubbCZMBuHrhLAO7pqwwMTE1pWa9hvQeOCxL3w+A00cPs3nVUjxr12XYmJTIpeoWIcF+r5EnJ+HlakPr2pVJTk6mftMWmOrrEB4ezo4dO/D19aVNmzYEBQUJAZIbDh48yLlz5/Dw8KBLly7pBMjcuXOZOXMmGzdupFSpUsyYMYPTp0/z6NEjhRdw06ZN6dq1K9WrV2fYsGEsWrSIunXrEhAQQNmyZWnXrh2jRo2iSJEivHjxgv/++48xY8bg5OSUSaneIwRIzigsIkQIkPxn28Y1zJ40nmZtOlDMwRFDIyPCw0K5fe0K92/fpHWnbgweNY4S7pmHnc6KUy9D+Hv+FM788wctvhpB0y+Hov9/q8m7V89YMKQzRmZF+XLyPNwqV1flo2VLfkQ0/Zicio+Yy945Sm9UI+PN0tLlGxvH2au3qFahDCYVld/3SBmePn2qGGB///13evfunWlaSZLw8PDA19eXpk2bYmdnh7u7O2vWrOHRo0dp0l59EZCrQGaa8IcL8HnOjJ5NqenVgMCAd5gY6PHs2TPMzMz466+/sLKyolKlSoVOgKjH2yobWrVqRatWGTsCSZLEokWLmDRpEp07p2yWtGnTJmxtbdmyZQtDh6Z4BoeFhVG1alUqVaqEvb094eEp4uD8+fNERESwdu1aRYQ9V1dXpXYnVSWqjhip6lUUqqSBi0WhWWGTG069DBEiREkqe9ZAR0eH86eO41LSHfMiRfl67A/8MGMeMyaO4e8/1nPs4F5WbdtD1eq1cpz/u1fPOPPPH3QZ/TMNun2lOB4e+I5V4wehq2/I+PX/YZRJ0LL8IL8C132IMsIjp2IjqzyyEyJGhgY0r/f/5cb/L1tWfiI5oWTJkly9epVx48YxaNAgrKysaNEi47gqMpmMQ4cOsWLFCi5evMi///4LwPTp03n79i0rV65UpFXGgldQsHZ0xaNmbZ48vE/LDp1xsbVES0uLK1eu0LhxYy5cuKDpIuaKAmEB+RCZTJbGAvL8+XPc3Ny4fv06Vau+N5t26NCBIkWKsGnTJgAOHDhAjx49iI2NpW3btuzcuRNtbW0uXrxI7dq12bFjB127dlXK3BsfH098/PsBPiIiAkdHxywtIJrYmCsrCopAUbUQEVaQwseje3c4c+wIr14849Hd2zx5eJ+2XXvw86+LSUxMYOzgvpw/eYy/vc9SqlwFpfM99TKEE9vWsXvJTOYevomhScq7Gfj6JavGDyIhLpYRS7ZkG4FUVeTHzrUZoS7xkRkfihFJkkhISERfP2tLgirEiCRJtGrViqdPn7Jp0yaqV6+Orq5upn36u3fvFFM2t27dolSpFEfSkqXL8sbnZcr//x/3Jruowh+jiR9YFUyS+W3qjzy8e5vkhDhev35NcnIyAOvWrWPgwIHCAqJqUgMU2dqmdRSztbVNE8mvdevWBAYGEhERgbX1+8AytWrV4scff6RXr14MGzaMGjVq0LhxY/r27Zsuz1Rmz57NtGnTsi1bQRMdH6KKgFeqQNXWkFTBkFchklvhIcg5pctXVOy+m5SUxI7N6/ht6o8kJyXRvlsvGjRryfmTxzh/6niOBEjyw/Mc/3MFADF3TpOkp88p70NcOnOSIhaWrNm5Fxe3kvnxSCqnsIiP1PxTRUiX4T+wx/sUcycMZ/ygLzO9Rv/1zTyLEJlMxqpVq+jSpQtNmzZFV1cXbW1tmjZtikwmw97ens6dO2Nra4udnR22trbMmDGDyZMnU7VqVZo3b46Hhwc9vhrE/Okp/iFPH95HppVzHyRNWHnvRmkze2nKkttK9ub4+Phw7NgxrKysqFevHgMHDlRreVRBgbeAnD9/nrp16/L27VuKFSumSDd48GB8fX05dOiQUvkGBwdz/PhxLl68yJ49ewgJCeH06dNUrFgxXVplLSBxcXG5fErNoEkhUpD8QlQhPjL6tRsdFcm9WzfwrO2l8tDQnxp7tv/JvCk/EhUZAYBnbS8Wrv0zTTCp6KhIrpw/S7VadTLcEbRy8fdpDY2MiY2JpopnTcpUrMTQ7yZgYZm9g3lBQJXiA/JfgKRiVKMZizZuY8zMxfRs24y/Fk7PMr2qpmQSExO5cuUKN27cICIigiNHjqCvr8/du3cJDg5WpHNzc8PR0ZHevXsTGxvLyJEjFefsnZyp17g5urq6jJ86K8dl0OQUcwMXC7EXTH6R2ymYnJCQkEDVqlXx9PRU6vrMGrewCZBUNCVE8vOlVUaIqMrqkZmpffzQrziybw+L1v9FoxZtMkwjeE9CfDxPHt7HwsqKYsXT7hIb+M6fph5lABj47RhG/pA2OuTF0ycZ2rMj1WrVpaZXA0JDgmjd6QsqeXiqrfyqoLCKj1QiS1QjJi4ORzubTHex/RBViZCMSEhI4Pnz5wQFBeHj48PNmze5fPkyly9fZvLkyVy984CDe3YC0LxdJ2b9vqrQOKF+zIg6aWPWFFYBUuCnYFxdXbGzs8Pb21shQBISEjh16hRz587NVZ56enq4ubmlCWH7OZHa6albiOSn2fJDcfGxGFHXdEvvQV8TFxdLxaqFaxDUFHr6+lnu4WFiaoa2tjZtu3ZXHHv59AmzJ4/n4pmTQIpQGfrd9/lcUtWSX6tc1C0+AMZ9P4m/ztykhGNxrC2KcGjDIsxNTTJNr4qpmMzQ09OjTJkyis+9evVCLpczatQoZs2apfCXcHFz5+j+f5kyb3GuBIhAdRQIARIVFcXTp08Vn1+8eMHNmzexsLDAycmJ0aNHM2vWLNzd3XF3d2fWrFkYGRnRq1evbPPet28f27Zto0ePHpQqVSolutzevRw4cIANGzbk52MVeDQhRNQxd5qfgiMrR8Mq1WuyZNP2fLv354S1rR3nHvqkO7535zaF+HByKcHSzTvUWzAlyU5kxMXFsXbtWnr06JFpLKLcxPcIi47lqX8wnm5Z7yqsKppUKsneqw947vuG575vOH7hKp2aN8zymvwUIR+jpaXFkiVLGPj9VHxePMfO3gFTc3OiIyMxycXKqIJg/fiUKBAC5OrVqzRq1EjxecyYlG2b+/Xrx8aNG/n++++JjY3lm2++UQQiO3LkiCIGSFaUK1cOIyMjxo4di6+vL/r6+ri7u7N27Vr69OmTb89UmFC3w2phXaYrVr5onk49+yDTkuFRsw416tZXyuyvLHl1Kg8ODmbv3r306NEDSFm1ce7cORwdHXF2diYwMJB9+/bh4eHBunXrWLNmDbGxsYwfPz5dXrmN79Hw59U89Q8mbPMUdLS18/Q8yvAyIBRJgt3f92HB3jMM/GEWTetUx9TEON/vrSyPQ+IxMjahTIVKimM52bgulcLYZxV0CpwPSEHkU/MByQ51WUQK2wstBMinhSpXsSUmJtK1a1eOHDlClSpVqFSpEtevX+fu3bsYGRlx4sQJOnXqxNu3b9Nc161bN7p3706zZs3Q09PLdVTTmMvenL7/gtYzU6y6UX9l7RCaGT7eVxT/d2qWfeC2Uev3cuHRKy7P/ZZn/sFUHruYXctmZ2sFgfz1B0lFFX2Z/5vXTPppMhW9mlK5YUu0tLQ4+tcq/ls+l1HLt6s9wB18Oj4gwlVfkI5SFvpqWWJcmAb0wlRWQXpSv9Mf/qmSRYsWceTIEQBu3rzJsWPHKFasGAsXLiQmJoaePXumWYWRyt9//03Xrl0ZOnRonsTHon1nFeLj3Myvc5yHj/eVNOIjs2Mfc+7hS6qXTJnucbOzxNLUiFsnjyp1z/wOIa+qH1KhIUFcPbyHDT99y+h6JXl87QL/LU/xP3x4+Ww2V6uWEP83TG5fk/bt26cJQ1FYEQJEkClChKRQGMooSE9+iY2PSUxMZMqUKYrPBgYG7Nmzh61bt3L9+nUA+vbty6hRozh16hTjxo1j6tSpivSzZ89m27ZtdP5mAn/9e5g7j54SFBKm1L39Tu7l+J2nTN6aIn52ff8llV2KZXPVe5QRGZmd9wkM4+GbQBpVcFMc09PRJvH/zp7KkF8iRJVW3ABTJyrWex98bd/q+cw5eIPJ247Rsv8Ild1HWSKCA9m7dy8uLi6MHz+ewjyJIaZglECVUzC5feHU5bSVGfk9LVOQp2OEAClcqDtAYHBwMA4OaZ0+tbW1sba2JiwsjAULFtC/f/9019WrV4/S9pZsmvczvyzbwKFTF7h0657ifJuGdZg8fACeFctw9/FzSjjaK3wr5HI5C9Zv5fu5S/miTkWqutpjoKuLu70VDcuXyLbM2YmOjPh4Smbwil1sPXuLt2t+xMzIAIDGU1bjHxbFkGY1+P7nnzSyNFeVfdWH/VJCXCz+L55g61JSsd+QJoiNioCbh5kwYQKQEvHVwMCgUE7BCAGiBHkRIPml8DUhSD5HESLER+FBFcIjt+/rw2cv0dHRJjQ8EplMxrHzV7l48y76erqU8azLDz/8oEjr5+fH48ePadmyJaVcnXh4ZHuafMIiorj75Dm/rf2Lxy980NPVJSExkdIlnFg2dTx+AcEs3rSdq3ceANCgvCulilmz5uhljPX1uDRnOM7WRTIMUZ4b4fEhqSLk1ks/6k5KiUL7ob/JnVf+1P9pFYnJyTxYPIbSrbspla+q+jNV91EFsU+CFB+Qly9fEh0dTfny5QutD4gQIEqQEwGijq2xP0bdYiQ/hUhBe+GFACn45FV4qPqdjYmN4+qdBzTs/Y3imGfFsvgFBBGfkEhYZCRJSSnTFN1aNWb77zMzzCc+PoFTl29w6+ETipiZsvSPv7nz6BkALevX4tDpi2nSmxsZoCWTERody6Cm1VnUv53iXF6Fx8dMe/KK7educ2jyALzKuqQ5N3rDXraeucXLlRMw1NNVekfdvPZjn4v4gE/HCVUIECXISoBoQnBkhbrEyOcgQoT4KNjkRXjk13v72i+Acq16EhUdA8C+NfO5cucBb94FYmZihAwZlkXN8Q8Mpnf7FlSvVE7pvOVyOTfuP0Yul1M+7g33Xwdw55UfQ1ftJilZzjcta9G7XlXqTlpBeUdbLs0ZDqhefADU2nKImmWc+ef7PuksLQevP6L7gi30beDB0sEdgOx3000lt/3X5yQ+4NMRIAUiDoig8FHKQj/fRMiHA7+6OwIhOgoHuRUf+fmD4dUbP2p3G6wQH/MmjqB1wzq0blhHJflraWlRrUJKpM+Yy28o52BDOQcbStpZcc/3Hc0ql6Trb39hY27CX6NTYpHkh/gAqFfchv23n7Ls0AW+bZX2+Vp5lOaXns2YtOUI/Rt7Us0tfyMRf27i41NCrILJI/EOVTTuIJqKusuhjhUGDVws8lUUpOaf3/f5FMnPZa3Z3Tc35Kf4iIyKZvSMRUTFxPLj118Rc/ckYwdmH6lZFVRzK07fhh4sOXCeWy/9+G9iX0raWQLKxfLIKQnJcmKTkgA49zDjpaBDmtVEX1eHAzceqvz++YkQH+pFWEBURLxDFY1Nx2haAKkjpHtm4iCnHYYQGdmT2wFeHRF1c1M2dbyX05eu59+jp9k072f6dGyV7/czqtFMEf00WS7nxou3RMSm1LmLTdE0aZ2aVVepJeRGQAjHfd8xvUczeterkmEaQz1d2nuW5fjtZ/zUtYnK7v0x+bXiRaAehABRIalCQJ1CRNPi40M0tbeMQDWo0oqhSjFSEH09PiY4NBxTYyNaN1DNdIuyXH7iyzdr9vDwTSAAjSu4YayffoM1VYoQE92UYaNh+RLYFsl8O4zKLsU4fPMxkBIsTVk/EE0gxIdmEAIkH1CHEClIwuNj8tM/RJA/5OcUSk6EqSrLkZfIoh+S3cB58tJ1nrzyJTI6hpdv/LAsap6r++YUoxrNmD23D0nJcraM7sEdH38GNPbMcPmtKnkWHglA4u1nUCJz/46SdpZExMbz6G0gpe2t87VMeUGID80hBEg+kl9CpCCLj1Q0YQ0RFGw+torkp+jJyTsXFx/Pu6AQrN/czfB8Vtvcp+6/4mJdlN8Htlc4iaoLuSThamvBHR9/hjStwbZztyhtb02TSiXR1krr4qcqK8i/T19Tw86SYsaGWaZzsUmxToZGxeb5nvmFEB+aRQgQNaAqIVIYhMfHCCFS8FF35ND8vmd275lcLkcul6Ojo0N0TCwVWvfi1Rt/utSqwIRODSnnYKP0vf67cp/iFmbcXjAKLS0ttU81lLK3ZsPxq3jfesLeKw+46/sOgMFNa7Cwf9t06fMqQpLlEtcDQhhRNXuhFRKVshrISE831/fLirz2KUJ8aB4hQNRIYRQQqkIIkYKJJsRHfqKMyO8+cjK7Dp+gvHsJalQux6s3/rSqWooTd5/xz6V7DGpSndm9W2CQzcB566UfG05cY0BjT7Q+sDaoU4REGRbB2syYKq727L36AHMjA8Jj4nC2LpLpNXkRITIZaMtkBMZkHwXa0604lqZG/HH6BvNysD+NOhDio2AgluEK1Iq6l2zmJ5pYgqpKCmu5MyMr8SFJEiv++oeb9x/zzOc1APeePGfDzn3UKOnAn6N68HTZeOb1bc2mk9doOm0tYdGZTx28C4ukw9zNlHOwYVz7eunOx1z2znLqRhVcu/uQXYdP0rt+VcX+L+H/FwZ7Lt/L6tJcL8/VksnoVsqZ/569zjatkb4e3etW4t/L95EkiYs7NjNtyTp+XrQauVye4TXqcBoW4qPgICwgAo3w8eBXEC0jORmgC5uF53MRHy9f+3H4zEVcHYoxfOo8xfHWHqWZ82UrXgWGUqe0M/r/X9kxrHlN6pRyovXMDYzesI8Nw7tm6NS5/vhVgiKiOTltSJYrQfLLGhISFk6HYeMp7+7KhJ8mcemfrdgVMSU2IZHwmLh8dfqMTkzCylC570/LKqVYfugi3Rds4fDNJyCTkZycjLmpSZ7ipOT2PRPio2AhBIigQKApQaLqgbgwCJHPRXwAjPplAXuPn013vE8DD0rYWlDCNv0y7kouxVjQvy0Dlu0kMSmZFUM6KnZ7TaVuGRcAKny3kF3jv6RFlVKZliHVEqIqISJJEkMmzSEmNp5/ls3B3NQEr7IuPF02XnFemZUwuZ2K8Y+OxS4bB9RUGlVwY8oXTdhx/g7jOtRj+swZjPxlARPnLSc0PJIpIwaiq6ueYUiIj4KHECCCAomqg1qpe9AtqELkcxIfAK4O9gD069Sa4bVKsO/qA0wM9GnnWTbL676oUwl9XR16L9rGo7eBGOjqoKutTe3STjQsXwIdbS1Gtq7D7wfO0+f37bxaORHDbHxGVGUN2Xv8LP8cOcmuZbMpbpfeYTYny3BzI0LKWJorNQWTWpbxHRowvkMDAHR1dfj9pzEUt7Vm+tJ1nLx0jbWzfqSMm0uOypBThPgomAgBIijwFOZBsyAJkcJcjx+jjK9ARGS0wt/j+rXrlOpUne87NlD6HjVKOgDw8E0gFZ3sKGVvwa6Ld/n9wPk06fS0tYmJT8xWgIBqRIiZiTEAV+48oFndGpgYG6WJjJpTcipCylqYsfZOHOHxCbm6n66uDpOH96dhTQ96ffczXj2G8ubsXvQzCKCmCoT4KLgIJ1SBQPBJ4RcQxKHTFyni0ZT9J1PEwh0ff2ITknKUz+Wn73/ln5w+hPXDu/Lw97FYmBgB4GKdEvL83KyvsTQ1UlHps6dBjapMHt6fBeu24t60G0fOXFLbvQGS5FKaf3OLl2dlRn3VnZCwiDSriFTtiCqiJRdchAVEIFADBSE6bH4H/1InWe291LjPtzx6/n6TtAlD+9DR2RRTJR0nU4lLSFT8P9VJVSaTceqXIdz3DaB+OVcuP/HF2bpoZlnkCzKZjOmjhzCwWzuGTp5LywGj6dGmGRt//Qk9Pd1cWUJSV8VkZQlJTXPxwXOqutpTtb1X7h7gA0o4pkyRhYRHYGulvFDI6fvUwMVCWEIKIEKACASCT4Y7j54qxEfNyuW5dOsenhXKUrNloxwPzG2rlWXnuN6Ud7RNc9zVxgLX/0f5bFKpZI7yVOWKGOfixTiwbgEbd+1nyOQ5BIaEEhASioW5GdYWRZjT1hO7opmv0MmI7JbnxiUk4n3rCWPapV96nBuSk1OW4yYlpbVO6b++mW3cpNyIEBBTMgUJIUAEAsEnw6nLNwAY9VV3Znw3FC0tGYYGBtlclTHGBnq0rFpalcVTOVpaWgzo1o6Q8Ah+/G0FScnJmBgZEhUTS0kXR2aN7azSeCQ3XrwlKi6B5pXdVZJfw5oeaGlpcejMRQZ2a5/j63NjWRRCpOAgfEAEAsEnQx2PSgAs3ridS7fupREfmt6NNT/vP25Qb/wu7MfFoRhRMSkB1I6cucQb/wCV3vf+6wC0ZDLKOSofrj4rrCyKUNLZgXPXbqc7p6wvSG6nFRu4WAj/EA0jBEgeUNdW34JPg0/F/6Ig8S4ohEkLVnLn0VN8/d6l2YCtfvUqmivYR6hD/FgWNefBoW3sWzOfeRNH8No/ALfGXRkwYQYPjZ1UUoa4xJSpko83ussL3Vo1ZtehE3nKIy/vlhAhmkMIkDwiRIigMKFpR1hVcP36dYKDgwHYceAYs1dsonLbPjjX70jV9n0V6X5atDrdtZq2guQ3+vp6tG5Yh7EDe/HwyHamjhrEycvXqfvFEC7euItRjWYZ1sHLgFBO3H3Go7eBWeZ/9NYT6pVzUakA0dPVRS+TJcw56V/zKkKEEFE/QoAIBIJCw5UrV6hbty4DBw4kMTGJSQtWAlC9UlkmffMVlcu89024eueBpoqZBlWJnniHKoo/ZShiZsrEoX25f2grnhXL0G7oOM5du5WuTL/uOUWF7xbSbvYmqo1fQkwm8T0iY+M5+/AVzSqpxv8jFZlMRkxsHAHBeffJyKuVUQgR9SIEiEAgKBTEx8czefJkAI4cOUJIeAR1qlYE4PefxvLLd0O5sXcz8icXkD+5gPemJZosrkr5WHTkRIwY6Ovz78pfKevmQv2eX9Nh6Hh+Wbqew2G6yCrWY/rfxxRpp3zRBF1t7QzzWXrwPAlJyXSpVSEvj5KOYT07YWRoQK/vfk63GgZybmVWxVSnECLqQSZJUt6iyXwGREREYG5uTnh4OGZmZorj0tOLQPrOQSDIjIIwBVIYfVFu3LjBN998w927d1m7di3Dhw+nX6eW/DC0L471OgDw4PA2SpdwViq//N6pNpW8Wj9y0rdkN1AnJSWxZvt/bN/vza2HTwmPjMLQQJ8K7iXwsDOlY83y1C7lhE4GAuTmi7c0nLKaMe3q8XO3Jjl8ivdkVh8nL12nSZ9vKe3qxJ6Vv1LK1SnN+dz0sfn1rmlq9cyHgqiSvXmac5mNUQUdsQxXBSizZl0gABGQLDdcvXqVFi1a4ODgwIkTJ/D09CQoKIhx48bxwvetIp2uTsHqztQpPj5On5EY0dHR4evenfm6d2cAbt5/zKbdB1i8cTsuDo1pNWMDi/q3Y1DT9LFAZuw8Tml7ayZ2Uj6UfU5oWNODDXMn89X3v3Dj/uN0AiQ3fWx+vWsfW0ZULUg+J8uLsIAoQXYWEBBWEIHyaFqAQOGygnh5eSGXyzl27BiGhim7sCYnJ1OpbGme+74BYHifriye/F2akN7Zkd9WkNwKEFX2JcpYRRy82mNVtAi2Vhas/GUCxQMepkkTFh1LyeHz+LlbE0a2qZun8mRVJ5Ik4dG+H7ZWFhzasCjd+dzWS0F431TNp2IBET4ggs8e/dc3M/wTKEd+1ldsbCzXrl1j6NChCvEBoK2tzW8/jADA1sqCJT+PzZH4yG8KgvhIzS+rPHV0dFgz8wfiExI4cfEaPy9azW3dYorVMo/fBtFt/l/IJYkv6lRSadk+RiaTMW5Qb46cvZTGspVKbr9jhUlsf24ULJtlIUZMwxROhNAo2Ojp6WFsbExgYPrloR2bNWDhpNE52kPkQ/Kyg2x+kJ/9R1Z757RrUo+2jb34Y89BJs1fyfb9R6njUZGwiCjuP32Bq4M93puXYidlvURXFbRrnLK/zMlL13H9/z4xH5LbfvZjEfIpWkUKI2IKRgmUmYJJRYiQwkV2AiQ/2rOgdH6F5Zdhq1atkCSJQ4cOZXheFSJSVUIkN5YPdfcZWdWXXC7nr/8O89/RMxQtYkbjWtXo0LReunD2OamvnNSJX0AQxeu2Y/eKuXRoWj/b9Kqqu4LyTirLpzIFIywgKkZYQgSFhcLijFqtWjXmz5/Pjh07+OKLL9Kdz+rXvbKowhpSGMTHh/fMqM60tLTo07EVfTq2yjKP1GfNrM5yOwV1+9FTAMq6uSiVPvUZ8lqPwkKiGYQAyQeECBEIVIOvry/79u1DT0+PUqVKZZpOVSIE3g+q+R01VdN9RFZCRFlUXUc37j8BoHLbPjw5+jcOxZTbc+bDZ1BFvWYkzIUoUT0Fx2vrE0P4FnwafOrtWJA71XXr1lGtWjViY2O5evUqVapUyTJ9TqKEZkVm4cpViabFx4eoqt5UQQuvGgDEJySwbud/ucojvxzJS1noZ/gnyD1CgOQjYjVFwUa0TQoFUYS8fPmS0aNH07ZtW86ePYu7u/LhvwvKYJoReR3sH4fEK/5UTUEQIlXLl2bx5O8AiI6Jy3N+6ljVJoRJ7hFTMGpATMkUbkT7qZ8pU6ZgbW3NkiVLMDY2zvH1qpiSUTV5/Q59LDqUESG5GQhVMTWTFwZ+0Z5RMxZSuoRT9olzwMfPk9/vdFZ1XxBFvyYQAkRNiEFMkFc+jrioyoiJBckh9enTp+zatYt58+blSnykoumB9ENULT5yc11O21dT9WdooE/1SmWZtXwTVcuVxqN86Xy5T0bPpa4+OrO2yK6dY6KjuH3tKpV6dMiPYqkdsQxXCXKyDDc7hAgpOOSkY1Vlu+V2MFEm5HNeRYmmRUhSUhItW7bk1atX3L59O03wsbyiKSGiKfGRGblpY3XX3as3frQeOIYHz15Spaw7dT0rM3vs1xgbGSKTydRWjoLSX6d+B+b89D1b168mMjISExMTxfnCugxX4z4gs2fPpnr16piammJjY0PHjh159OhRmjSSJDF16lTs7e0xNDSkYcOG3Lt3L02aR48eUbduXRwcHJg+fXqaczdu3KBt27bY2NhgYGCAi4sL3bt3JygoKN+f72MKwq8xQc7RdLspu9/EqZchaf4KEzExMQwYMICLFy+yYcMGlYoPyPl29qq6Z17ID1N9bnxI1F1vzsWLcXPvH2z/fQaVypRkw8592NRsRZGqTTl8Juc//HJLQYmQnOpXUrlUCQAMPorLUljRuAA5deoUw4cP5+LFi3h7e5OUlETz5s2Jjo5WpPn1119ZsGABS5cu5cqVK9jZ2dGsWTMiIyMVaYYPH06fPn34999/2bt3L+fOnQMgICCApk2bYmVlxeHDh3nw4AHr16+nWLFixMTEqP15QfODmUC0QWZoYm46OjqaTZs2UaNGDfbu3csff/yBl5dXvt4zvwdUVTmb5icFXYjo6urQrVUTNv76M2e3rWJs27rYmxsz/Idf8D32LzGXvRV/6kSTgmTkyJGEhYWhU8A2XswtBW4KJjAwEBsbG06dOkX9+vWRJAl7e3tGjx7NhAkTAIiPj8fW1pa5c+cydOhQADw9PVm2bBkeHh507dqVoUOH0rp1a/bs2UO3bt2IjY3NdaOpcgrmQwqKee9zJDcdh6aiLubVkpGbaZn8nIoJCwvDx8eHZ8+ecfToUXbu3ElERAStWrVi1qxZlClTJt/unRmqHEgKotVDGQra1ExGwuLR20Ba/LKe+IQkRrapQ696VXC2Lqp0nvm9vBrU069/bAEprFMwBU6APH36FHd3d+7cuUOFChV4/vw5bm5uXL9+napVqyrSdejQgSJFirBp0yYADhw4QI8ePYiNjaVt27bs3LkTbW1tLl68SO3atdmxYwddu3ZVav4wPj6e+Pj3nUBERASOjo74+vqmFSDPruT5eeOLV8xzHoKco//mTq6uy2t7PQ3N+eBy1ic0T/cE8HJSvpMGKFlUNQIkJCSEiRMn8uTJEywsLEhISODy5cuK8y4uLnTo0IEvv/wSJyfVrnrIDbn9XqSiie9HfpCT9s9rnX1IzLXj2abxDQ5j9q6T7L32AC2ZjLHt69PKozTudpY5vp9Rtca5KWaOyI8+PiMB4ujoWOgECFIBQi6XS+3atZO8vLwUx86dOycB0ps3b9KkHTx4sNS8efM0x+Li4qSAgIB0+f7444+Sjo6OZGFhIbVs2VL69ddfJX9//0zLMWXKFAlI82diYpLumPgTf+JP/Ik/8VcQ/uzs7KTY2Ng8jsLqpUBZQIYPH87+/fs5e/YsDg4OAJw/f566devy9u1bihUrpkg7ePBgfH19M92g6mOCg4M5fvw4Fy9eZM+ePYSEhHD69GkqVkyvTj+2gABIkpTOepKZZUSgeUTbFGxE+xRcRNsUbDJrHz09vULnnFpgPFlGjBjBf//9x+nTpxXiA8DOzg4Af3//NAIkICAAW1tbpfO3tLSkW7dudOvWjdmzZ1O1alV+++03xRTOh+jr66Ovr7wJ0szMTLyoBRTRNgUb0T4FF9E2BZtPoX00vgpGkiS+/fZb/vnnH44fP46rq2ua866urtjZ2eHt/d4hKSEhgVOnTlGnTp1c3VNPTw83N7c0K20EAoFAIBCoD41bQIYPH86WLVv4999/MTU1xd/fHwBzc3MMDVOCzowePZpZs2bh7u6Ou7s7s2bNwsjIiF69emWb/759+9i2bRs9evSgVKlSSJLE3r17OXDgABs2bMjvxxMIBAKBQJABGhcgK1asAKBhw4Zpjm/YsIGvvvoKgO+//57Y2Fi++eYbQkNDqVmzJkeOHMHU1DTb/MuVK4eRkRFjx47F19cXfX193N3dWbt2LX369MlT2fX19ZkyZUqOpmsE6kG0TcFGtE/BRbRNweZTap8C5YQqEAgEAoHg80DjPiACgUAgEAg+P4QAEQgEAoFAoHaEABEIBAKBQKB2hAARCAQCgUCgdj57AZKUlMTkyZNxdXXF0NCQEiVKMH36dORyuSKNJElMnToVe3t7DA0NadiwIffu3UuTz6NHj6hbty4ODg5Mnz49zTkXFxdkMlm6vzlz5qjlGQsLp0+fpl27dtjb2yOTydizZ0+a88q0Q3x8PCNGjMDKygpjY2Pat2/P69ev06S5cOECVapUwdnZmTVr1qQ5l1E7yWQytm3bli/PXJjIqn0SExOZMGECFStWxNjYGHt7e/r27cvbt2/T5CHaJ3/I7t35kKFDhyKTyVi0aFGa46Jt8g9l2ufBgwe0b98ec3NzTE1NqVWrFj4+Porzn2T7aCwIfAFhxowZkqWlpbRv3z7pxYsX0t9//y2ZmJhIixYtUqSZM2eOZGpqKu3atUu6c+eO1L17d6lYsWJSRESEIk2TJk2kFStWSFevXpU8PT2ls2fPKs45OztL06dPl/z8/NL8RUVFqfVZCzoHDhyQJk2aJO3atUsCpN27d6c5r0w7DBs2TCpevLjk7e0tXb9+XWrUqJFUuXJlKSkpSZGmTJky0s6dO6Vz585Jbm5u0qtXrxTnAGnDhg3p2qqw7bGQH2TVPmFhYVLTpk2l7du3Sw8fPpQuXLgg1axZU6pWrVqaPET75A/ZvTup7N69W6pcubJkb28vLVy4MM050Tb5R3bt8/TpU8nCwkIaP368dP36denZs2fSvn37pHfv3inSfIrt89kLkDZt2kgDBgxIc6xz587Sl19+KUlSygZ5dnZ20pw5cxTn4+LiJHNzc2nlypWKY9WqVZMuXrwoJSQkSO3bt5f279+vOOfs7JzuZRdkzccvqTLtEBYWJunq6krbtm1TpHnz5o2kpaUlHTp0SHHMyclJev78uRQVFSV5enpK9+7dy/S+goxRpp4uX74sAYpOULSPesisjl6/fi0VL15cunv3bro+SbSN+sionrp3764YczLiU22fz34KxsvLi2PHjvH48WMAbt26xdmzZ2ndujUAL168wN/fn+bNmyuu0dfXp0GDBpw/f15xbPr06TRr1gwjIyO0tLRo0aKFeh/kE0eZdrh27RqJiYlp0tjb21OhQoU0bfXzzz9TtmxZzM3NqVWrFuXKlVPfg3xGhIeHI5PJKFKkCCDaR5PI5XL69OnD+PHjKV++fLrzom00h1wuZ//+/ZQqVYoWLVpgY2NDzZo100zTfKrto/FIqJpmwoQJhIeHU6ZMGbS1tUlOTmbmzJn07NkTQBEa/uON72xtbXn16pXic+vWrQkMDCQiIgJra+sM7zN58uQ0x/bt25cuAqwgY5RpB39/f/T09ChatGi6NKnXAwwcOJAePXqQkJCQLi1Az5490dbWTnPs9u3blChRQiXP8jkQFxfHxIkT6dWrl2LDLNE+mmPu3Lno6OgwcuTIDM+LttEcAQEBREVFMWfOHGbMmMHcuXM5dOgQnTt35sSJEzRo0OCTbZ/PXoBs376dP//8ky1btlC+fHlu3rzJ6NGjsbe3p1+/fop0MpkszXWSJKU7pq+vn6H4ABg/frwitHwqxYsXV81DfEYo0w4fk1EaY2NjjI2NM0y/cOFCmjZtmuaYo6NjLkr7eZKYmEiPHj2Qy+UsX7482/SiffKXa9eusXjxYq5fv57tu/Ixom3yn9QFDx06dOC7774DoEqVKpw/f56VK1fSoEGDTK8t7O3z2QuQ8ePHM3HiRHr06AFAxYoVefXqFbNnz6Zfv37Y2dkBKb8QihUrprguICAg3a/xrLCysqJkyZKqLfxnhDLtYGdnR0JCAqGhoWnUf0BAQI52TrazsxNtlUsSExP54osvePHiBcePH0+zXbhoH81w5swZAgICcHJyUhxLTk5m7NixLFq0iJcvX4q20SBWVlbo6Oikmy4pW7YsZ8+eBT7dd+ez9wGJiYlBSyttNWhraytUqaurK3Z2dnh7eyvOJyQkcOrUqRw1vCBvKNMO1apVQ1dXN00aPz8/7t69K9pKDaSKjydPnnD06FEsLS3TnBftoxn69OnD7du3uXnzpuLP3t6e8ePHc/jwYUC0jSbR09OjevXqPHr0KM3xx48f4+zsDHy67fPZW0DatWvHzJkzcXJyonz58ty4cYMFCxYwYMAAIMXkP3r0aGbNmoW7uzvu7u7MmjULIyMjevXqpfR9IiMj08zVARgZGaX5hfi5ExUVxdOnTxWfX7x4wc2bN7GwsMDJySnbdjA3N2fgwIGMHTsWS0tLLCwsGDduHBUrVkxndsyKsLCwdG1lamqaqVnzcyGr9rG3t6dr165cv36dffv2kZycrKhDCwsL9PT0RPvkI9m9Ox+LQV1dXezs7ChdujQg3p38Jrv2GT9+PN27d6d+/fo0atSIQ4cOsXfvXk6ePAl8wu2jySU4BYGIiAhp1KhRkpOTk2RgYCCVKFFCmjRpkhQfH69II5fLpSlTpkh2dnaSvr6+VL9+fenOnTtK38PZ2VkC0v0NHTo0Px6p0HLixIkM66lfv36SJCnXDrGxsdK3334rWVhYSIaGhlLbtm0lHx8fpcuQ0f0Bafbs2ap81EJJVu3z4sWLTOvuxIkTijxE++QP2b07H5NRaADRNvmHMu2zbt06qWTJkpKBgYFUuXJlac+ePWny+BTbR/b/ggkEAoFAIBCojc/eB0QgEAgEAoH6EQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2hECRCAQCAQCgdoRAkQgEAgEAoHaEQJEIBAIBAKB2tHRdAHUTUBAAA8ePNB0MQQCgUAg0Chubm44ODho7P6fhQCJi4tj7969dB80FinyDTomVoBM08XKEbr62pouQo4x0it8Xy9D3cJnFNTVKlzf5VRkSQmaLkKOkeJjNF2EHJMUG6/pIuSYxJhETRchx8QkS5ouQo6QgGiSsMOAWRtX0rlzZ0xNTdVaBpkkSYWr1pREkiTOnTtHg44DkYe+BF0DtIq6oVXUDcd6PTRdvBxToqKtpouQYzp4FNd0EXJMAxcLTRchx5Sy0Nd0EXKF/uubmi5Cjom57K3pIuQYH+8rmi5Cjnl66Lmmi5Bj9vtHaboIOSaaJJ4Rw2OiCCcJV4xYdmQ3jRs3Rls7/3/0Fr6fqNnw7NkzStXtUOp55QAAED5JREFUijz0GSTHo1WkBNpuzZAZWSOTFc5figKBQCAQqBpjdKiEGZUwI5gEHhNNx+atAHDHmD/vnKNChQr5dv/CZ2/OgNDQUFatWoWWiS0l3UshxYWgbV8dnfI90HasjZaxjRAfAoFAIBBkgiV61KYovSlOQyyJJomqFSthLdNn0aJFvHv3TuX3LLQCJDExkb1796JVxBULS2u+HjMZWZES6JTvjo5rE7SKOCPTKnx+EwKBQCAQaAotZDhiSBOs6YMD5TFl3ncTsbezw1lmxPbt24mNjVXJvQrVFIwkSVy7do2arfoiD30OWjpoWbihXawDMgNzTRdPIBAIBIJPBj20KIMJZTAhkiSeEM3QHl/Sl2RKYMzq0weoW7cuWlq5s2UUCgHi6+uLS81OyEOeQmI0siKuaLs0QmZiJ6ZWBAKBQCDIZ0zRwQNzqmJGAAk8IZpm9Ruihwx3TNj2+Aru7u45yrPATsFERUWxefNmtEztcXJyRoryR9uuMjoVeqLj5IWWaTEhPgQCgUAgUCMyZNiijxcW9MGB2lgQQgJlSpXCTmbAypUrCQkJUSqvAmsBMXOqghT6DJmJHTrluiLTM9F0kQQCgUAgEPwfbWS4YoQrRsSSzGmC+frrr/nl69G8keKyvb7AWkCeXDmMlm1lpPhIkh79R/Lri8hjAvlEw5YIBAKBQFDoCCGBi4SyEz/eEU8lTDl0W7nYMwXWAuLm5kay/03kcjlnzpyhUefByJ8eBl0jtCxKolW0hLCKCAQCgUCgZmJJ5inRPCaaUBJxwZCdB/bSrFkzdHSUlxUFVoCkoqWlRYMGDZAHPyYmJoZ///2X3kPHk+R3HZmJHVoWbsjMXZBp62q6qAKBQCAQfJIkIfGKGB4TzWtisUWfOWuX07VrV8zNc7cKtcALkA8xMjKiZ8+e9OzZEz8/Pxw8O5AccB9eX0Rm7oRW0ZLITIshkxXYmSWBQCAQCAoFEhL+xPOYaJ4TjSHalMKYUy/u4+Likuf8C5UA+ZBixYqR/OYyALdu3cKjWW+Sfc6ATIZW0RIpYsSwqIZLKRAIBAJB4SKcRJ4QzROiiUeOG0acunCemjVrqnT1aaEVIB9SuXJlkgPukpSUxNGjR2ndczhJj/eCgTlaRf/vL6JrqOliCgQCgUBQIIknmWfE8IRoAojHCUM2/rOD1q1bo6+fPxtefhICJBUdHR1atmyJPPQZERER7Nq1i4EjfyTp7RVkZsXRKuqGzNxJ08UUCAQCgUDjJCPhSyxPiOYVMViix89LF9C9e3esrKzy/f4y6TNY1/ry5UvcandBHvoUEmMxtC8HhSyImZFJ4dty3cbcQNNFyDEWhoXPmdlYt3D6PGnFRWi6CDkmOSxI00XIMbHB4ZouQo6JCVTNXiPqJDAhSdNFyBESEEQCOshwx5gtDy5RpkwZtZbhsxAgqUiSxOXLl1m0aBGNGjXSdHGUJjExkUOHDtGyZUt0dQvPAHnixAlRz2qgsNUziLpWF6Ke1UNhred79+6xcOHCXO/lklc+KwGSSrly5bh//76mi6E0ERERmJubEx4ejpmZmaaLozSintVDYatnEHWtLkQ9qwdRz7mjcNpuBQKBQCAQFGo+SwEyfPhwTRfhs0DUs3oQ9aw+RF2rB1HP6kHT9fxZTsEUNgqrea+wIepZfYi6Vg+intWDqOfc8VlaQAob+vr6TJkyJd/WYgtSEPWsPkRdqwdRz+pB1HPuEBYQgUAgEAgEakdYQAQCgUAgEKgdIUAEAoFAIBCoHSFABAKBQCAQqB0hQAQCgUAgEKgdIUAKODNnzqROnToYGRlRpEiRTNNt3LiRSpUqYWBggJ2dHd9++636CvmJ8vjxYzp06ICVlRVmZmbUrVuXEydOaLpYhZ7ly5fj6uqKgYEB1apV48yZM5ou0idFUlISkydPxtXVFUNDQ0qUKMH06dORy+WaLlqh5/Tp07Rr1w57e3tkMhl79uxJl+bBgwe0b98ec3NzTE1NqVWrFj4+PuovbCFACJACTkJCAt26dePrr7/ONM2CBQuYNGkSEydO5N69exw7dowWLVqosZSfJm3atCEpKYnjx49z7do1qlSpQtu2bfH399d00Qot27dvZ/To0UyaNIkbN25Qr149WrVqJTpoFTJ37lxWrlzJ0qVLefDgAb/++ivz5s1jyZIlmi5aoSc6OprKlSuzdOnSDM8/e/YMLy8vypQpw8mTJ7l16xY//fQTBgaFb2NOdSCW4RYSNm7cyOjRowkLC0tzPDQ0lOLFi7N3716aNGmimcJ9ggQFBWFtbc3p06epV68eAJGRkZiZmXH06FFR17mkZs2aeHh4sGLFCsWxsmXL0rFjR2bPnq3Bkn06tG3bFltbW9atW6c41qVLF4yMjPjjjz80WLJPC5lMxu7du+nYsaPiWI8ePdDV1RX1rCTCAlLI8fb2Ri6X8+bNG8qWLYuDgwNffPEFvr6+mi5aocbS0pKyZcuyefNmoqOjSUpKYtWqVdja2lKtWjVNF69QkpCQwLVr12jevHma482bN+f8+fMaKtWnh5eXF8eOHePx48cA3Lp1i7Nnz9K6dWsNl+zTRi6Xs3//fkqVKkWLFi2wsbGhZs2aGU7TCFIQAqSQ8/z5c+RyObNmzWLRokXs3LmTkJAQmjVrRkJCgqaLV2iRyWR4e3tz48YNTE1NMTAwYOHChRw6dChLXxxB5gQFBZGcnIytrW2a47a2tmJaS4VMmDCBnj17UqZMGXR1dalatSqjR4+mZ8+emi7aJ01AQABRUVHMmTOHli1bcuTIETp16kTnzp05deqUpotXIBECRANMnToVmUyW5d/Vq1eVyksul5OYmMjvv/9OixYtqFWrFlu3buXJkyfCYTIDlK17SZL45ptvsLGx4cyZM1y+fJkOHTrQtm1b/Pz8NP0YhRqZTJbmsyRJ6Y4Jcs/27dv5888/2bJlC9evX2fTpk389ttvbNq0SdNF+6RJdfLt0KED3333HVWqVGHixIm0bduWlStXarh0BRMdTRfgc+Tbb7+lR48eWaZxcXFRKq9ixYoBUK5cOcUxa2trrKyshGNfBihb98ePH2ffvn2EhoYqNpdavnw53t7ebNq0iYkTJ6qjuJ8UVlZWaGtrp7N2BAQEpLOKCHLP+PHjmThxouJ7XrFiRV69esXs2bPp16+fhkv36WJlZYWOjk6avhhSfJzOnj2roVIVbIQA0QBWVlZYWVmpJK+6desC8OjRIxwcHAAICQkhKCgIZ2dnldzjU0LZuo+JiQFASyutkVBLS0ssZ8wlenp6VKtWDW9vbzp16qQ47u3tTYcOHTRYsk+LmJiYdN9bbW1t8b3NZ/T09KhevTqPHj1Kc/zx48eiL84EIUAKOD4+PoSEhODj40NycjI3b94EoGTJkpiYmFCqVCk6dOjAqFGjWL16NWZmZvzwww+UKVOGRo0aabbwhZjatWtTtGhR+vXrx88//4yhoSFr1qzhxYsXtGnTRtPFK7SMGTOGPn364OnpSe3atVm9ejU+Pj4MGzZM00X7ZGjXrh0zZ87EycmJ8uXLc+PGDRYsWMCAAQM0XbRCT1RUFE+fPlV8fvHiBTdv3sTCwgInJyfGjx9P9+7dqV+/Po0aNeLQoUPs3buXkydPaq7QBRlJUKDp16+fBKT7O3HihCJNeHi4NGDAAKlIkSKShYWF1KlTJ8nHx0dzhf5EuHLlitS8eXPJwsJCMjU1lWrVqiUdOHBA08Uq9CxbtkxydnaW9PT0JA8PD+nUqVOaLtInRUREhDRq1CjJyclJMjAwkEqUKCFNmjRJio+P13TRCj0nTpzIsD/u16+fIs26deukkiVLSgYGBlLlypWlPXv2aK7ABRwRB0QgEAgEAoHaEatgBAKBQCAQqB0hQAQCgUAgEKgdIUAEAoFAIBCoHSFABAKBQCAQqB0hQAQCgUAgEKgdIUAEAoFAIBCoHSFABAKBQCAQqB0hQAQCgUAgEKgdIUAEAoFAIBCoHSFABAKB2tDR0aFKlSpUqVKFQYMG5dt9OnXqRNGiRenatWu+3UMgEOQNEYpdIBCoDSsrK4KCgvL9PidOnCAqKopNmzaxc+fOfL+fQCDIOcICIhB8ZjRs2BCZTIZMJlPsrvyp0ahRI0xNTTM899VXXymef8+ePeotmEAgUCAEiEDwGTJ48GD8/PyoUKECAKdPn6Zdu3bY29tnOTAvX74cV1dXDAwMqFatGmfOnMnRfSMiIqhWrRpeXl6cOnUqr4+RKxYvXoyfn59G7i0QCN6jo+kCCAQC9WNkZISdnZ3ic3R0NJUrV6Z///506dIlw2u2b9/O6NGjWb58OXXr1mXVqlW0atWK+/fv4+TkBEC1atWIj49Pd+2RI0ewt7fn5cuX2Nvbc/fuXdq0acOdO3cwMzPLcfmzu09WmJubY25unuN7CgQC1SIEiEAgoFWrVrRq1SrLNAsWLGDgwIEK59FFixZx+PBhVqxYwezZswG4du1alnmkioMKFSpQrlw5Hj9+jKenZ4Zpd+7cybRp03j69ClGRkZUrVqVf//9F2Nj42zvIxAICj5iCkYgEGRLQkIC165do3nz5mmON2/enPPnzyuVR2hoqMJq8fr1a+7fv0+JEiUyTOvn50fPnj0ZMGAADx484OTJk3Tu3BnhMy8QfDoIC4hAIMiWoKAgkpOTsbW1TXPc1tYWf39/pfJ48OABQ4cORUtLC5lMxuLFi7GwsMgwrZ+fH0lJSXTu3BlnZ2cAKlasqHR5W7RowfXr14mOjsbBwYHdu3dTvXp1pa8XCAT5jxAgAoFAaWQyWZrPkiSlO5YZderU4c6dO0qlrVy5Mk2aNKFixYq0aNGC5s2b07VrV4oWLarU9YcPH1YqnUAg0BxiCkYgEGSLlZUV2tra6awdAQEB6awiqkBbWxtvb28OHjxIuXLlWLJkCaVLl+bFixcqv5dAINAMQoAIBIJs0dPTo1q1anh7e6c57u3tTZ06dfLlnjKZjLp16zJt2jRu3LiBnp4eu3fvzpd7CQQC9SOmYAQCAVFRUTx9+lTx+cWLF9y8eRMLCwvFEtsxY8bQp08fPD09qV27NqtXr8bHx4dhw4apvDyXLl3i2LFjNG/eHBsbGy5dukRgYCBly5ZV+b0EAoFmEAJEIBBw9epVGjVqpPg8ZswYAPr168fGjRsB6N69O8HBwUyfPl0RxOzAgQMKJ1FVYmZmxunTp1m0aBERERE4Ozszf/78bJcKCwSCwoPYC0Yg+Mxo2LAhVapUYdGiRZouikaRyWTs3r2bjh07arooAsFnifABEQg+Q5YvX46JiYnSq1I+JYYNG4aJiYmmiyEQfPYIC4hA8Jnx5s0bYmNjAXByckJPT0/DJVIvAQEBREREAFCsWDGMjY01XCKB4PNECBCBQCAQCARqR0zBCAQCgUAgUDtCgAgEAoFAIFA7QoAIBAKBQCBQO0KACAQCgUAgUDtCgAgEAoFAIFA7QoAIBAKBQCBQO0KACAQCgUAgUDtCgAgEAoFAIFA7QoAIBAKBQCBQO0KACAQCgUAgUDtCgAgEAoFAIFA7/wPLzq1UfXRepQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import cmaps\n", "\n", "proj = ccrs.PlateCarree() \n", "fig, ax = plt.subplots(1,1,subplot_kw={'projection':proj}) \n", "\n", "vorm = vorm * 10e5\n", "vorPlot = (vorm.plot.contourf(\"lon\", \"lat\", \n", " ax=ax, \n", " levels=np.arange(-20,24,4), \n", " cmap=cmaps.CBR_coldhot, \n", " add_colorbar=True, \n", " extend='both', \n", " cbar_kwargs={'orientation': 'horizontal', 'aspect': 30, 'label': r'[$10^{-5}$ s$^{-1}$]'}) #設定color bar\n", " )\n", "ax.set_extent([lon1,lon2,lats,latn],crs=proj)\n", "ax.set_xticks(np.arange(80,180,20), crs=proj)\n", "ax.set_yticks(np.arange(-20,40,10), crs=proj)\n", "lon_formatter = LONGITUDE_FORMATTER\n", "lat_formatter = LATITUDE_FORMATTER \n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter) \n", "ax.coastlines()\n", " \n", "ax.set_title(' ')\n", "ax.set_title('850-hPa Vorticity, December 2017', loc='left')\n", "ax.set_ylabel(' ') # 設定坐標軸名稱。\n", "ax.set_xlabel(' ')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "694c3d97", "metadata": {}, "source": [ "```{admonition} Exercise\n", ":class: tip\n", "Similar to Example 5, but for divergence ([metpy.calc.divergence](https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.divergence.html)).\n", "```" ] }, { "attachments": {}, "cell_type": "markdown", "id": "8480a701", "metadata": {}, "source": [ "## Empirical Orthogonal Functions (EOF)\n", "\n", "Can use `eofs` or `xeofs` libraries. For `eofs`, see [instructions](https://ajdawson.github.io/eofs/latest/examples/xarray_examples_index.html) on their website. " ] }, { "cell_type": "code", "execution_count": 38, "id": "cafa8af7", "metadata": {}, "outputs": [], "source": [ "from eofs.xarray import Eof" ] }, { "attachments": {}, "cell_type": "markdown", "id": "3e8dbf60", "metadata": {}, "source": [ "Set\n", "```\n", "solver = Eof(data_array)\n", "```\n", "solver includes several methods:\n", "- `solver.eofs()`: Calculates EOF modes. The neofs option specifies the number of modes to compute.\n", "- `solver.pcs()`: Computes the time series of principal components.\n", "- `solver.varianceFraction()`: Computes the ratio of variance explained by each EOF mode, indicating how much percentage of the original data variance each mode can explain.\n", "- `solver.reconstructedField()`: Reconstructs the variable using EOF modes and their principal components.\n", "- `solver.projectField()`: Projects the variable onto the EOF modes.\n", "\n", "`xeof` library has more extensive EOF methods, such as multivariate EOF and rotate EOF. See [instructions](https://xeofs.readthedocs.io/en/latest/index.html) on their website." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 5 }